前言:中文期刊网精心挑选了卷积神经网络的基本思想范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
卷积神经网络的基本思想范文1
关键词:图像分割 阈值分割 遗传算法 小波变换
中图分类号:TP391 文献标识码:A 文章编号:1002-2422(2010)02-0001-03
图像分割是按照一定的规则把图像划分成若干个互不相交、具有一定性质的区域,把人们关注的部分从图像中提取出来,进一步加以研究分析和处理。图像分割的结果是图像特征提取和识别等图像理解的基础,对图像分割的研究一直是数字图像处理技术研究中的热点和焦点。图像分割使得其后的图像分析,识别等高级处理阶段所要处理的数据量大大减少,同时又保留有关图像结构特征的信息。图像分割在不同的领域也有其它名称,如目标轮廓技术、目标检测技术、阈值化技术、目标跟踪技术等,这些技术本身或其核心实际上也就是图像分割技术。
1 经典图像分割方法
1,1阈值分割方法
阈值分割是常见的直接对图像进行分割的算法,根据图像像素的灰度值的不同而定。对应单一目标图像,只需选取一个阈值,即可将图像分为目标和背景两大类,这个称为单阈值分割:如果目标图像复杂,选取多个阈值,才能将图像中的目标区域和背景被分割成多个,这个称为多阈值分割,此时还需要区分检测结果中的图像目标,对各个图像目标区域进行唯一的标识进行区分。阈值分割的显著优点,成本低廉,实现简单。当目标和背景区域的像素灰度值或其它特征存在明显差异的情况下,该算法能非常有效地实现对图像的分割。闽值分割方法的关键是如何取得一个合适的阈值,近年来的方法有:用最大相关性原则选择阈值的方法、基于图像拓扑稳定状态的方法、灰度共生矩阵方法、最大熵法和谷值分析法等,更多的情况下,阈值的选择会综合运用两种或两种以上的方法,这也是图像分割发展的一个趋势。
1,2基于边缘的图像分割方法
边缘总是以强度突变的形式出现,可以定义为图像局部特性的不连续性,如灰度的突变、纹理结构的突变等。边缘常常意味着一个区域的终结和另一个区域的开始。对于边缘的检测常常借助空间微分算子进行,通过将其模板与图像卷积完成。两个具有不同灰度值的相邻区域之间总存在灰度边缘,而这正是灰度值不连续的结果,这种不连续可以利用求一阶和二阶导数检测到。当今的边缘检测方法中,主要有一次微分、二次微分和模板操作等。这些边缘检测器对边缘灰度值过渡比较尖锐且噪声较小等不太复杂的图像可以取得较好的效果。但对于边缘复杂的图像效果不太理想,如边缘模糊、边缘丢失、边缘不连续等。噪声的存在使基于导数的边缘检测方法效果明显降低,在噪声较大的情况下所用的边缘检测算子通常都是先对图像进行适当的平滑,抑制噪声,然后求导数,或者对图像进行局部拟合,再用拟合光滑函数的导数来代替直接的数值导数,如Mart算子、canny算子等。在未来的研究中,用于提取初始边缘点的自适应阈值选取、用于图像层次分割的更大区域的选取以及如何确认重要边缘以去除假边缘将变的非常重要。
1,3基于函数优化的分割方法
此方法是图像分割中另一大类常用的方法。其基本思路是给出一个目标函数,通过该目标函数的极大化或极小化来分割图像。GA.Hewer等人提出了一个具有广泛意义的目标函数。统计学分割方法、结合区域与边缘信息的方法、基于贝叶斯公式的分割方法等是目前几种活跃的函数优化方法。
统计学分割方法是把图像中各个像素点的灰度值看作是具有一定概率分布的随机变量,且观察到的实际物体是作了某种变换并加入噪声的结果。统计学分割方法包括基于马尔科夫随机场方法、标号法、混合分布法等。
