前言:中文期刊网精心挑选了神经网络遗传算法范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
神经网络遗传算法范文1
关键词:数据挖掘;数据库;遗传算法;神经网络
中图分类号:TP392文献标识码:A文章编号文章编号:1672-7800(2013)012-0129-02
基金项目:佛山科学技术学院重点项目(2010)
作者简介:刘晓莉(1961-),女,佛山科学技术学院副教授,研究方向为应用数学。
1遗传算法基本特征
遗传算法是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,是一种具有广泛适用性的通用优化搜索方法。遗传算法主要借用了生物遗传学的观点,通过自然选择、遗传和变异等作用机制来产生下一代种群,如此逐代进化,直至得到满足要求的后代即问题的解,是一种公认的全局搜索能力较强的算法。
遗传算法有良好智能性,易于并行,减少了陷于局部最优解的风险。遗传算法的处理对象不是参数本身,而是对参数集进行了编码的个体,可以直接对集合、队列、矩阵、图表等结构进行操作。同时,在标准的遗传算法中,基本上不用搜索空间的知识或其它辅助信息,而仅用适应度函数值来评估个体,并在此基础上进行遗传操作; 遗传算法不是采用确定性规则,而是采用概率的变迁规则来指导它的搜寻方向。正是这些特征和优点,使得遗传算法在数据挖掘技术中占有很重要的地位,既可以用来挖掘分类模式、聚类模式、依赖模式、层次模式,也可用于评估其它算法的适合度。
2神经网络基本特征
神经网络是人脑或自然神经网络若干基本特征的抽象和模拟,是以大量的、同时也是很简单的处理单元(神经元)广泛地互相连接形成的复杂非线性系统。人工神经网络本质上是一个分布式矩阵结构,它根据样本的输入输出对加权法进行自我调整,从而近似模拟出输入、输出内在隐含的映射关系。建模时,不必考虑各个因素之间的相互作用及各个因素对输出结果的影响机制,这恰好弥补了人们对各个因素及对输出结果的机制不清楚的缺陷,从而解决众多用以往方法很难解决的问题。
神经网络具有大规模的并行处理和分布式的信息存储,有良好的自适应、自组织性,学习能力很强,有较强的联想功能和容错功能,在解决机理比较复杂、无法用数学模型来刻画的问题,甚至对其机理一无所知的问题等,神经网络方法特别适用,是一种用于预测、评价、分类、模式识别、过程控制等各种数据处理场合的计算方法,其应用已经渗透到多个领域,在计算机视觉、模式识别、智能控制、非线性优化、信号处理、经济和机器人等方面取得了可喜的进展。
3遗传算法与神经网络混合算法在数据挖掘中的应用
作为一种有效的优化方法,遗传算法可以应用于规则挖掘,可以单独用于数据仓库中关联规则的挖掘,还可以和神经网络技术相结合,建立基于神经网络与遗传算法的数据挖掘体系,用于数据挖掘中的分类问题。
学习能力是神经网络中最引人瞩目的特征,学习算法的研究一直占据重要地位。可以将遗传算法应用于神经网络的学习过程中,这样可以避免传统的神经网络算法容易陷入局部极小的问题。有研究者提出了一种基于遗传算法的神经网络二次训练方法,可以提高神经网络的模糊处理能力,有效解决神经网络陷入局部极小的缺点,加快收敛速率,提高学习效率。也有研究者探究了基于基因重组的遗传算法优化神经网络的方法,通过训练权值来实现分类,可以提高神经网络数据分类的准确性。因此,采用遗传算法与神经网络模型相结合方法,可以解决多维非线性系统及模型未知系统的预测、评价与优化等问题,其成功案例有很多,下面是其中的几例。
一些研究者针对当前专家系统知识获取瓶颈的难题,提出了基于神经网络与遗传算法的汽轮机组数据挖掘方法。该方法首先将汽轮机组历史故障数据进行模糊化及离散化处理后,建立神经网络模型,然后再利用遗传算法对神经网络进行优化,实现了基于神经网络与遗传算法相结合的汽轮机组数据挖掘和故障诊断仿真系统,其诊断正确率达到了84%。
综合运用人工智能、计算智能(人工神经网、遗传算法) 、模式识别、数理统计等先进技术作为数据挖掘工具,可以建立可靠、高效的数据挖掘软件平台,已在很多工业控制和优化中得到应用和实验验证,并取得了满意的应用效果。例如,某铝厂根据以往不同原料成分和原料的不同配比与产品质量关系记录的数据库,应用数据挖掘软件平台,可以挖掘出适应不同原料成分的最佳配比规律,从而提高产品质量的稳定性。又如,以往在化工产品优化配方、催化剂配方优化或材料工艺优化等研究中,基本上都是采用试验改进的方式,需经过多次试验才能达到预期目的,但也有可能失败。为降低消耗, 少做试验就能达到预期目的,可采用神经网络对产品配方实验数据建模,在此基础上,再应用遗传算法对配方模型进行优化,得到优化配方。
