前言:中文期刊网精心挑选了如何学习神经网络范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
如何学习神经网络范文1
关键词:智能决策支持系统;人工神经网络;模糊逻辑系统;模糊神经网络
中图分类号:TP183 文献标识码:B
文章编号:1004-373X(2008)02-084-03
Design and Realization of Intelligent Prediction Model Based on Fuzzy Neural Network
YAN Hongrui,MA Liju
(The PLA Military Represent Office in No.847 Factory,Xi′an,710043,China )[HJ1*3][HJ]
Abstract:For the predicting problems that the intelligent decision support system often encounters,according to the characters of artificial neural network and fuzzy logic system,a kind of fuzzy neural network model is designed.Firstly,the fuzzy logic system for realizing fuzzy prediction is expressed by the construction of artificial neural network.Then the fuzzy logic system is trained by associate studying algorithms.At last,the model of fuzzy neural network has been proved by practice and realized in program.
Keywords:intelligent decision support system;artificial neural network;fuzzy logic system;fuzzy neural network
智能决策支持系统\[1\](Intelligent Decision Support System,IDSS)是以管理科学、运筹学、控制论和行为科学为基础,以计算机技术、仿真技术和信息技术为手段,面对半结构化的决策问题,辅助支持中、高层次策者决策活动的、具有智能作用的计算机网络系统。神经网络和模糊逻辑是智能决策支持技术应用于信息管理后迅速发展的智能技术,在决策预测领域颇有成效。本文根据人工神经网络和模糊逻辑的特点,设计一种模糊神经网络完成决策支持系统中的信息预测功能,较好地解决了决策支持系统的实用化问题。
1 人工神经网络与模糊逻辑系统介绍
1.1 人工神经网络
2 模糊神经网络模型的设计与实现
2.1 模糊神经网络模型的选定
由以上介绍可知,在预测领域中,模糊逻辑具有较强的结构性知识表达能力,能较好地表示用语言描述的经验知识、定性知识,但通常不具备学习能力,只能主观地选择隶属度函数和模糊规则。神经元网络具有强大的自学习能力和数据直接处理能力,但网络内部的知识表达方式不清楚,在学习时只能从任意初始条件开始,其学习的结果完全取决于训练样本。
本文将神经网络的学习算法与模糊逻辑理论结合起来,利用正规化模糊神经网络(NFNN)实现模糊逻辑系统;用模糊规则表示神经网络,用预先的专家知识以模糊规则的形式初始化,用神经网络的学习算法训练模糊系统,然后结合神经计算的特点实现推理过程。
2.2 模糊神经网络模型的结构
本文采用一个3层的前向网络(如图3所示)来构造模糊系统(见图3)。这样模糊神经网可以用通用的三层模糊感知器来表示,该模糊感知器定义如下:
(1) U=∪i∈NUi是一个非零的神经元集合,N={1,2,3}是U的索引值集合,对所有的i,j∈N且满足为输入层,为规则(隐含)层,为输出层;И
2.4 模糊神经网络的编程实现
系统主要通过4个类来描述神经网络模型。他们是神经元类、神经元权类、神经元层类、神经元网络类。神经元类的作用是模拟单个神经元的数据结构和计算过程。神经元权值类用于保存神经元之间连接的权值。神经元层类的作用是生成每一层的神经元,并进行每一层的计算,他接受神经元网络类的调用,并调用神经元类的函数实现每一层的计算。神经元网络类定义了整个神经网络结构和所有的网络操作,他提供公共函数给应用程序调用,他的计算函数调用神经元层类和神经元类的函数进行网络计算。
通过4个类的描述,将建立和运行神经网络所需的主要数据结构和计算过程做了定义。当程序运行时,首先由应用程序生成神经网络类实例,然后此网络类实例进行层类实例的建立,接下来层类实例建立每层的神经元实例。同时,神经网络类也从外部文件读取网络结构的连接和权值数据,供建立网络时使用。
3 模糊神经网络的预测验证
模糊神经网络的预测验证如表1所示。
4 结 语
模糊神经网络模型把神经网络的学习算法与模糊逻辑理论相结合,将模糊系统用类似于神经网络的结果表示,再用相应的学习算法训练模糊系统,通过样本的学习算法提高网络性能。此模型曾经用于某军事模拟对抗系统中战场态势的预测,成功地实现了该模型的预测功能。但是模糊推理机是基于知识库中的知识和规则进行推理的,如何建立具有专家经验和知识的知识库,是模糊神经网络模型应用中的难点和重点。如何建立实用的知识库
以及决策过程中存在许多不确定性因素等问题还有待于进一步研究。
参 考 文 献
[1]George M Marakas.21世纪的决策支持系统[M].朱岩,译.北京:清华大学出版社,2002.
[2]Martin T Hagan,Howard B Demuth,Mark H.Beale.神经网络设计\[M\].戴葵,译.北京:机械工业出版社, 2003.