区域增长法和分裂合并法是基于区域信息的图像分割的主要方法。区域增长有两种方式,一种是先将图像分割成很多的一致性较强的小区域,再按一定的规则将小区域融合成大区域,达到分割图像的目的。另一种实现是给定图像中要分割目标的一个种子区域,再在种子区域基础上将周围的像素点以一定的规则加入其中,最终达到目标与背景分离的目的;分裂合并法对图像的分割是按区域生长法沿相反方向进行的,无需设置种子点。其基本思想是给定相似测度和同质测度。从整幅图像开始,如果区域不满足同质测度,则分裂成任意大小的不重叠子区域,如果两个邻域的子区域满足相似测度则合并。
2 结合特定工具的图像分割算法
虽然图像分割目前尚无通用的理论,但是近年来大量学者致力于将新概念、新方法应用于图像分割,结合特定理论的图像分割方法在图像分割方面取得了较好的应用效果。如小波分析和小波变换、神经网络、遗传算法等数学工具的利用,有效地改善了分割效果。
2,1基于遗传算法的图像分割
遗传算法是模拟自然界生物进化过程与机制求解问题的一类自组织与自适应的人工智能技术。对此,科学家们进行了大量的研究工作,并成功地运用于各种类型的优化问题,在分割复杂的图像时,人们往往采用多参量进行信息融合,在多参量参与的最优值求取过程中,优化计算是最重要的,把自然进化的特征应用到计算机算法中,将能解决很多问题。遗传算法的出现为解决这类问题提供了新而有效的方法,不仅可以得到全局最优解,而且大量缩短了计算时间。王月兰等人提出的基于信息融合技术的彩色图像分割方法,该方法应用剥壳技术将问题的复杂度降低,然后将信息融合技术应用到彩色图像分割中,为彩色分割在不同领域中的应用提供了一种新的思路与解决办法。
2,2基于人工神经网络技术的图像分割
基于神经网络的分割方法的基本思想是先通过训练多层感知器来得到线性决策函数,然后用决策函数对像素进行分类来达到分割的目的。近年来,随着神经学的研究和进展,第三代脉冲耦合神经网络(PCNN)作为一种新型人工神经网络模型,其独特处理方式为图像分割提供了新的思路。脉冲耦合神经网络具有捕获特性,会产生点火脉冲传播,对输入图像具有时空整合作用,相邻的具有相似输入的神经元倾向于同时点火。因此对于灰度图象,PCNN具有天然的分割能力,与输入图像中不同目标区域对应的神经元在不同的时刻点火,从而将不同区域分割开来。如果目标区域灰度分布有重叠,由于PCNN的时空整合作用,如果灰度分布符合某种规律,PCNN也能克服灰度分布重叠所带来的不利影响,从而实现较完美的分割。这是其一个突出的优点,而这恰恰是其他的分割方法所欠缺的,其在未来的图像分割中将起主导作用。
2,3基于小波分析和变换的图像分割
近年来,小波理论得到了迅速的发展,而且由于其具有良好的时频局部化特性和多分辨率分析能力,在图像处理等领域得到了广泛的应用。小波变换是一种多尺度多通道分析工具,比较适合对图像进行多尺度的边缘检测。从图像处理角度看,小波变换具有“变焦”特性,在低频段可用高频率分辨率和低时间分辨率,在高频段可用低频率分辨率和高时间分辨率,小波变换在实现上有快速算法具有多分辨率,也叫多尺度的特点,可以由粗及精地逐步观察信号等优点。近年来多进制小波也开始用于边缘检测。另外,把小波变换和其它方法结合起来的图像分割技术也是现在研究的热点。
3 图像分割的应用现状