正是遗传算法与神经网络等算法的支撑以及计算机技术的发展,目前,数据挖掘广泛地应用于天文、地理、生物信息学、金融、保险、商业、电信、网络、交通等众多领域。例如,应用在地理数据库上,主要挖掘地质、地貌特征,为寻找矿产或进行城市规划等提供参考依据;在电信Web服务器方面,可以挖掘Web日志,根据用户兴趣动态链接Web页面,统计页面链接及权威主页等,对检索页面进行聚类,方便用户找到需要的信息;在生物医学信息和DNA数据分析方面,进行遗传、疾病等数据特征的挖掘,为疾病诊断、治疗和预防研究提供科学依据;对金融数据进行挖掘,可以分析客户信用度;在CRM(客户关系模型)上使用数据挖掘,获得客户群体分类信息、交叉销售安排及开发新客户和保留老客户的策略;在电信业中使用挖掘技术,以预防网络欺诈等;应用在商业问题的研究包括:进行客户群体划分、背景分析、交叉销售等市场行为分析,以及客户流失性、信用度分析与欺诈发现;在电子商务方面,从服务器以及浏览器端的日志记录中发现隐藏在数据中的模式信息,了解系统的访问模式以及用户的行为模式,作出预测性分析等等。
4结语
神经网络和遗传算法作为数据挖掘技术,也有一些不足和缺陷。遗传算法除了要进一步改进基本理论和方法外,还要采用和神经网络、模拟退火、最近临规则等其它方法相结合的策略,提高遗传算法的局部搜索能力,从而进一步改善其收敛速度和解的品质,提高数据挖掘技术。特别是对于单调函数或单峰函数,遗传算法在初始时很快向最优值逼近,但是在最优值附近收敛较慢;而对于多峰函数的优化问题,它往往会出现“早熟”,即收敛于局部极值。因此,研究如何改进遗传算法,采用合适的算法加快寻优速度和改善寻优质量,无论在理论上还是在实践上都有重要意义。神经网络的神经计算基础理论框架以及生理层面的研究仍需深入与加强,如何提高神经网络的可理解性问题,以及研究遗传算法、神经网络技术与其它人工智能技术更好地结合,从而获得比单一方法更好的效果等问题,值得进一步探索。
虽然数据挖掘技术已得到了广泛应用,但现有的数据挖掘方法并不能完全适应所面临的具有多样性的海量数据分析的现实,急需解决的问题是:如何研究并行处理和抽样的方法,来处理大规模的数据以获得较高的计算效率;如何利用统计、模糊数学来确定隐含变量及依赖关系,开发容噪的挖掘方法,以解决异质数据集的数据挖掘问题;如何更好地进行文本数据挖掘、Web数据挖掘、分类系统、可视化系统、空间数据系统和分布式数据挖掘等新技术的应用。因此,未来数据挖掘的研究表现在数据挖掘功能、工具、方法(算法) 的拓展与理论创新,其应用的范围和深度会进一步加强。
参考文献参考文献:
[1]孟晓明.浅谈数据挖掘技术[J].计算机应用与软件,2004 (8).
[2]李慧芳,姚跃华,陈一栋.改进的遗传算法对神经网络优化的分类[J].微计算机信息,2008(15).
[3]王东龙,李茂青.基于遗传算法的数据挖掘技术应用[J].南昌大学学报, 2005(1).
[4]宋仁国.铝合金工艺优化的遗传算法[J].材料科学与工程,1998(1).
[5]韩力群.催化剂配方的神经网络建模与遗传算法优化[J].化工学报,1999(4).
[6]郭崇慧,陆玉昌.预测型数据挖掘中的优化方法[J].工程数学学报,2005(1).
[7]杨杰.用于建模、优化、故障诊断的数据挖掘技术[J].计算机集成制造系统,2000(10).
神经网络遗传算法范文2
Abstract: The paper puts forward the optimization method of fractional linear neural network based on genetic algorithm. It firstly optimizes the weight of fractional linear network by using genetic algorithm, and then, on the basis of genetic improved result, trains fractional linear network by fractional linear network back propagation (BP) algorithm, and gets the optimal weights of network. It is applied to build the fractional linear neural network model based on genetic algorithm for predicting the gas-oil ratio of original oil. The Comparative experiments show that the fractional linear neural network optimization method based on genetic algorithm is a kind of new modeling method.
