神经网络总结范例6篇

前言:中文期刊网精心挑选了神经网络总结范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

神经网络总结

神经网络总结范文1

关键词:神经网络 网络方法 环境色谱法 多个节点 信息模型

中图分类号:X83 文献标识码:A 文章编号:1674-098X(2017)05(a)-0126-02

从近几年在国内神经网络的使用来看,在环境监测中也有着非常良好的效果。无论是从色谱法、光谱法还是整个环境的评价都带来了很多新的成果。该文主要是通过对神经网络相关分类的阐述,结合神经网络在环境监测中的应用效果,希望能给神经网络对环境监测中做一些回顾和总结[1]。

1 网络方法类别

由于着重的角度关系,网络法会有多种不同的类别,由于神经网络是多个节点的连接,有相当多复杂的算法,基于神经网络,可以总共阐述两大类的情况,包括有管理和无管理的网络方法。关于这两种的不同点就在于它们是否需要对现有的样本进行训练。有管理的网络方法是需要训练,而无管理的网络方法是无需进行训练,它需要与其他的化合物相结合使用,里面会涉及到网络与遗传法、偏最小二乘法等分析方法来进行分析比较。另外根据网络的结构不同,也可以把网络方法给分成前向和后向的网络方法,而如果是从网络活动方式的差别,也可以将其分为随机和确定两种网络方法。

2 关于环境监测的化学方面的应用

在化学方面,国内与有很多用于化合物的一些研究,比如一些有机结构分析,还有化学反应、蛋白质结构等等的分析。在进行定量的构效关系分析中,可以把酿酒的酵母菌来作为一种模型的指示物,建立相关网络模型,然后对生物的毒性进行进一步预测,当然,在分析过程中还存在着很多的问题,通过比较一些网络模型,然后计算它们之间的权值,再筛选相出相应的参数,学者们在分析的时候也会对多层前传网络进行探讨分析,尽量减低误差,通过多方向的非线性校准,并且进行数据解析,然后表明引射能力,通过建立神经网络来不断接近规律的程度,拟定相关的指标数[2]。

3 分光光度的方法应用

在化学分析进程中,通过多元校正和分辨是相对来说较好的一种方法。随着相关方法的不断普及,目前大多数是使网络和现有的紫外光谱法相互关联,利用线性网络、BP网络等来用于多个分组的报道[3]。邓勃等[4]学者在分析的时候,认为除了人工神经网络,迭代目标转换因子的分析法相比较起来也是一种不错的选择,两种方法各有优势,并且产生的网络法的误差一般都不会很大。孙益民等专家在分析时,利用现有的人工神经网络先后侧出的光度法,并且可以测定比如铜、镍,并且这个分析方式非常的简单和方便[5]。

4 神经网络对X射线中的荧光光谱法的应用

研究人员通过神经网络建立与X射线荧光谱谱法的关系,通过多个不同的神经网络来应用,可以通过他们之间的连接来测定酸溶铝,通过神经网络的设置,可以测定里面的最低的铝值,通过神经网络与BP的网络模型的设立,可以直接输入测出来的铝含量情况,然后通过铝含量来侧出酸溶出来的铝的数值。BP模型可以结合现有的神经网络系统,充分的在现有的信息模型上应用,通过利用网络神经的结构,不仅可以做一些化学分析,还可以通过神经网络来检测环境监测中涉及到的红外谱图等的分析,这为环境分析提供了非常有意义的方向,并且给环境监测提供了新的检测方法[6]。

5 环境监测中的色谱法的研究

在关于色谱法的研究中,人工神经网络也有可以应用的方向[7]。色谱法中的小波分析,与人工神经网络的结合,小波分析的主要目的是为了得到重叠的色谱峰的信息,运用神经网络分析之后,可以在其中建立相关的模型,通过两者的结合来分开重叠的色谱峰信息,众所周知,把重叠色谱分开是一个非常复杂的工程,它们之间需要运用大量的元素来分开,效率极低,极其浪费时间。因为其内里复杂的重叠组织,而现在,人工神经网络为其分离提供了一种新的尝试[8],不仅如此,通过人工神经网络的方法不仅可以分离,而且可以在分离之后得到更加精确的色谱信息。研究工作者在模拟退火神经网络的时候,会运用药物来优化整个分离的条件,这对于提高色谱精确度也非常有效。

6 环境监测中的评价

通过之前提到的BP网络,通过介绍与人工神经网络模型的结合,来阐述了整个模型应用的原理,通过综合相关的分析方法可以对环境监测中的适用性进行分析评价,这样表现出来的结果会更加客观。研究者可以从有预测模型中表现的结果,在水库里进行抽样,提取水库中的相关元素进行预测,确认是否与实际结果一致,可以通过建立人工神经网络来对水质中的污染指数进行评价,然后得出相应的成果。