在图像处理中,图像分割是一种重要的技术,是图像分析的基础。随着图像分割技术研究的深入,其应用日趋广泛,几乎出现在有关图像处理的所有领域,并涉及各种类型的图像。凡属需要对图像目标进行提取、测量的工作都离不开图像分割。通常,图像分割是为了进一步对图像进行分析、识别、压缩、编码等,图像分割的准确性将直接影响后继的工作,因此,分割的方法和精确程度是至关重要的。目前,图像分割在图像工程中占据非常重要的位置,图像分割已在交通、医学、遥感、通信、军事和工业自动化等诸多领域得到广泛应用。表1是应用领域表。
卷积神经网络的基本思想范文2
论文摘要: 当点扩展函数未知或不确知的情况下, 从观察到的退化图像中恢复原始图像的过程称为图像盲复原。近年来, 图像盲复原算法得到了广泛的研究。本文在介绍了盲图像恢复算法的现状的基础上进一步研究其的发展方向。
一、引言
图像恢复是图像处理中的一大领域,有着广泛的应用,正成为当前研究的热点。图像恢复的主要目的是使退化图像经过一定的加工处理,去掉退化因素,以最大的保真度恢复成原来的图像。传统的图像恢复假设图像的降质模型是己知的。而许多情况下,图像的降质模型未知或具有较少的先验知识,必须进行所谓的盲恢复。其重要性和艰巨性而成为一个研究热点。目前所能获取的观测图像是真实图像经过观测系统成像的结果。由于观测系统本身物理特性的限制,同时受观测环境的影响,观测图像和真实图像之间不可避免地存在着偏差和失真,称观测系统对真实图像产生了降质。图像恢复的目的就是根据降质的观测图像分析和计算得出真实图像。
二、图像盲恢复算法的现状
总体来说, 图像盲复原方法主要分为以下两类: 一是首先利用真实图像的特别特征估计PSF,然后借助估计得到的PSF,采用经典的图像复原方法进行图像的复原。这类方法将PSF的估计与图像的复原过程分为2个不同的过程,因而具有较少计算量的特点;二是PSF辨识和真实图像估计相结合,同时辨识PSF和真实图像。这类算法较为复杂,计算量较大。另外,对于点扩展函数也考虑了空间变化的复杂情况。针对目前的盲复原算法的现状,根据退化模型的特点, 重新将算法分为空间不变的单通道盲复原算法、空间不变多通道盲复原算法和空间变化图像盲复原算法3类。
(一)单通道空间不变图像盲复原算法
在这类算法中, 最为常用的是参数法和迭代法。
1)参数法。所谓参数法, 即模型参数法, 就是将PSF和真实图像用某一类模型加以描述, 但模型的参数需要进行辨识。在参数法中, 典型的有先验模糊辨识法和ARMA 参数估计法, 前者先辨识PSF的模型参数,后辨识真实图像, 属于第1 种类型的图像盲复原算法, 因而计算量较小;后者同时辨识PSF和真实图像模型参数, 属于第2种类型图像盲复原算法。
2)迭代法。所谓的迭代法, 不是通过建立模型而是通过算法的迭代过程, 加上有关真实图像和PSF的约束来同时辨识PSF和真实图像的方法。迭代法是单通道
图像盲复原算法中应用最广泛的一类算法, 它不需建立模型, 也不要求PSF 为最小相位系统, 因而跟实际更为接近。在这类算法中, 迭代盲复原算法(IBD), 基于非负性和决策域的递归逆滤波器算法(NAR2R IF) ,基于高阶统计特性的最小
熵算法等最为典型。
(二)多通道二维图像盲复原
多通道二维图像盲复原, 这类方法将数字通讯领域应用的一维多通道盲原分离算法扩展到二维情况并用于图像的盲恢复。这类算法中有两种代数方法, 一种是先辨识模糊函数, 再采用常规的恢复算法进行复原;另一种是直接对逆滤波器进行估计。此类算法的优点在于不需对初始图像进行估计, 也不存在稳定性和收敛性问题,对图像以及模糊函数的约束是松弛的,算法具有一般性。但是第1种算法要求采用复原算法具有收敛性;第2种算法对噪声敏感。
(三)空间改变的图像盲复原方法