关键词: 遗传算法;分式线性神经网络;预测模型;原油气油比
Key words: genetic algorithm;fractional linear neural network;prediction model;gas-oil ratio of original oil
中图分类号:TP183 文献标识码:A 文章编号:1006-4311(2013)28-0221-02
0 引言
BP网络是一种应用最为广泛的前馈神经网络。但是BP网络收敛速度慢,易陷入局部极小。遗传算法是一种自适应全局优化概率搜索算法,具有较强的鲁棒性,可以与BP网络结合避免其陷入局部最小。一些学者对BP网络进行了优化和改进,如吴清佳等[1]采用VC维方法确定网络结构,再用BP算法和基本遗传算法对暴雨量进行预测分析;张少文等[2]尝试用GA-BP算法建立了黄河上游降雨-径流神经网络预测模型。
由相关数学概念可知,线性函数的倒数是分式线性函数。文献[3]证明了分式线性神经网络具有比常见BP网络更强、更广泛的逼近能力。但是,分式线性网络反向传播(BP)学习算法也有不收敛或易陷入局部极小的可能。本文结合GA和分式线性网络BP算法的特点构建了基于遗传算法的分式线性神经网络模型并用于原油溶解气油比预测。仿真结果表明,这一模型可以用来预测原油气油比,因而基于遗传算法的分式线性网络可行有效。
1 分式线性网络神经网络模型拓扑结构
分式线性网络是具有m(m?叟3)层的前向神经网络,包括1个输入层,1个或1个以上的隐含层和1个输出层。
本文神经网络优化模型采用3层分式线性网络,即1个输入层,1个隐含层和1个输出层,其中隐含层神经元的输入函数是分式线性函数。
根据有关文献和溶解气油比实验结果,压力、温度、气体相对密度、原油重度与原油溶解气油比之间存在一定的非线性函数关系。本文把压力、温度、气体相对密度以及原油重度这4个参量作为网络的输入节点,气油比这个参量作为输出节点。因此,输入层节点个数为4,输出层节点个数为1。决定隐含层的神经元数量的选取多是通过实验不断调整数量和经验公式选取。根据本文设计思想和实验反复计算测试,设计输入层神经元数目为n,输出层神经元数目为1,隐含层神经元数目为(2n+1)=2×4+1=9。
2 基于遗传算法的模型初始权值优化设计
2.1 基本思想 为加快分式线性网络BP算法收敛速度,避免陷入局部极小,本文先对模型初始的权值、阈值编码,构成初始种群,然后借助遗传算子生成下一代种群,对种群中的最优个体解码后得到的权值做出评价,如果满足遗传算法性能指标,则输出此最优权值,否则继续遗传算法操作,直至某一代的种群最优个体满足性能指标,并输出对应的权值、阈值。此时得到的权值阈值是遗传算法优化后的分式网络初始解,再把得到的优化权值再传赋给分式线性网络再做进一步的优化。
2.2 设计方法
2.2.1 编码方法 本文遗传算法采用实数编码方法。将分式线性神经网络的权值和阈值按先后顺序级联为一个长串,串上的每一个位置对应着网络的一个权值和阈值,并用一个向量?孜表示:?孜=[W1,W2,B1,B2](1)
其中,W1为输入层神经元与隐含层神经元连接权值,W2为隐含层神经元与输出层神经元连接权值,B1为隐含层神经元阈值,B2为输出层神经元阈值,
取隐含层传递函数?椎(t)=■,设输入学习样本共有M个,记为Xp=(x■,x■,…,x■),p=1,2,…,M,对应的样本输出为Y■=(y■,y■,…,y■),p=1,2,…M,W■■,是对应第p个样本的输入层与隐含层神经元连接权值,W■■是对应第p个样本的隐含层与输出层神经元连接权值,B■■对应第p个样本的隐含层神经元阈值,B■■对应第p个样本的输出层神经元阈值。网络在学习样本下的实际输出为
■■=W■■■+B■■,p=1,2,…M
(2)
定义适应度函数的形式为:f=■=
1/■Y■-W■■■+B■■(3)
2.2.2 遗传操作 ①选择算子:采用基于正态分布序列选择的选择算子。②交叉算子:采用算术交叉算子。③变异算子:采用基于非均匀变异的变异算子。④进化代数:T=300。
3 模型构建
以东营市利津油田34口油井建立神经网络预报模型,对这些油井的溶解气油比作为分析对象,分别通过遗传算法进化分式线性网络模型和采用L-M训练算法的BP网络模型对比进行训练学习,对34口油井中的28个样本作训练样本建模,训练后的网络预测剩余6口油井的气油比,进而实现从输入段到输出端的非线性形式下的映射,预测6个测试样本的原油溶解气油比。(表1)
4 仿真实验
本文提出结合遗传算法的分式线性网络BP算法模型对滨南采油厂利津油田34个数据进行仿真实验。为构建分式线性函数,固定点取(a1,a2,a3,a4)=-1,由于设定输入层神经元个数为4,则隐含层神经元输入函数(分式线性函数)为I=■W1■(4)
其中W1为输入层神经元与隐含层神经元连接权值,xi为输入变量。
分式线性网络隐含层传递函数为Sigmoid函数?椎(t)=1/(1+e-t),输出层传递函数为线性函数L(t)=t,最终训练目标e=0.001,样本数目M=28,训练次数为1000。遗传算法的初始种群规模N=50,最大进化代数T=300。为对比仿真结果,同时对采用L-M训练算法的三层BP网络做仿真,输入层节点数为4,输出层节点数为1,隐含层节点数为10,训练函数为trainlm,训练目标?着=0.001,训练次数为1000,其余均取默认值。
GA优化结果:最大适应度f=26.2544,得到的权值阈值是矩阵形式:?孜=[W9×4,W4×9,W9×1,W4×1]其中,各个变量的定义同前述。
从表2可以看出,本文优化算法需要213步达到训练误差要求,而改进BP算法需要24步就达到要求,本文算法训练步数较长。
由表3可见,基于本文优化算法的模型可以预测原油气油比,其整体预测气油比的精度与基于改进BP算法的模型效果接近,因而本文优化算法预测数据是可行有效的。
5 结束语
本文将遗传算法和分式线性神经网络相结合用于原油气油比的预测,这对原油物性分析提供了一个借鉴和参考。下一步需要充分考虑其他因素的影响并不断改进模型,同时调整好GA算子和分式线性网络的参数以便提高预测的精确度和时效。
参考文献:
[1]吴清佳,张庆平,万健.遗传神经的智能天气预报系统[J].计算机工程,2005,31(14):176-177,189.