[3]刘有才.模糊专家系统原理与设计[M].北京:北京航空航天大学出版社,2003.
[4]张乃尧,阎平凡.神经网络与模糊控制[M].北京:清华大学出版社,1998.
如何学习神经网络范文2
过去10年,人们对机器学习的兴趣激增。几乎每天,你都可以在各种各样的计算机科学课程、行业会议、华尔街日报等等看到有关机器学习的讨论。在所有关于机器学习的讨论中,许多人把机器学习能做的事情和他们希望机器学习做的事情混为一谈。从根本上讲,机器学习是使用算法从原始数据中提取信息,并在某种类型的模型中表示这些信息。我们使用这个模型来推断还没有建模的其他数据。
神经网络是机器学习的一种模型,它们至少有50年历史了。神经网络的基本单元是节点(node),基本上是受哺乳动物大脑中的生物神经元启发。神经元之间的连接也以生物的大脑为模型,这些连接随着时间的推移而发展的方式是为“训练”。
在20世纪80年代中期和90年代初期,许多重要的架构进步都是在神经网络进行的。然而,为了得到好的结果需要大量时间和数据,这阻碍了神经网络的采用,因而人们的兴趣也减少了。在21世纪初,计算能力呈指数级增长,计算技术出现了“寒武纪大爆发”。在这个10年的爆炸式的计算增长中,深度学习成为这个领域的重要的竞争者,赢得了许多重要的机器学习竞赛。直到2017年,这种兴趣也还没有冷却下来;今天,我们看到一说机器学习,就不得不提深度学习。
作者本人也注册了Udacity的“Deep Learning”课程,这门课很好地介绍了深度学习的动机,以及从TensorFlow的复杂和/或大规模的数据集中学习的智能系统的设计。在课程项目中,我使用并开发了用于图像识别的卷积神经网络,用于自然语言处理的嵌入式神经网络,以及使用循环神经网络/长短期记忆的字符级文本生成。
本文中,作者总结了10个强大的深度学习方法,这是AI工程师可以应用于他们的机器学习问题的。首先,下面这张图直观地说明了人工智能、机器学习和深度学习三者之间的关系。
人工智能的领域很广泛,深度学习是机器学习领域的一个子集,机器学习又是人工智能的一个子领域。将深度学习网络与“经典的”前馈式多层网络区分开来的因素如下:
比以前的网络有更多的神经元更复杂的连接层的方法用于训练网络的计算机能力的“寒武纪大爆炸”自动特征提取
这里说的“更多的神经元”时,是指神经元的数量在逐年增加,以表达更复杂的模型。层(layers)也从多层网络中的每一层都完全连接,到在卷积神经网络中层之间连接局部的神经元,再到在循环神经网络中与同一神经元的循环连接(recurrent connections)。
深度学习可以被定义为具有大量参数和层的神经网络,包括以下四种基本网络结构:
无监督预训练网络卷积神经网络循环神经网络递归神经网络
在本文中,主要介绍后三种架构。基本上,卷积神经网络(CNN)是一个标准的神经网络,通过共享的权重在空间中扩展。CNN设计用于通过内部的卷积来识别图像,它可以看到图像中待识别的物体的边缘。循环神经网络(RNN)被设计用于识别序列,例如语音信号或文本。它的内部有循环,这意味着网络上有短的记忆。递归神经网络更像是一个层级网络,在这个网络中,输入必须以一种树的方式进行分层处理。下面的10种方法可以应用于所有这些架构。
1.反向传播
反向传播(Back-prop)是一种计算函数偏导数(或梯度)的方法,具有函数构成的形式(就像神经网络中)。当使用基于梯度的方法(梯度下降只是方法之一)解决优化问题时,你需要在每次迭代中计算函数梯度。
对于神经网络,目标函数具有组合的形式。如何计算梯度呢?有两种常用的方法:(i)解析微分(Analytic differentiation)。你已经知道函数的形式,只需要用链式法则(基本微积分)来计算导数。(ii)利用有限差分进行近似微分。这种方法在计算上很昂贵,因为函数值的数量是O(N),N指代参数的数量。不过,有限差分通常用于在调试时验证back-prop实现。
2.随机梯度下降法
一种直观理解梯度下降的方法是想象一条河流从山顶流下的路径。梯度下降的目标正是河流努力达到的目标——即,到达最底端(山脚)。
现在,如果山的地形是这样的,在到达最终目的地之前,河流不会完全停下来(这是山脚的最低点,那么这就是我们想要的理想情况。)在机器学习中,相当从初始点(山顶)开始,我们找到了解决方案的全局最小(或最佳)解。然而,可能因为地形的性质迫使河流的路径出现几个坑,这可能迫使河流陷入困境。在机器学习术语中,这些坑被称为局部极小值,这是不可取的。有很多方法可以解决这个问题。
因此,梯度下降很容易被困在局部极小值,这取决于地形的性质(用ML的术语来说是函数的性质)。但是,当你有一种特殊的地形时(形状像一个碗,用ML的术语来说,叫做凸函数),算法总是保证能找到最优解。凸函数对ML的优化来说总是好事,取决于函数的初始值,你可能会以不同的路径结束。同样地,取决于河流的速度(即,梯度下降算法的学习速率或步长),你可能以不同的方式到达最终目的地。这两个标准都会影响到你是否陷入坑里(局部极小值)。
3.学习率衰减