在许多实际的应用中, 模糊往往是空间变化的,但由于处理工作的难度, 目前的研究较少,基本有相关转换恢复和直接法两类。
相关转换恢复的基本思想是区域分割, 即将整幅图像分为若干局部区域, 然后假设在各个局部区域模糊是空间不变的, 利用空间不变的图像复原有关算法进行复原。这类方法都是基于窗口的模糊辨识技术, 图像的估计取决于窗口的大小, 由于模糊参数是连续变化的, 在范围较大时空间不变的假设是不成立的, 因而模糊的估计精度较差, 而且这种方法只能针对部分空间变化的模糊进行处理, 缺乏通用性; 其次在区域的边上存在振铃现象。
直接法的基本思想是直接对图像进行处理。如采用简化的二维递推卡尔曼滤波器进行图像模型和模糊模型的直接转换方法, 其缺点是只能针对有限的模型, 而且模型数增加, 计算量会显著增大;采用共轭梯度迭代算法, 但只见到一个31×31 的文本图像处理的结果报道,对于大图像处理效果尚需进一步的研究;将空间变化图像系统建立成马尔苛夫随机模型,对复原过程,采用模拟退火算法进行最大后验估计的方法,这种方法避免了图像的窗口化, 并能克服模糊参数不连续性造成的影响,但这种方法只能局限于将模糊过程建立成单参数的马尔苛夫随机模型的情况,而且计算量也较大。
三、图像盲恢复的应用前景
(1)现有算法的改进以及新的算法研究。现有各种算法还存在许多不足,有必要对算法进一步改进。如IBD算法中, 如何选择初始条件才能保证算法的收敛;如何选择算法终止条件才能保证恢复的质量; 如何选择滤波器中的噪声参数才能减少噪声的影响。又如NAR2R IF算法中, 如何进一步解决噪声敏感问题,支持域的确定以及如何将算法扩展到非均匀背景的情况等。提出新的算法更好地解决图像盲复原问题, 也是今后研究的热点。
(2)基于非线性退化模型的图像盲复原算法。在实际应用中,严格来讲,所有的退化模型都是非线性的。对模型采用线性化的方法进行近似处理,虽然算法简单,但对非线性严重的情况处理效果并不理想。基于多项式以及神经网络两种参数模型处理非线性信号盲分离算法,算法扩展到二维图像情况需要进一步研究。研究基于非线性退化模型的图像盲复原算法也是下一步研究方向之一。
(3)去噪处理算法研究。加性噪声的存在,使图像的复原问题变成了一个病态问题,而且由于一般假设只知道噪声的统计特性,因此要从退化图像中完全去除噪声是不可能的。另外,由于噪声的存在,恢复的效果并不理想,结合降噪的图像盲恢复的算法研究有很现实的意义,这方面也进行了部分工作。为克服噪声的影响,一般采用先进行降噪,后进行复原;二是将降噪和复原同时进行这两类方法。目前,大多数算法中将噪声描述成高斯噪声进行研究, 在实际应用时有较大局限性。对于非高斯情况的研究采用基于噪声的高阶统计特性的去噪算法研究也是很重要的研究方向,也可采用其他类型的方法进行降噪,利用自组织映射的非线性独立组件分析方法进行图像降噪处理算法。
(4)实时处理算法。算法的的复杂性是制约算法应用的一个重要方面。可采用正则化的离散周期Radon变换的方法将二维的卷积转化为一维进行处理,以提高算法的速度;也可采用神经网络的实时处理算法。算法的实时性是算法实际应用的先决条件。
(5)应用研究。算法的应用是推动算法研究的动力。虽然图像盲复原算法在天文学、医学、遥感等方面获得了较大的应用, 但将算法应用到一般的工业图像实时检测、机器视觉、网络环境下的图像传输恢复、刑事侦破等方面还有大量的工作要做。
参考文献:
[1] 薛梅,杨绿溪.用于含噪二值图像的改进NAS-RIF图像盲复原算[J].数据处理.2006.17.(2).