神经网络遗传算法范文3
关键词:遗传算法;BP神经网络;时间序列;预测;
中图分类号:TP18 文献标识码:A 文章编号:1009-3044(2015)31-0160-03
Application of Time Series Prediction based on the Genetic Algoriths and BP Neural Network
YANG Tong-man1,GUO Yu2
(1.College of Meteorology and Oceanography, PLA Univ. of Sci. & Tech. ,Nanjing 211101,China;2.Anhui University of Science and Technology,Huainan 232001,China)
Abstract: The basic principles of genetic algorithms and BP neural network algorithm for analysis, and will have good global search capability of genetic algorithm and can be arbitrary precision approach nonlinear function of neural network algorithm, genetic algorithms to optimize the characteristics of the BP algorithm , time series forecasting algorithm based on genetic algorithm BP neural network build. And use the algorithm to do the closing stock market trading data prediction. Application results show that this method has good stability, high precision characteristics.
Key words:genetic algorithm;BP neural network;time series;prediction
随着经济、科学技术等的快速发展,每天来自商业、社会、科学、工程、医学等各个领域的呈爆炸式增长的数据,注入我们的计算机网络、万维网以及各种数据存储设备,并且这些数据集基本上都具有时变性的特征。因此,目前许多数据集中的数据都是以时间序列的数据形式存在的。在互联网金融、科研项目、医学、工程等各个领域,都存在着在历史数据的基础上预测未来的问题。至今,各行各业的研究人员已经建立了许多的时间序列预测模型及算法,这些预测算法针对线性系统的时间序列预测具有很好的效果。但是,面对自然和社会现象中存在的大量的非线性系统问题,这些方法并不能有效地解决趋势预测问题,解决这类问题效果欠佳[1]。而人工神经网络等智能理论的兴起与发展,为时间序列预测提供了全新且有效的针对非线性预测的分析方法。BP神经网络算法是非循环多级网络的训练算法,具有广泛的适用性。但是BP算法也存在训练速度慢、高纬曲面上局部极小的问题,并且在隐含层网络节点数的选取上缺乏理论指导,这一系列的问题,大大降低了预测的精确性[2]。遗传算法是一种通过模拟自然进化的过程,搜索出最优解的方法,它具有良好的全局搜索能力的特点。因此,本文利用遗传算法的特点,通过对BP算法的初始权值以及阈值进行优化,以达到提高预测精确度的目的。
1基于遗传算法的BP神经网络预测算法
1.1遗传算法
遗传算法(Genetic Algorithm)又叫基因进化算法或进化算法,它是一种启发式的搜索算法。它能在搜索过程中,自动的搜索全局并选择优良的解,并能够自适应的控制搜索过程以达到最优解[3]。遗传算法是具有“生成+检验”的迭代过程的搜索算法[4]。其主要处理流程如下:
1) 首先对优化问题的解进行编码;
2) 适应度函数,它主要依据优化问题的目标函数而定,是遗传算法的关键;
3) 染色体的组合;
4) 变异。
1.2 BP神经网络模型及算法
1.2.1人工神经网络
人工神经网络(Artificial Neural Networks),是对人类的大脑系统的一个特定的描述,它是一个理论化的数学模型。它由大量的处理单元通过适当的方式互联构成,是一个大规模的非线性自适应系统[5]。神经网络是通过对各种各样的样本,进行反复的学习和训练,并不断的调整各连接弧上的权值以及节点的阈值,直到各个权值及阈值达到理想的稳定状态后,神经网络就能正确的反映网络的输入样本对输出样本的映射关系[6],它是通过这些不断的训练来达到训练学习的目的的。