根据随机梯度下降的优化过程调整学习率(learning rate)可以提高性能并减少训练时间。有时这被称为学习率退火(learning rate annealing)或自适应学习率(adaptive learning rates)。训练过程中最简单,也是最常用的学习率适应是随着时间的推移而降低学习度。在训练过程开始时使用较大学习率具有进行大的改变的好处,然后降低学习率,使得后续对权重的训练更新更小。这具有早期快速学习好权重,后面进行微调的效果。
两种常用且易于使用的学习率衰减方法如下:
逐步降低学习率。在特定的时间点较大地降低学习率。
4 . Dropout
具有大量参数的深度神经网络是非常强大的机器学习系统。然而,过拟合在这样的网络中是一个严重的问题。大型网络的使用也很缓慢,这使得在测试时将许多不同的大型神经网络的预测结合起来变得困难。Dropout是解决这个问题的一种方法。
Dropout的关键想法是在训练过程中随机地从神经网络中把一些units(以及它们的连接)从神经网络中删除。这样可以防止单元过度适应。在训练过程中,从一个指数级的不同的“稀疏”网络中删除一些样本。在测试时,通过简单地使用一个具有较小权重的单一网络,可以很容易地估计所有这些“变瘦”了的网络的平均预测效果。这显著减少了过拟合,相比其他正则化方法有了很大改进。研究表明,在视觉、语音识别、文档分类和计算生物学等监督学习任务中,神经网络的表现有所提高,在许多基准数据集上获得了state-of-the-art的结果。
5. Max Pooling
最大池化(Max pooling)是一个基于样本的离散化过程。目标是对输入表示(图像,隐藏层输出矩阵等)进行下采样,降低其维度,并允许对包含在分区域中的特征进行假设。
这在一定程度上是为了通过提供一种抽象的表示形式来帮助过拟合。同时,它通过减少学习的参数数量,并为内部表示提供基本的平移不变性(translation invariance),从而减少计算成本。最大池化是通过将一个最大过滤器应用于通常不重叠的初始表示的子区域来完成的。
6.批量归一化
当然,包括深度网络在内的神经网络需要仔细调整权重初始化和学习参数。而批量标准化有助于实现这一点。
权重问题:无论权重的初始化如何,是随机的也好是经验性的选择也罢,都距离学习到的权重很遥远。考虑一个小批量(mini batch),在最初时,在所需的特征激活方面将会有许多异常值。
深度神经网络本身是有缺陷的,初始层中一个微小的扰动,就会导致后面层巨大的变化。在反向传播过程中,这些现象会导致对梯度的分散,这意味着在学习权重以产生所需输出之前,梯度必须补偿异常值,而这将导致需要额外的时间才能收敛。
批量归一化将梯度从分散规范化到正常值,并在小批量范围内向共同目标(通过归一化)流动。
学习率问题:一般来说,学习率保持较低,只有一小部分的梯度校正权重,原因是异常激活的梯度不应影响学习的激活。通过批量归一化,减少异常激活,因此可以使用更高的学习率来加速学习过程。
7.长短时记忆
LSTM网络在以下三个方面与RNN的神经元不同:
能够决定何时让输入进入神经元;能够决定何时记住上一个时间步中计算的内容;能够决定何时让输出传递到下一个时间步长。
LSTM的优点在于它根据当前的输入本身来决定所有这些。所以,你看下面的图表:
当前时间标记处的输入信号x(t)决定所有上述3点。输入门从点1接收决策,遗忘门从点2接收决策,输出门在点3接收决策,单独的输入能够完成所有这三个决定。这受到我们的大脑如何工作的启发,并且可以基于输入来处理突然的上下文/场景切换。
8. Skip-gram
词嵌入模型的目标是为每个词汇项学习一个高维密集表示,其中嵌入向量之间的相似性显示了相应词之间的语义或句法相似性。Skip-gram是学习单词嵌入算法的模型。
Skip-gram模型(以及许多其他的词语嵌入模型)的主要思想是:如果两个词汇项(vocabulary term)共享的上下文相似,那么这两个词汇项就相似。
换句话说,假设你有一个句子,比如“猫是哺乳动物”。如果你用“狗”去替换“猫”,这个句子仍然是一个有意义的句子。因此在这个例子中,“狗”和“猫”可以共享相同的上下文(即“是哺乳动物”)。
基于上述假设,你可以考虑一个上下文窗口(context window,一个包含k个连续项的窗口),然后你跳过其中一个单词,试着去学习一个能够得到除跳过项外所有项的神经网络,并预测跳过的项是什么。如果两个词在一个大语料库中反复共享相似的语境,则这些词的嵌入向量将具有相近的向量。
9.连续词袋(Continuous Bag Of Words)
在自然语言处理问题中,我们希望学习将文档中的每个单词表示为一个数字向量,使得出现在相似的上下文中的单词具有彼此接近的向量。在连续的单词模型中,我们的目标是能够使用围绕特定单词的上下文并预测特定单词。
我们通过在一个庞大的语料库中抽取大量的句子来做到这一点,每当我们看到一个单词时,我们就会提取它周围的单词。然后,我们将上下文单词输入到一个神经网络,并预测位于这个上下文中心的单词。