卷积神经网络的基本思想范文3
关键词:医学超声图像; 液性病变; 边缘提取; Snake模型
中图分类号:TN91934文献标识码:A文章编号:1004373X(2012)04009804
Application of edge detection algorithms in medical ultrasonography images of discharge diseases
GAO Haijuan1, PING Ziliang1, ZHOU Suhua1, HOU Yingbin2
(1. Century College, BUPT, Beijing 102613, China; 2. Beijing United Imaging Co., Ltd, Beijing 100193, China)
Abstract: The medical ultrasound image with lesion containing liquid always show several hypoecho zones with unclear edge, like "Honeycomb". In order to extract clear edge of such images and generate further data for clinic diagnosis, several different edge detection algorithms are applied to medical ultrasound images with lesion containing liquid. Experiments shows, classic edge detection algorithms can't achieve desired image edge, whereas edge detection algorithm based on Snake model manually set edge control points, intellectually and dynamically adjusts curve shape, and finally get an excellent result, which shows high clinic application value.
Keywords: medical ultrasound image; lesion containing liquid; edge extraction; Snake model
收稿日期:20110815
基金项目:国家自然科学基金资助项目(610650040引言
鉴于医学图像可以看到人体组织的局部器官病变,所以医学成像成为疾病检查的重要手段,但由于设备、技术等原因,得到的医学图片边缘往往模糊不清,因此医学图像边缘检测是医学图像处理和分析的一个非常重要的分支[1]。目前医学成像方法主要有:X光成像、核磁共振成像、超声成像以及正电子发射断层成像,其中,超声成像从成像成本、成像时间以及对病人的伤害等方面都显示出了它的优势,本文就以医学超声图像为例,对超声诊断中常见的液性病变图像进行边缘提取算法分析。
经典的边缘检测算子利用边缘处一阶或二阶导数来检测梯度变化情况,基本的微分检测算子有Roberts算子、Sobel算子、拉普拉斯算子和Canny算子等。近年来,随着数学理论和人工智能的发展,又出现了许多新的边缘检测方法,比如基于分数阶微分法、小波变换法、Snake模型法、模糊检测法、数学形态学法、神经网络法等。这些边缘检测方法最终目的都是检测出图像的边缘信息,但在解决特定特征图像时也显现出各自的优势和不足之处。所以,如何采用合适的技术对医学图像进行边缘提取,为临床医生提供更准确的病人数据是目前研究的一个热点。
本文首先对几种边缘检测方法进行分析,然后将其应用于超声液性病变图像的边缘提取中,得出不同的提取效果,与采用改进的Snake模型边缘提取算法进行比较,实验表明,基于Snake模型的边缘提取算法边缘提取效果较好。