7 结语

人工神经网络在整个环境监测中有着非常重要的作用,它拥有一些比较有意义特性,总共可以总结为以下3个方面:第一,人工神经网络具有自学习的特性。可以通过大量的图像来设计,进行相关的图像识别,把不同的几个图像进行整合分析,并且把与之相互对应的结果嵌入到神经网络系统中,系统会根据自己特有的自学功能,对以后相关的图像进行识别操作,它可以给人们提供一些预测结果,甚至在未来的无论是经济还是政治等方面提供一些预测,预测经济和市场,给未来的发展提供引导。第二,系统具有可存储的特性。人工神经网络里面包含了一种反馈的功能,而通过输入信息和模型整合,联系不同元素之间的关系,得出一些可能的联想信息。最后,神经网络还有一项功能便是优化得出答案的能力。

一般问题的因果关系都会涉及到多个方面,那么如何在多个元素中抽丝剥茧,不断地优化整个系统,是神经网络的一个主要的功能,它可以通过计算来得到最优化的解,即便其中的运算量牵连的比较多,但是结合神经网络中反馈联想的功能,再包括计算机强大的运算效率,那么得到答案有时候也是比较容易的。

人工神经网络在环境监测中表现的效果比较好,但是除此之外,在其他领域,运用神经系统也可以得到一些相关的数据,比如经济领域,它可以通过建立信息模型,来进行市场预测和风险评估,这些都是很好的应用方式。在未来的实践中,随着经验的积累,神经网络的应用在环境监测中会不断地深入,通过在色谱、光度等领域的剖析,为未来的环境监测效果提供了更多的可能性。

参考文献

[1] 黄胜林.遗传优化神经网络在大坝变形监测中的应用[D].辽宁工程技术大学,2012.

[2] 熊勋.人工神经网络在环境质量评价和预测中的应用研究[D].华中科技大学,2009.

[3] 王学.无线传感器网络在远程环境监测中的应用[D].山东师范大学,2011.

[4] 武艺.人工神经网络在土壤质量监测中的应用[D].浙江海洋学院,2015.

[5] 黄湘君.基于主成分分析的BP神经网络在电力系统负荷预测中的应用[J].科技信息:科学・教研,2008(16):313-314.

[6] 李春梅,周骥平,颜景平.人工神经网络在机器人视觉中的应用[J].制造业自动化,2000(9):33-36,49.

[7] 涂晔,车文刚.BP神经网络在福利彩票预测中的应用[A].中国智能计算大会[C].2009.

[8] 李岩,韩秋,郑万仁.BP神经网络在电力需求决策中的应用[J].现代经济信息,2009(22):325-326.

神经网络总结范文2

关键词:神经网络 应用 经济预测 改进

神经网络作为新时展最快的人工智能领域研究成果之一,在科学计算、自动控制等方面得到了成功的运用。近年来,我国学者们将神经网络运用于经济预测领域,并且不断地改进应用方法,使基于神经网络的经济预测系统更具效益。本文在此背景下,对神经网络经济预测的应用进行了研究,围绕经济预测的方法应用提出相应的改进建议,从而丰富了经济增长预测理论与实践。

一、神经网络经济预测的方法的概述

1.概念

神经网络,是对人脑或自然神经网络若干基本特征的抽象和模拟。从解剖学和生理学的角度来看,人脑是一个复杂的并行系统,他是由大量的细胞组合而成,这些细胞相互连接。神经细胞与人体中的其他细胞的关键区别在于,神经细胞具有产生、处理和传递信号的能力。在人工神经网络的发展过程中,对生物神经系统进行了不同模拟,提出了各种各样的神经网络模型,其中具有代表的网络模型有感知器神经网络、线性神经网络、BP网络、径向基函数网络、自组织网络。

2.特征

神经网络经济预测的方法不同传统的预测方法,它对经济系统里的多种因素进行分析,进行有效地多输入、多输出的经济预测数据。可以说神经网络经济预测的方法具有以下几种特征:其一,由于神经网络是由复杂的因素构成的,它的输入向量维数比较多。其二,经济系统数据具有很强的非线性,使得输入的向量各分量之间存在着复杂的耦合关系。其三,经济系统处在一个“黑箱”模型下,导致数据之间的相互影响不存在明确表达式的关系。神经网络也会随着时间的增长,数据呈现出增长的趋势。