1.2.2 BP神经网络算法
BP神经网络算法,是非线性的连续变换函数的多层感知器的误差向后传播( ErrorBack Propagation,BP)算法。其基本思想是利用输出层的误差来估算输出层的直接前导层的误差,如此循环下去,将获得所有其他各层的误差估计,形成将输出端表现出的误差沿着与输入信号传送相反的方向逐级向网络的输入端传递的过程[5]。目前此算法已经在许多领域获得了应用[7]。BP神经网络算法能学习并存储大量的输入(input)-输出(out)模式的映射关系,并且不需要在事前描述这种映射关系。BP算法的学习规则是使用最快速度的下降法,通过向后传播,不断的调整网络各连接弧上的权值和节点的阈值,使得网络的误差平方和最小[3]。BP神经网络算法的网络结构包括输入层,隐藏层和输出层,如图1所示。
图1 BP算法的网络结构示意图
假设有一个三层BP神经网络,并设其输入层的第i个节点上的输入向量ai;其隐含层上的第j个节点的输入向量sj,输出向量bj;其输出层上的第k个节点的输入向量ck,输出向量ok;设其输入层、隐层和输出层的节点数分别为m、l、n。设输入层和隐层节点间的联接权Xij,隐层和输出层节点间的联结权Mjk,隐层和输出层的各单元的输出阈值分别是Hj和Ck,输出层上的第k个节点的期望输出值tk,若激活函数为f(x),则:
[sj=i=1maiωij-θjj=1,2,...,l]
[bj=f(sj)j=1,2,...,l]
[ck=j=1lbjvjk-γkk=1,2,...,n]
[ok=f(ck)k=1,2,...,n]
误差函数为:
[E=12k(tk-ok)2]
BP神经网络算法将按照误差减小的最快的方向,也就是负梯度的方向,来改变各层之间的联接权,使得网络慢慢地收敛。联接权的增量的变化为:
[Δω=-η?E?ω]
其中[η]为学习率。
考虑到学习率的变化会影响网络的性能[9],所以在权值调整公式中增加一个动量项,达到微调权值修正量防止振荡的效果[3]。通过增加动量项不仅仅考虑了误差在梯度上的作用,同时也考虑了误差曲面上变化的方向。
[Δwij(n+1)=ηδj(n+1)yi(n+1)+aΔwij(n)]
其中a是动量因子,一般a[η](0,1)动量项反映了以前的调整经验,对下一时刻的调整起到一定阻尼作用。因此可以减小振荡的趋势,并促使联接权值的变化方向为误差曲面底部的平均方向。这不仅能够降低网络对误差曲面上存在的局部的细节敏感性,还能够在一定程度上缓解局部存在极小的问题。
1.3 遗传算法对BP算法的优化
利用遗传算法能够在全局搜索的优势,对BP算法的初始权值和阈值进行优化。其流程图如图2所示:
图2 遗传算法对BP算法优化流程图
(1) 将BP算法的初始权值和权值优化,表示为编码;随机产生一组串长为n的群体,为初始群体;
(2) 将编码串译码成寻优参数,并计算其对应的目标函数,从目标函数中获得各个体的适应度值;
(3) 根据得到的各个体适应度值,选择产生适应度值高的中间群体(父辈),并对其执行复制、交叉和变异的操作,产生新的群体;
(4) 返回步骤(2),并反复执行步骤(2)到步骤(4),使得群体能够一代代的不断的进化,直到满足条件,输出最优个体解为止。
2基于遗传算法的BP神经网络预测算法的应用
股票市场是一个高度复杂的非线性动态系统[8],股价的波动通常都具有很强的非线性的特征。股价的走势及其波动受制于各种政治、经济、心理等诸多因素,以至于人们往往难以精确的预测股价的走势。而股票的价格,却是每一位投资者最关心的问题。自从有了股票交易市场,各种专家和投资资深者都在探索分析和预测股票价格走势的方法,期望能够准确地对股价的走势进行预测。
基于以上因素,本实验选择了2004年11月到2010年3月的股市交易数据作为实验数据。对2004年到2010年2月份的数据做模型训练,并对2010年3月份的数据进行预测。本算法对股市交易数据中的收盘数据做了预测。从表(1)可以看出,该算法对3月份收盘数据的预测值与实际值的绝对误差、相对误差值都很小,精度很高。从图(3)可以看出,预测数据与实际数据的趋势很相近,几乎重合。
表1 截取的5个样本的预测结果
图3 原始数据与预测数据趋势图
3 结论
本文针对非线性趋势预测问题,在前人对BP算法存在的问题改进的基础上,利用遗传算法具有的良好全局搜索能力的特点,再次对BP神经网络算法进行了优化,并将该算法应用于对股市交易收盘数据的预测。经过检验,证实了该方法的有效性。
参考文献:
[1]曹星平,易东云,吴翊.基于神经网络的时间序列预测方法进展[J].电脑与信息技术, 1999(6).
[2]胡冰蕾.基于遗传优化的BP神经网络算法的短期负荷预测[J]. 供用电,2010(6):42-44.