1边缘检测算法
边缘检测目的是要检测出图像中灰度变化的不连续区域,确定它们在图像中的精确位置,为后期的图像分析和处理提供信息,图像的边缘包含了物体形状的重要信息,主要存在于目标与目标、目标与背景、区域与区域(包括不同色彩)之间,是图像分割、纹理特征和形状特征等图像分析的重要基础[2]。图像边缘检测的实质是采用某种算法来提取出图像中对象与背景间的交界线[3]。
1.1基于一阶微分的边缘检测算法
图像中的边缘通常与图像强度或图像强度的一阶导数的不连续性有关。图像强度的不连续可分为:
(1) 阶跃不连续,即图像强度在不连续处的两边的像素灰度值有着显著的差异;
(2) 线条不连续,即图像强度突然从一个值变化到另一个值,保持一个较小的行程后又返回到原来的值。
在一维情况下,阶跃边缘同图像的一阶导数局部峰值有关。梯度是函数变化的一种度量,而一幅图像可以看作是图像强度连续函数的取样点阵列。因此,图像灰度值的显著变化可用梯度的离散逼近函数来检测[4]。
梯度是一阶导数的二维等效式,定义为向量:G(x,y)=Gx
Gy=fx
fy(1)有2个重要的性质与梯度有关:
(1) 向量G(x,y)的方向就是函数f(x,y)增大时的最大变化率方向;
(2) 梯度的幅值由下式给出:|G(x,y)|=G2x+G2y(2)在实际应用中,通常用绝对值来近似梯度幅值:|G(x,y)|=|Gx|+|Gy| (3)或:|G(x,y)|≈max(|Gx|,|Gy|)(4)由向量分析可知,梯度的方向定义为:a(x,y)=arctan(Gy/Gx)(5)数字图像中,求导数是利用差分近似微分来完成的。根据模板的大小以及权值的不同,人们提出了很多梯度算子,比如Roberts算子、Sobel算子、Prewitt算子都是基于一阶微分的梯度经典算子。
1.1.1Roberts算子
根据计算梯度原理,采用对角线方向相邻2像素之差得到的就是Roberts算子。Roberts算子是22模板的一阶微分算子,是一种斜向偏差分的梯度计算方法,梯度的大小代表边缘的强度,梯度的方向与边缘走向垂直,因此,Roberts梯度算子检测水平和垂直边缘的效果好,定位精度高,但容易丢失部分边缘。因为Roberts没进行平滑处理,对噪声较敏感,经常会出现孤立点。用该算子处理边缘陡峭度高且噪声小的图像效果较佳[2]。
1.1.2Sobel算子
Sobel算子是使用3×3模板的一阶微分算子,采用带权值的方法计算差分,是在Roberts算子的基础上将方向差分运算与局部平均结合起来的一种方法。Sobel算子以f(x,y)为中心的33的邻域上计算x 和y方向上的偏导数Gx ,Gy 。利用像素上、下、左、右相邻点的灰度加权算法,根据在边缘点处达到极值进行边缘检测。Sobel算子很容易在空间上实现,对噪声具有较好的平滑作用,能提供比较准确的边缘方向信息,但定位精度不高,容易产生伪边缘,其测得边缘宽度一般至少为2个像素。但由于实际中很多情形下对定位精度的要求都不是很高,因此它是一种较为常用的边缘检测算子[2]。
1.1.3Prewitt算子
Prewitt和Sobel算子都是使用3×3模板的一阶微分算子[10],它们是在研究曲面拟合的基础上提出的。拟合是指已知某连续函数的一系列离散函数值,通过最小二乘法等准则来确定该函数中的待定系数。Prewitt和Sobel算子的2个差分模板的系数之间的区别仅在于求平均的方法不同。随后出现的Kirsch算子用不等权的8个3×3循环平均梯度算子分别与图像进行卷积,取其中的最大值输出,它可以检测各个方向上的边缘,减少了由于平均而造成的细节丢失,但同时增加了计算量。
1.2基于二阶微分的边缘检测算法
前面讨论了基于一阶微分的边缘检测,如果所求的一阶微分高于某一阈值,则确定该点为边缘点。一阶微分组成的梯度是一种矢量,不但有大小还有方向,和标量比较,数据存储量比较大。一种更好的方法就是求梯度局部最大值对应的点,并认定它们是边缘点,通过去除一阶微分中的非局部最大值,可以检测出更精确的边缘。一阶微分的局部最大值对应着二阶微分的零交叉点,这意味着在边缘点处有一阶微分的峰值,同样地,有二阶微分的零交叉点。这样,通过找图像强度的二阶微分的零交叉点就能找到边缘点。