当我们有成千上万的这样的上下文单词和中心词以后,我们就有了一个神经网络数据集的实例。训练神经网络,最后编码的隐藏层输出表示特定单词的嵌入。而当我们对大量的句子进行训练时也能发现,类似语境中的单词得到的是相似的向量。
10.迁移学习
如何学习神经网络范文3
关键词:神经网络;学习评价;数据结构
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2014)29-0266-03
一、引言
网络学习中需要解决的一个重要问题就是学习评价,通过评价用来衡量学生掌握知识的程度,测量所有教学形式和活动的成效,并调整网络学习课程的设计。传统的学期末对学生进行笔试和平时情况的综合考评并不适合网络学习,对于网络学习评价,我们可以从平时的在线时间、作业完成量、数据结构实验的完成情况,在线测试结果,答疑解惑积分;分析这些因素,然后制定等级指标,并赋予不同等级。比如可以采取优秀、良好、中等、及格、不及格五个等级,达到最高标准的为优秀(90~100分),其次为良好(80~90分)、中等(70~80分)、及格(60~70分)、不及格(60以下),再根据相同等级中不同高低的评价语言比较得出较为符合实际的合理准确的分值。要得出各个指标的值,在现今的网络技术里面并不困难,可以在每个学生登录系统以后以这些指标作为一个数据项,记录这些值。因此网络学习评价问题就是一个根据输入得出一个分类的问题。根据网络学习评价指标因素,对各因素进行分析,处理得出学生的评定等级。在上面提的问题中,如何确定各个因素所占的权重是该分类问题里面一个需要考虑的要素,我们不能凭空想象,也不能按照主观来判定,因为那样对一部分学生而言是不公平的,比如:如果我们把在线时间作为一个重点考察的因素,假设权重给出0.5,但是有些学生学习效率高,在短的时间来里面能够完成教师所留的作业,或者达到了相应的学习效果,相对来说在线的时间可以短一些,如果在线时间的权重较大,该学生最后的评价肯定会受到影响。合理确定各指标所占权重并分类是该网络学习评价系统的主要问题,而神经网络恰好能解决这两个问题。因此,本文设计了一个基于神经网络的《数据结构》网络课程的学习评价系统。
二、神经网络
神经网络(人工神经网络(Artificial Neural Networks,简写为ANNs)是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。神经网络首先要以一定的学习准则进行学习,然后才能工作。训练时,首先把样例信息输入到网络中,由网络自第一个隐层开始逐层的进行计算,并向下一层传递,直至传至输出层,其间每一层神经元只影响下一层神经元的状态。然后,与其输出与样例的期望输出进行比较,并利用两者按一定的原则对各层节点连接权值进行调整,使误差逐步减小,直到满足要求为止。经过网络按以上学习方法进行若干次学习后,网络判断的正确率将大大提高。当网络再次遇到其中任何一个模式时,能够做出迅速、准确的判断和识别。一般说来,网络中所含的神经元个数越多,则它能记忆、识别的模式也就越多。后向传播模型(BP,Back Propagation)是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。其具体模型如下:
BP算法具体过程如下:
①选定p个样本。②权值初始化(随机生成)。③依次输入样本。④根据作用函数依次计算各层的输出,一般来说作用函数选取f(x)=■,对于隐藏层yi=f(■
WijXj-θi),其中:Wij连接权值,θi结点阈值。而对于输出层Ol=f(■Tliyi-θl),其中:Tij连接权值,θi结点阈值。⑤求各层的反传误差。对于输出层,假设输出结点的期望输出ti,所有样本误差:E=■ek
三、基于BP神经网络的学习评价系统的设计
针对《数据结构》网络课程评价系统的特点,以及神经网络的算法功能,下面对基于神经网络的学习评价系统的过程流程图:
1.准备阶段,确定学习评价指标。主要考虑学生学习评价的几个特征量,主要由在线时间、作业评定和数据结构实验的完成情况,在线测试结果,答疑解惑积分。在线时间可以记录学生登录网络教学系统的时间、次数等统计数据,主要包含上网总时间、在线交流总时间等。作业评定用来显示教师对学生在网络教学系统中提交作业的评判和评分。数据结构实验完成情况,主要根据教师布置的实验学生的完成情况。在线测试结果是学生对数据结构网络课程给出的在线测试题目所得分数。答疑解惑积分记录学生在本课程学习中,参与在线交流讨论答疑的次数和时间,同时,还记录在本课程的讨论答疑中,提出问题和回复问题的次数,针对改评价系统的需要,我们可以在设定学生属性时,增加这些数据项的记录。
2.数据的获取,由于在设计数据库的时候已经考虑了学生的各项评价指标,因此只需在数据库中读取即可。
3.数据的处理,是指利用从数据库中获取出的学生评价指标,并通过个指标的数据进行0-1处理,作为我们神经网络的输入,通过对神经网络对数据的训练,得出合理的权值,然后得出评价结果。