[3]任谢楠. 基于遗传算法的BP神经网络的优化研究及MATLAB仿真[D].天津师范大学,2014.
[4]王宏刚,钱锋.基于遗传算法的前向神经网络结构优化[J],2007,14(4):387-190.
[5]蒋宗礼. 人工神经网络导论[M].北京:高等教育出版社, 2001.
[6]王成宝,任传祥,尹唱唱,等. 基于遗传算法的BP神经网络短时交通流预测[J]. 山东交通科技,2012(5):5-7.
[7]Chen Hai-bo,Muller S G.Use of sequential learning for short- term traffic flow forecasting[J].TransportationResearch,2000,7( 06) : 11 - 13.
神经网络遗传算法范文4
【关键词】大学生身体素质评估 遗传算法 BP神经网络 MATLAB计算程序
在校大学生是国家重要的人才后备力量,大学生的身体素质培养和锻炼是学校体育教学中关注的重点。对大学生身体素质进行科学、切实的评价可制订更为有效的培养方案,帮助大学生提高其身体素质。身体素质评价就是将大学生的身体形态、生理机能及运动能力等方面的数据综合起来进行评价[1]。从以往的研究成果看,对大学生身体素质评价集中于采用概率统计、多元回归分析和神经网络[2]的方法。然而,概率统计仅得到整体评价结果,多元回归分析预测精度较低,且两者受样本空间影响较大。为此,本文利用遗传算法来训练初始网络模型,再用BP算法来进行精确求解,是对神经网络评估大学生身体素质的进一步优化应用。
基于遗传算法的BP神经网络理论
通过把神经网络和遗传算法合理、科学的结合,既能够利用神经网络较强的学习能力,又发挥了遗传算法全局寻优的搜索功能。首先利用遗传算法得到权值的较优初始取值,训练网络避免了局部极小,利用BP神经网络训练次数和最终权值也相对稳定,训练速度明显加快,从而既节约了时间,又提高了预测结果的准确性。
1.基于遗传算法的BP神经网络结构
BP网络的学习规则采用最速下降法,利用遗传算法根据训练目标函数对网络权值进行迭代,找到最佳初始网络权值。通过反向传播来不断调整网络权值,使网络误差平方和最小,该系统的网络结构,如图1所示。先对大学生身体素质的评估指标进行分类,抽取大学生身体素质的特征指标,并作为输入信息送入由输入层、中间层和输出层组成的三层网络模型进行评估。经过测试的网络,成为稳定的模式评估器,即可输出评估结果[3,4]。
该模型的输入层节点数为n,即大学生身体素质评价指标数,中间层节点数为 ,输出层节点数为1,即身体素质评估结果值,ωij和ωj为BP神经网络权值,初始化隐含层阈值为ɑ,输出层阈值为b,由此可给定学习速率和神经元激励函数。从图1可发现,BP神经网络可以看成一个非线性函数,网络输入值和输出值分别为该函数的自变量和因变量。当输入层节点数为n,输出层节点数为1时,BP神经网络就表达了从n个自变量到1个因变量的函数映射关系。
2.基于遗传算法的BP神经网络算法
遗传算法优化BP神经网络的核心是用遗传算法来优化BP神经网络的初始权值和阈值,使优化后的BP神经网络能够更好地预测函数输出,计算流程如图2所示。
1.背景资料
根据本校某班2011年大学生身体素质测评成绩,从中选取30名学生的测试结果作为神经网络的训练样本和校验样本。结合遗传算法和BP神经网络算法,在大型数学计算软件MATLAB中编程实现基于遗传算法的BP神经网络大学生身体素质评估[4]。
2.计算结果与分析
遗传算法优化过程中最优个体的适应度变化(如图3)。把最优初始权值、阈值赋给神经网络,用训练数据训练100次后,得到基于遗传算法的BP神经网络预测值。为了对比分析,也进行了BP神经网络预测分析(如图4)。
从图4可看出,采用BP神经网络及遗传算法优化的BP神经网络两种算法得到的预测结果,与专家判断(实际值)基本一致。但基于遗传算法的BP神经网络较BP神经网络预测精度高。特别在输入节点,即评价大学生身体素质的指标较多时,基于遗传算法的BP神经网络预测效果要好一些。
结 论
1.本文提出了基于遗传算法的BP神经网络大学生身体素质评价算法,并建立了相应的网络模型。
2.基于遗传算法的BP神经网络算法不但具有神经网络的函数逼近能力,而且应用遗传算法优化BP神经网络的权值、阈值,可使优化后的神经网络避免训练时间长、易陷入局部极值的缺点。
3.结合实例,将基于遗传算法的BP神经网络大学生身体素质评价算法,应用于本校学生身体素质评估。结果表明,该算法较BP神经网络预测精度及效率高,可作为今后大学生身体素质评价的一种新方法。
参考文献:
[1]范正森,张明如,周瑞琪.大学生身体素质综合评价数学模型[J].武汉工业大学学报,2001,4:92-94.