在二维空间,对应二阶微分有两种算子:Laplace算子和Marr算子。Laplace算子也称拉氏算子,它的特点是具有旋转对称性而不具备方向性,只需要一个3×3模板。Laplace算子是对二维函数进行运算的二阶导数算子,与方向无关,对取向不敏感,因而计算量要小。根据边缘的特性,Laplace算子可以作为边缘提取算子,计算数字图像的Laplace值可以借助模板实现,但是它对噪声相当敏感,它相当于高通滤波,常会出现一些虚假边缘。由于Laplace算子存在着诸多缺陷,它一般并不直接应用于边缘检测,而是结合其它方法以提高边缘的定位精度。而Marr算子就是在Laplace算子基础上改进,由于它使用的是高斯型的Laplace模板,因此又被称作LOG算子,先对图像用Gauss函数进行平滑,然后利用Laplace算子对平滑的图像求二阶导数后得到的零交叉点作为待选边缘[5]。LOG算子就是对图像进行滤波和微分的过程,是利用旋转对称的LOG模板与图像做卷积,确定滤波器输出的零交叉位置。
1.3Canny算子
Canny算子[3]是最常用的边缘检测方法之一,是一个具有滤波、增强和检测的多阶段的优化算子。
该算法的基本过程如图1所示。
图1Canny算法流程Canny算子检测边缘的实质是求信号函数的极大值问题来判定图像边缘像素点。基本步骤为:
(1) 用高斯滤波器平滑图像;
(2) 用一阶偏导的有限差分来计算梯度的幅值和方向;
(3) 对梯度幅值进行非极大值抑制;
(4) 用双阈值算法检测和连接边缘。Canny算子能够得到连续完整的图像,但需要注意的问题是:Gauss滤波的尺度,以及双阈值的选择。
1.4基于Snake模型的边缘检测算法
Snake模型是1987年由Kass[7]提出的,它的基本思想是以构成一定形状的控制曲线为模板(或者称为轮廓线),通过模板自身的弹性形变与图像局部特征相匹配达到调和,即某种能量函数极小化,完成对图像边缘的提取,通过对模板的进一步分析而实现图像的理解和识别。能量最小化模型已经有了很长的发展历史,Kass对其进行了改进,采用动态调整的方法来实现它,对图像的高层信息进行分析和提取而不至于受到太多低层信息的影响。通过在原始的最小化函数中加入外力因子,可以引导初始化的轮廓线朝着特定的方向前进,最后达到提取目标边界的目的[6]。
1.4.1基本Snake 模型
Kass等提出的基本Snake模型由一组控制点组成,即v(s)=(x(s),y(s)),s∈[0,1],其中x(s)和y(s)分别表示每个控制点在图像中的坐标位置,s是以傅立叶变换形式描述边界的自变量。其对应的能量函数定义为:ESnake=∫10ESnake(v(s))ds
=∫10Eint(v(s))+Eext(v(s))ds(6)式中:Eint为曲线的内部能量;Eext为外部能量。
内部能量定义为:Eint=(α(s)|vs(s)|2+β(s)|vss(s)|2)/2(7)式中|vs(s)|为弹性能量,是曲线相对于弧长的一阶导数的模,受弹性系数的调节,控制着曲线的张力。|vss(s)|是弯曲能量,是曲线相对于弧长的二阶导数的模,受刚性系数的调节,控制曲线的变形程度。
对于普通的灰度图像I(x,y),典型的外部能量(外部力)表达有如下2种定义: E1ext (x,y) = -|I(x,y)|2(8)
E2ext (x,y) = -|[Gσ(x,y)*I(x,y)]|2(9)式中为梯度算子,是方差为σ的二维高斯函数。在图像边缘区域,图像灰度值的梯度往往较大,取反后计算以满足能量最小的要求。
每一次迭代,曲线的变形是为了使如下的能量函数达到最小化:ESnake=∫1012[(α(s)|vs(s)|2+β(s)|vss(s)|2)]+
Eext(v(s))ds(10) 此时,能量ESnake必须满足如下Euler公式:α(s)xss+β(s)xssss+Eextx=0(11)