4.评价结果,即神经网络的输出层。由于网络学习评价的结果只有一个,因此输出层就只有一个节点。
四、系统的实现
本系统利用matlab的神经网络工具箱,对设计的基于神经网络的系统实现,这里面涉及到参数的训练,以今年上学期本人所任教的数据结构课程的其中一个班的学生成绩50组数据作为训练集,学生有在线时间、作业完成量和数据结构实验的完成情况,在线测试结果,答疑解惑积分数据,这个作为神经网络系统的输入,经过神经网络的分类以后得出输出结果,其结果与学生笔试和平时成绩按比例得出的结果比较,如果相差较大则不断地调整权值,直到符合能接受的误差为止。具体的操作步骤如下:
1.归一化处理。为了提高神经网络的训练效率,通常要对样本数据作适当的预处理。首先,利用prestd函数对样本数据作归一化处理,使得归一化后的输入和目标数据均服从正态分布,即[pn,meanp,stdp,tn,meant,stdt]=prestd(p,t);然后,利用prepca函数对归一化后的样本数据进行主元分析,从而消除样本数据中的冗余成份,起到数据降维的目的。
2.对训练样本、验证样本和测试样本进行划分。在训练之前,需要将上面处理后的样本数据适当划分为训练样本集、验证样本集和测试样本集。在本案中以2012~2013年第二学期学习该门课程一个班的50组学生作为训练样本,利用各项网络学习指标作为样本输入数据,根据期末考试的总评成绩作为输出目标,训练出我们评价系统的各合适权值。以另一个班的50名学生为验证样本集,同时对另外90名学生的学习状况动态跟踪采集,作为测试样本集。
3.网络生成与训练。选用两层BP网络,其中网络输入维数为5,输出维数为1,输出值即为学生评价的等级。网络中间层神经元数目预选为4,传递函数类型选为tansig函数,输出层传递函数选为线性函数purelin,训练函数设为trainlm。网络的生成语句如下:net=newff(minmax(ptr),[51],{'tansig' 'purelin'},'trainlm');利用train函数对所生成的神经网络进行训练。
4.对训练出来的神经网络,利用sim函数进行网络仿真。对训练出来的神经网络利用sim函数对2012~2013年第二学期的另外90名学生进行网络仿真评价,同时,对比该组学生的笔试成绩和平时实验成绩的综合成绩,只有7组同学的结果出现偏差,正确率达92.2%。
五、结语
实验结果表明:基于神经网络的网络学习评价系统能较好地评价学生的学习状况,该系统具有很好的实用性和指导作用,系统设计比较合理,从测试结果看,该模型正确率很高,其性能可满足网络学习评价的要求,评价结果较为科学,系统克服传统评价方法中只能使用线性模型的缺陷,并大大降低了人为因素的影响,能较全面反映学生的学习状况,经系统得到的评价结果和理论结果,显示一致性较好,使用起来简便,可操作性强。
参考文献:
[1]吕寨平,茹宏丽.网络教学中情感交互设计缺失因素的调查研究[J].教育理论与实践,2011,(27):45-47.
[2]桑庆兵.基于神经网络的双语教学评价体系[J].江南大学学报:自然科学版,2010,(03):26-30.
如何学习神经网络范文4
关键词:BP神经网络 牛顿法 盲均衡技术
中图分类号:U491.113 文献标识码:A 文章编号:1007-9416(2016)06-0025-01
Abstract:With the rapid development of computer technology,we have higher. Requirements about the performance and speed of the communication network .Because of its structure is extremely complex, unpredictability and randomness of user access cell switching, the current problem is that broadband technology to meet the needs of users and to ensure the quality of communication service ,at the same time how to make full use of network resources. This paper uses gradient and Newton Combination with BP neural network algorithm, the use of their respective advantages and disadvantages of complementary features, What is the use in blind equalization algorithm to solve the mutual interference between channels.