[2]陈海英,郭巧.短跑运动能力的神经网络评价方法[J].北京理工大学学报,2003,1:54-57.
[3]陈刚,何政伟,杨斌,杨洋.遗传BP神经网络在泥石流危险性评价中的应用[J].计算机工程与应用,2010,46(3).
神经网络遗传算法范文5
但当BP神经网络应用于预测模型尤其对于未来增长趋势比较明显的预测模型时,虽然其收敛精度较高,但其值域范围受限导致训练样本拟合函数与预测数据有较大差异,导致其局部搜索能力较强但全局搜索能力较差,易陷入局部最优值。本文通过引入遗传算法,发挥该算法全局搜索能力较强的特点,对BP神经网络权值和阈值进行预优化,赋予各层较佳输出解空间,发挥BP神经网络局部搜索能力强的特点,实现强强联合,提高时间序列预测的精准度。
1.1BP神经网络
BP(BackPropagationnetwork)神经网络是当今预测领域应用最广泛的一种神经网络算法。BP神经网络由3层组成:输入层、隐含层和输出层。每一层中都包含若干节点(神经元),不同层之间节点通过权值进行全连接,同层节点之间无连接。其中,隐含层可为多层,实际应用过程中有一个隐含层的三层神经网络结构即可实现非线性函数拟合。
1.2遗传算法
本文中的优化对象为BP神经网络各层间权值和阈值。因此,在种群初始化时,遗传算法采用常用的二进制编码,并由农业机械数量的历史样本数目确定遗传算法将优化的参数(权值和阈值)个数,从而确定种群的编码长度。因BP神经网络隐含层神经元采用S型传递函数,为减小计算误差,减少或避免计算结果落入局部最小值,权值和阈值应避免选择区间内较小和较大数值,选择在[-0.5,0.5]区间内的随机数。遗传算法计算流程。
2预测结果与分析
本文采用基于遗传算法的BP神经网络,以我国从1997-2013年的农业机械数量为基础数据进行训练和测试和预测。其中,遗传算法群体规模M=50,交叉概率pc=0.6,变异概率pm=0.01,BP神经网络权值阈值取值空间为[-0.5,0.5],训练次数为1000,训练目标为0.01,学习速率为0.1。我国在1997-2013年期间的农机总动力、农用大中型拖拉机数量和小型拖拉机数量的预测值与历史样本数据之间的绝对值平绝误差分别为1.080%、1.352%和1.765%。由此看出,使用基于遗传算法的BP神经网络对于以农业机械数量为预测对象的时间序列预测模型的预测精度较好,预测精度稳定性较佳。从预测误差可以看出,本文所使用的BP神经网络在预测本时间序列模型时,基本避免运算结果落入局部最小值,收敛性能较好,与前文中遗传算法和BP神经网络优势互补、强强联合的理论设想较为一致。2014年我国农机总动力、农用大中型拖拉机数量和小型拖拉机数量的预测结果来看,该预测结果与2013年度数值比较有较大增长,但增长幅度有所下降。预计到2014年,我国农机总动力、大中型拖拉机数量和小型拖拉机数量分别为11.251×108kW、587.012万台和2043.201万台,与1997年相比分别增加了167.86%、751.96%和94.87%,与2013年相比分别增加了4.17%、10.75%和2.16%。其中,2014年农机总动力和小型拖拉机数量增长率分别小于2013年的增长率5.88%和3.3%,农用大中型拖拉机数量增长率大于2013年的增长率9.19%。由于我国在2004年出台了一系列鼓励提高农业机械化的法律、政策、法规,中央财政农机购置补贴资金投入连年大幅增加,极大地调动了农民购机的积极性和企业生产的积极性,促进我国农机装备总量持续增长和农机结构优化。随着跨区作业和农业生产合作社的逐步发展,有效提高了农用大中型拖拉机在农业生产中的的利用率,降低了农民劳动强度,提高生产效率,因而其近几年的保有量有较大增幅。小型拖拉机受农业产业结构调整和农业机械大型化的影响,其近几年的保有量增幅逐年降低。
3结论
神经网络遗传算法范文6
论文摘要:随着计算机技术的飞速发展,智能计算方法的应用领域也越来越广泛。本文介绍了当前存在的一些智能计算方法,阐述了其工作原理和特点,同时对智能计算方法的发展进行了展望。
The Analysis for Several Classic Algorism of Intellegence Computation
YANG Ming-hui
(Wuhan University of Technology, Wuhan 430074, China)
Abstract: As the computer technology develops fast, the field for intelligence algorism become wider and wider.In this paper, I introduce some methods for intelligence, and analyze their Principles and characters, finally make a Forecast of the develop of integellence computation.