α(s)yss+β(s)yssss+Eexty=0(12)弹性能量和弯曲能量合称内部力,内部力用于控制轮廓线的弹性形变,选取适当的参数α(s)和β(s)将能量函数ESnake极小化,所对应的v(s)就是对物体的分割。在能量函数极小化过程中,弹性能量迅速把轮廓线压缩成一个光滑的圆,弯曲能量驱使轮廓线成为光滑曲线或直线,而外部力则使轮廓线向图像的高梯度位置靠拢,基本Snake模型就是在这3个力的联合作用下工作的。
1.4.2改进的Snake模型
基本Snake模型在应用的时候存在一些缺陷:
(1) 要求初始的轮廓线必须与目标边缘非常的接近,这是因为能量函数往往会收敛到一个非期望的局部最小值,如果初始的轮廓线离目标较远,就会使曲线变形到一个无法预计的形状;
(2) 基本Snake模型对无法捕获凹陷边界[11]。这样就限制了Snake模型应用到一些存在凹陷区域的图像上。
近年来,针对以上缺陷,许多研究不仅对Snake 模型本身的能量函数构造和求解算法作了很大改进,更在其基础上衍生出了许多新轮廓线模型,它们有些在形式上已经与基本Snake 相去甚远,而且也要复杂得多,但其指导思想却是一脉相承的。比如,Cohen提出了一种气球力理论[8],通过使用不同尺度的外力场,增加外力场的捕捉范围,来驱动轮廓线向目标边缘逼近。Xu Chenyang提出的GVF Snake[9]将梯度矢量场(GVF)代替传统外力场,让曲线随着图像凹陷的部分而发生变形,圈出凹陷的边缘,由于GVF对轮廓线的初始位置不是非常的敏感,尤其对于二值图像,所以它可以很快的收敛到目标边缘,很好地解决了这些问题。
GVF Snake将基本Snake 的外部力用扩散方程进行处理,得到整个图像域的梯度向量场作为外部力,经过扩散方程处理后的GVF更加有序,更能体现物体边界的宏观走势。由于GVF不是一个表达式,无法用能量函数的形式求解,因此GVF Snake是利用力的平衡条件进行优化。GVF Snake 具有更大的搜索范围,对轮廓线初始位置不敏感,可以分割凹陷的边界,对梯度绝对值的大小乃至噪声具有更好的鲁棒性,而且它还不必预先知道轮廓线是要膨胀还是收缩。
本文将改进的GVF Snake模型应用于医学超声液性病变图像中,并与其他的边缘检测方法进行比较分析。
2实验结果分析
医学超声诊断出的液性病变多以囊肿为主,常见的囊肿有甲状腺囊肿、卵巢囊肿、肝囊肿等,这些超声液性病变图像灰度变化梯度不大,多见数个无回声区,呈“蜂窝状”,边界不清晰。
本文选取两幅具有代表性的肝囊肿、甲状腺囊肿超声液态病变图像,用不同的边缘检测算法对其进行处理,实验结果如图2,图3所示。
图2基于经典边缘检测算法的肝囊肿超声图像边缘提取结果图3基于Snake模型的肝囊肿超声图像边缘提取结果通过以上两组实验可以看出,由于超声液态病变图像固有特征,经典的边缘检测算法并不能清晰的勾画出液性病灶的边缘来,对包含病灶区域的扩大区域实施边缘检测算法,将得到更多冗余的边缘信息,不能得到感兴趣病灶区域的轮廓。而Snake模型却可以较好地选取特定的区域,利用算法特有的曲线变化方式,最终收拢到双侧灰度梯度变换平衡点位置,达到边缘提取的良好效果,主要原因在于:
(1) Snake模型可以人为的设定待提取边缘的主要控制点,缩小了曲线变化的范围,更加具有针对性的对特定区域进行边缘提取;
(2) Snake模型对图像灰度变化较敏感,在曲线内力和外力达到平衡的情况下,曲线可以很好的稳定在一个位置,形成平滑的连续的曲线。
图4基于经典边缘检测算法的甲状腺囊肿
超声图像的边缘提取结果图5基于Snake模型的甲状腺囊肿超声图像边缘提取结果3结语
本文应用几种不同的边缘检测算法提取医学超声液态病变图像的边缘,实验结果表明,经典边缘检测算法的提取效果不明显,而基于Snake模型的边缘提取算法由于采用动态的调整方法,提取的图像边缘完整、平滑、清晰,方便于后续的诊断性测量,具有一定的临床应用价值,因此,在临床使用的医学超声仪器中,使用类似算法提取液性病变图像边缘,将是一个应用趋势。
参考文献