Key Words:Neural network;Newton method; blind equalization
目前,基于BP神经网络的盲均衡算法比其他的算法具有更低的误码率和信噪比。由于BP神经网络的训练时间长且有不确定性,因此不适宜单独应用于盲均衡技术中。牛顿法通过一种迭代求非线性方程的最优解得来,它在学习后期收敛快且有二阶收敛速度的优势,但牛顿法在网络学习初始阶段对学习初值较为敏感,也不适合单独应用,因此本文提出一种基于BP神经网络和牛顿法相结合的算法,利用BP神经网络算法在网络学习初级阶段函数调整速度快,学习后期,牛顿法的迭代算法复杂度较低,收敛较快,充分发挥两种算法各自的优点,从而解决信道的非理想特性引起的码间干扰,从而提高通信的质量。
前馈BP神经网络由多层非线性处理单元组成,相邻层之间通过突触权阵连接起来。由多个选定的发送信号作为一组数据构成原始样本集.经过剔除重复或冲突的样本等加工处理,得到最终样本集。通过前馈BP神经网络学习获得网络的学习模型.从而建立输入到期望结果输出的对应关系,人为的对权系数进行学习,使输出的结果更大程度的趋近预期均衡值,从而很大成都提高信道的使用效率。
前馈BP神经网络中前一层的输出作为下一层的输入,通过对权系数进行学习,从而调整输出结果。设发送信号X(x),将X(x)作为网络的输入,经过信道t,由人给定相应场合下想要输出的均衡信号为O(y),均衡器的长度为l,隐层的神经元的个数为n个,调节权值为d(x);
因为后期BP神经网络的收敛速度会比较慢,通过牛顿法进行相应的优化,可以提高算法的计算效率,当下对的的任务是将BP神经网络算法作为优化目标函数f,求函数f的极大极小问题,可以转化为求解函数f的导数f’=0的问题,这样求可以把优化问题看成方程求解问题(f’=0)。即剩下的算法优化部分即是对牛顿法进行求解。这次为了求解f’=0的根,把f(m)的泰勒展开,展开到2阶形式:这个式子是成立的,当且仅当 Δx 无线趋近于0。此时上式等价与:求解:,得出相应迭代公式;牛顿法利用其曲线本身的信息,比梯度下降法更容易收敛(迭代更少次数),从而简化算法的复杂度。
结论:盲均衡技术在通信发展史上具有举足轻重的地位,它解决了自适应均衡技术对通信效率的影响,利用所接收到的信号序列对信道进行均衡。随着通信性能的要求的不断提高,盲均衡技术越来越受到学者们的关注。而BP神经网络算法的应用是近年研究的重要技术之一,它具有鲁棒性、学习性、非线性逼近等特性,为盲均衡技术的研究提供了崭新的思路,但由于其本身还未完全被人们所掌握,目前仍存在训练复杂度较高,时间较长等缺点,BP神经网络本身仍有一系列问题等待解决。运用其他算法弥补该算法的部分缺点,将会大大改进算法的性能。BP神经网络前途广阔,随着问题的各个击破,他将渗透到生活中的每个领域,为生活的方方面面带来便利。
参考文献
[1]焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1990.
[2]郭业才.自适应盲均衡技术[M].合肥工业大学出版社,2007:1.
[3]马晓宇,胡建伟.盲均衡技术的研究及发展[J].中国新通信,2009年19期.