Key words:Intelligence Computation; Artificial Neural Network Algorithm;Genetic algorithm;Annealing Algorithm
1 引言
智能算法也称作为“背影算法”,是人们从现实的生活中的各种现象总结出来的算法。它是从自然界得到启发,模仿它的原理而得到的算法,这样我们可以利用仿生原理进行设计我们的解决问题的路径,这就是智能计算的思想。这方面的内容很多,如人工神经网络技术、遗传算法、模拟退火算法等,下面分别对其进行分析。
2 人工神经网络算法
2.1 人工神经网络(ARTIFICIAL NEURAL NETWORK,简称ANN)
人工神经网络是在对人脑组织结构和运行机制的认识理解基础之上模拟其结构和智能行为的一种工程系统。早在本世纪40年代初期,心理学家McCulloch、数学家Pitts就提出了人工神经网络的第一个数学模型,从此开创了神经科学理论的研究时代。其后,F Rosenblatt、Widrow和J. J .Hopfield等学者又先后提出了感知模型,使得人工神经网络技术得以蓬勃发展。
2.2 人工神经网络的特点
人工神经网络的知识存储容量很大。在神经网络中,知识与信息的存储表现为神经元之间分布式的物理联系。它分散地表示和存储于整个网络内的各神经元及其连线上。每个神经元及其连线只表示一部分信息,而不是一个完整具体概念。只有通过各神经元的分布式综合效果才能表达出特定的概念和知识。
由于人工神经网络中神经元个数众多以及整个网络存储信息容量的巨大,使得它具有很强的不确定性信息处理能力。即使输入信息不完全、不准确或模糊不清,神经网络仍然能够联想思维存在于记忆中的事物的完整图像。只要输入的模式接近于训练样本,系统就能给出正确的推理结论。
正是因为人工神经网络的结构特点和其信息存储的分布式特点,使得它相对于其它的判断识别系统,如:专家系统等,具有另一个显着的优点:健壮性。生物神经网络不会因为个别神经元的损失而失去对原有模式的记忆。最有力的证明是,当一个人的大脑因意外事故受轻微损伤之后,并不会失去原有事物的全部记忆。人工神经网络也有类似的情况。因某些原因,无论是网络的硬件实现还是软件实现中的某个或某些神经元失效,整个网络仍然能继续工作。
人工神经网络是一种非线性的处理单元。只有当神经元对所有的输入信号的综合处理结果超过某一门限值后才输出一个信号。因此神经网络是一种具有高度非线性的超大规模连续时间动力学系统。它突破了传统的以线性处理为基础的数字电子计算机的局限,标志着人们智能信息处理能力的一大飞跃。
3 遗传算法
3.1 特点
遗传算法是解决搜索问题的一种通用算法,对于各种通用问题都可以使用。搜索算法的共同特征为:(1)首先组成一组候选解;(2)依据某些适应性条件测算这些候选解的适应度;(3)根据适应度保留某些候选解,放弃其他候选解;(4)对保留的候选解进行某些操作,生成新的候选解。在遗传算法中,上述几个特征以一种特殊的方式组合在一起:基于染色体群的并行搜索,带有猜测性质的选择操作、交换操作和突变操作。这种特殊的组合方式将遗传算法与其它搜索算法区别开来。
遗传算法还具有以下几方面的特点:
(1)遗传算法从问题解的串集开始嫂索,而不是从单个解开始。这是遗传算法与传统优化算法的极大区别。传统优化算法是从单个初始值迭代求最优解的;容易误入局部最优解。遗传算法从串集开始搜索,覆盖面大,利于全局择优。
(2)许多传统搜索算法都是单点搜索算法,容易陷入局部的最优解。遗传算法同时处理群体中的多个个体,即对搜索空间中的多个进行评估,减少了陷入局部最优解的风险,同时算法本身易于实现并行化。
(3)遗传算法基本上不用搜索空间的知识或其它辅助信息,而仅用适应度函数值来评估个体,在此基础上进行遗传操作。适应度函数不仅不受连续可微的约束,而且其定义域可以任意设定。这一特点使得遗传算法的应用范围大大扩展。
3.2 运用领域
前面描述是简单的遗传算法模型,可以在这一基本型上加以改进,使其在科学和工程领域得到广泛应用。下面列举了一些遗传算法的应用领域:(1)优化:遗传算法可用于各种优化问题。既包括数量优化问题,也包括组合优化问题;(2)程序设计:遗传算法可以用于某些特殊任务的计算机程序设计;(3)机器学习:遗传算法可用于许多机器学习的应用,包括分类问题和预测问题等。
4 退火算法
模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中ΔE为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f ,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解计算目标函数差接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值t及其衰减因子Δt,每个t值时的迭代次数L和停止条件S。
5 展望
目前的智能计算研究水平暂时还很难使“智能机器”真正具备人类的常识,但智能计算将在21世纪蓬勃发展。不仅仅只是功能模仿要持有信息机理一致的观点。即人工脑与生物脑将不只是功能模仿,而是具有相同的特性。这两者的结合将开辟一个全新的领域,开辟很多新的研究方向。智能计算将探索智能的新概念,新理论,新方法和新技术,而这一切将在以后的发展中取得重大成就。