如何学习神经网络范文5
关键词:机器学习;深度学习;推荐算法;远程教育
深度学习(DeepLearning),也叫阶层学习,是机器学习领域研究的分支,它是学习样本数据的表示层次和内在规律,在学习的过程中获取某些信息,对于数据的解释有巨大帮助。比如对文字数据的学习,在网络上获取关键字,对图像数据的学习,进行人脸识别等等。
一、深度学习发展概述
深度学习是机器学习领域里一种对数据进行表征学习的方法。一句话总结三者之间的关系就是:“机器学习,实现人工智能的方法;深度学习,实现机器学习的技术。深度学习目前是机器学习和人工智能领域研究的主要方向,为计算机图形学、计算机视觉等领域带来了革命性的进步。机器学习最早在1980年被提出,1984年分类与回归树出现,直到1986年,Rumelhart等人反向传播(BackPropaga-tion,BP)算法的提出,解决了感知模型只能处理线性分类的问题,1989年出现的卷积神经网络(ConvolutionalNeuralNet-works,CNN)也因此得到了一定的发展。在1990年至2012年,机器学习逐渐成熟并施以应用,GeoffreyHinton在2006年设计出了深度信念网络,解决了反向传播算法神经网络中梯度消失的问题,正式提出了深度学习的概念,逐渐走向深度学习飞速发展的时期。随后,各种具有独特神经处理单元和复杂层次结构的神经网络不断涌现,深度学习技术不断提高人工智能领域应用方面的极限。
二、深度学习主要模型
1、卷积神经网络卷积神经网络(ConvolutionalNeuralNetworks,CNN)是指有着深度结构又包含着卷积计算的前馈神经网络。卷积物理上理解为系统某一时刻的输出是有多个输入共同叠加的结果,就是相当于对一个原图像的二次转化,提取特点的过程。卷积神经网络实际上就是一个不断提取特征,进行特征选择,然后进行分类的过程,卷积在CNN里,首先对原始图像进行特征提取。所以卷积神经网络能够得到数据的特征,在模式识别、图像处理等方面应用广泛。一个卷积神经网络主要由三层组成,即卷积层(convolutionlayer)、池化层(poolinglayer)、全连接层(fullyconnectedlayer)。卷积层是卷积神经网络的核心部分,通过一系列对图像像素值进行的卷积运算,得到图像的特征信息,同时不断地加深节点矩阵的深度,从而获得图像的深层特征;池化层的本质是对特征图像进行采样,除去冗杂信息,增加运算效率,不改变特征矩阵的深度;全连接将层间所有神经元两两连接在一起,对之前两层的数据进行分类处理。CNN的训练过程是有监督的,各种参数在训练的过程中不断优化,直到得到最好的结果。目前,卷积神经网络的改进模型也被广泛研究,如全卷积神经网络(FullyConvolutionalNeuralNetworks,FCN)和深度卷积神经网络(DeepConvolutionalNeuralNetworks,DCNN)等等。2、循环神经网络区别于卷积神经网络在图片处理领域的应用,循环神经网络(RecurrentNeuralNetwork,RNN)主要应用在自然语言处理领域。RNN最大的特点就是神经元的输出可以继续作为输入,再次利用到神经元中循环使用。RNN是以序列的方式对数据进行读取,这也是RNN最为独特的特征。RNN的串联式结构适用于时间序列的数据,可以完好保持数据中的依赖关系。循环神经网络主要有三层结构,输入层,隐藏层和输出层。隐藏层的作用是对输入层传递进来的数据进行一系列的运算,并将结果传递给输出层进行输出。RNN可用于许多不同的地方。下面是RNN应用最多的领域:1.语言建模和文本生成,给出一个词语序列,试着预测下一个词语的可能性。这在翻译任务中是很有用的,因为最有可能的句子将是可能性最高的单词组成的句子;2.语音识别;3.生成图像描述,RNN一个非常广泛的应用是理解图像中发生了什么,从而做出合理的描述。这是CNN和RNN相结合的作用。CNN做图像分割,RNN用分割后的数据重建描述。这种应用虽然基本,但可能性是无穷的;4.视频标记,可以通过一帧一帧地标记视频进行视频搜索。3、深度神经网络深度神经网络(deepneuralnetworks,DNN)可以理解为有很多隐藏层的神经网络。多层神经网络和深度神经网络DNN其实也是指的一个东西,DNN有时也叫做多层感知机(Mul-ti-Layerperceptron,MLP)。DNN内部的神经网络层也是分为三类,输入层,隐藏层和输出层,一般来说第一层是输入层,最后一层是输出层,而中间的层数都是隐藏层。深度神经网络(DNN)目前作为许多人工智能应用的基础,并且在语音识别和图像识别上有突破性应用。DNN的发展也非常迅猛,被应用到工业自动驾驶汽车、医疗癌症检测等领域。在这许多领域中,深度神经网络技术能够超越人类的准确率,但同时也存在着计算复杂度高的问题。因此,那些能够解决深度神经网络表现准确度或不会增加硬件成本高效处理的同时,又能提升效率和吞吐量的技术是现在人工智能领域能够广泛应用DNN技术的关键。
三、深度学习在教育领域的影响
1、学生学习方面通过网上学习的实时反馈数据对学生的学习模式进行研究,并修正现有教学模式存在的不足。分析网络大数据,相对于传统在线学习本质区别在于捕捉学生学习过程,有针对性,实现学生个性化学习。举个例子,在学习过程中,可以通过学习平台对学生学习课程所花费的时间,参与的程度,知识的偏好等等数据加以分析。也可以通过学生学习某门课程的次数,鼠标点击次数、停留的时间等,来推断学生学习情况。通过以上或类似数据汇总分析,可以正向引导学生学习,并给予积极的学习评价。这种利用计算机收集分析出来的客观数据,很好展示了学生学习行为的结果,总结学习规律,而不需要教师多年的教学经验来判断。对于教育研究者而言,利用深度学习技术可以更客观准确地了解学生,使教学工作良好发展更进一步。2、教学方面学习平台的数据能够对教学模式的适应度进行预测,通过学生的考试成绩和对教师的线上评价等加以分析,能够预测出某一阶段的教学方式发发是否可行,影响如何。通过学生与教师的在线互动,学生测验时完成的时间与完成的结果,都会产生大量的有效的数据,都可以为教师教学支持服务的更好开展提供帮助,从而避免低效率的教学模式造成教学资源的浪费。
四、成人远程教育中深度学习技术的可应用性
深度学习方面的应用在众多领域都取得了成功,比如电商商品推荐、图像识别、自然语言处理、棋类博弈等等。在远程教育方面,深度学习的技术还有很大的发挥空间,智能网络教育的实现是人们的众望所盼。若要将深度学习技术应用到远程教育平台,首先要清楚学生的需求和教学资源如何分配。1、针对学生的学习需求与学习特征进行分析美国斯坦福大学克里斯皮希研究团队的研究成果显示,通过对学生知识学习进行时间建模,可以精确预测出学生对知识点的掌握情况,以及学生在下一次学习中的表现。深度学习的应用可以帮助教师推测出学生的学习能力发展水平。通过学生与教学环境的交互行为,分析其学习风格,避免教师用经验进行推断而产生的误差。2、教学资源的利用与分配深度学习技术能够形成智能的分析结论。计算机实时采集数据集,对学生的学习情况加以分析,使教师对学生的学习状态、情绪状态等有更加清晰、准确的了解。有了上面良好的教学模式,教师对学生的学习状态有了更准确的掌握,对学生的学习结果就有了更科学的教学评价。基于深度学习的人工智能技术,还可以辅助教师实现智能阅卷,通过智能阅卷自动总结出学习中出现的问题,帮助教师减少重复性劳动,减轻教师负担。作为成人高校,远程教育是我们的主要教学手段,也是核心教学方式,学校的教学必定是在学生方便学习的同时,以学生的学习效果为重。通过深度学习技术,可以科学地分析出学生的学习效果,对后续教与学给予科学、可靠的数据支撑。我们可以在平台上为每位同学建立学习模型,根据学生的学习习惯为其定制个性化方案,按他们的兴趣进行培养,发挥他们专业的潜能。同时,可以将学生正式在线参加学习和考试的学习行为和非学习时间浏览网站的行为结合到一起,更加科学地分析出学生在学习网站上感兴趣的地方。采用深度学习算法,根据学生学习行为产生的海量数据推算出学生当前状态与目标状态之间的差距,做到精准及时的学习需求反馈。有助于帮助学生明确学习目标,教师确立教学目标,真正做好因材施教。基于深度学习各种智能识别技术,可以为教师的线上教学活动增光添彩,在反馈学生学习状态的同时,采用多种形式的教学方法吸引学生的注意力,增强教学活动的互动性,达到良好的教学效果。
如何学习神经网络范文6
【关键词】 遗传算法 BP神经网络 结构参数 优化
一、引 言
传统的滤波器设计需要大量繁琐计算和曲线查找,在商用电磁仿真软件出现后,微波滤波器的设计得到了很大的改善,但是在实际操作中对经验依赖性还是很强。如何快速准确的设计出符合要求的滤波器,是传统的滤波器设计方法和目前的商用电磁仿真软件难以有效解决的。针对以上问题,本文将遗传算法和BP神经网络结合[1],在MATLAB环境下实现了对腔体滤波器结构参数的设计。
二、遗传神经网络优化
BP神经网络尤其适用在有大量实验数据,而数据间的内在关系很难用明确的表达式的非线性系统中,但在实际应用中神经网络存在学习时间长,容易陷入局部极小点等弊端。因为该算法从本质上来说属于局部寻优算法,为此利用遗传算法全局搜索能力强的特点,结合神经网络的局部寻优能力,可以更好的实现对非线性系统的预测,其基本思想是通过遗传算法得到更好的网络初始权重。
2.1算法实现过程
遗传神经网络分为BP神经网络结构确定、遗传算法优化和BP神经网络预测3个部分。本文是以三腔体滤波器为例,将滤波器的频率f和耦合系数c作为输入向量
其次,使用改进的遗传算法对网络初始权重进行优化,将初步得到的权重赋给尚未开始训练的BP神经网络。然后,设置训练参数,开始训练网络,将 90组数用于网络训练,10组作为测试样本。最后将预测结果反归一化,观察得到的误差值,其流程图如图1所示。
2.2 优化结果
采用上述遗传神经网络算法对腔体滤波器的结构参数进行优化,均方误差为5.0972×10-5, 时间为1.056s;BP网络的均方误差为2.8871×10-4,时间为2.103s,可以看出遗传神经网络优化值更加精确,速度快。
三、结论
本文针对遗传算法和神经网络的优缺点,将遗传算法与BP神经网络有机地结合在一起,应用在腔体滤波器结构参数的优化中,优化结果表明此方法可以在较短的时间内达到精度范围内的优化值,为腔体滤波器的结构参数优化设计提供了一种新方法。