3.优势

用神经网络进行经济预测相对来说比较准确。因为这种神经网络在计算量允许的范围内,可以很好地拟合任意多对多的映射关系,数据拟合的结果表明,系统拟合相对误差在0%—0.75%,比采取回归分析逼近效果好。此外,神经网络各层节点之间的联结权数及阈值恰好可以表达经济系统中各个因素之间相互交织、相互影响的强耦合关系.而采取多元回归模型。

往往只能引入少量耦合项以避免模型过于复杂而无法求解.因此,神经网络比传统的多元回归预测方法有更好的拟合能力和准确度。神经网络的方法是比较适合对经济预测的,因为它只需要少量训练样本就可以确定网络的权值和阈值从而预测出宏观经济发展趋势,计算简单、快捷、可靠。总而言之,神经网络经济预测方法具有显著的优势,是比较适合经济预测的应用过程的。

二、神经网络经济预测方法应用的改进

由于商业、政府和工业所产生的预测间题,其复杂程度越来越高,以致于现有的预测系统难于解决,这就要求我们的预测系统能够处理复杂度增加的问题,进一步扩展传统神经网络预测方法的能力,使得神经网络系统理论的不断发展和完善、新的神经网络预测方法的不断产生,使得神经网络预测模型更加实用化、现代化,会给商贸和工农业生产带来巨大的经济效益。以下是本人对神经网络经济预测方法应用改进的建议:

首先,我们要改进神经网络经济预测的过程。确定预测的目的,制定预测的计划。经济预测首先要确定预测的目的,从决策和管理的需求出发,紧密联系实际需要与可能,确定预测要解决的问题。预测计划是根据预测目的而制定的预测方案,包括预测的内容、项目,预测所需要的资料,准备选用的预测方法,预测的进程和完成的时间以及预测的预算、组织实施等。只有目的明确、计划科学的预测,才可保证预测的顺利进行。

其次,建立新的神经网络经济预测模型。经过求增长率再进行归一化的处理,在给出的以往的数据的增长率范围内,网络就可能不再陷入训练“盲区”。.当采用了足够年限的已知数据并将其增长率归一化以后,“被预测年”数据的增长率可能不再会大于那些“已知年”数据的增长率.则外延问题可以得到基本解决。

最后,对神经网络经济预测结果进行检验,减小误差。经济预测是立足于过去及现在的已知推测未来的未知,而过去和现在终归不是未来,预测结果和未来实际值不可能绝对相符,存在的差异就是预测误差。为了使预测误差最小化,检验结果通过试探性的反复试验来确定,预测准确度应尽可能进行外推检验。

三、总结

神经网络经济预测的方法相对于其他的经济预测方法,具有独特的、显著的优势,我们可以利用好其优势,从而有助于我们更好的对经济发展进行预测分析,从而把握好经济发展动向,为经济决策提供依据。因此,我们应当根据社会发展需要,不断改进神经网络经济预测方法的应用,使其效能最优化,为我国经济发展助力。

参考文献:

[1]陈健,游玮,田金信.应用神经网络进行经济预测方法的改进[J].哈尔滨工业大学学报,2006(06)

神经网络总结范文3

关键词:人工神经网络;金属切削刀具;磨损检测

1.前言:

随着我国的工业飞速发展,对于工件的要求也愈发严格,但是从工厂中制造出的工件或多或少都有些不尽人意,所以必须依靠金属切削技术对工件进行二次加工。但随着时间流逝,金属刀具的磨损逐渐成为了一个问题。而且随着机器的柔性化与机械化愈发提高,人工观测刀具磨损状况的方法也愈发得不可取。无数科学家为此进行了大量研究,讨论出了是数种方法,而人工神经网络运用于金属切削机的技术也应运而生。人工神经网络是一种以模拟动物神经网络而创造的数学模型,人工神经网络有大量简单的处理单元组成,它最大的作用处理信息,并且拥有学习和记忆、归纳的能力。目前,人工神经网络在智能控制、优化计算与信息处理中都有很大的进展,人工神经网络的前景不可估量。

2.人工神经网络在金属切削刀具中的应用

2.1人工神经网络的基础知识

人工神经网络是一种建立在现代医学对于人脑的研究上的一种模拟人脑的数学模型。它是由大量简单的处理单元组成的复杂网络,用以模仿人类大脑的神经活动与规律。所以,人工神经网络拥有人类大脑的基本特征,即:学习、记忆与归纳功能。虽然人工神经网络与人类大脑相比略有不足,但是由于其独特的结构,人工神经网络可以对己输入信息进行分析与归纳,并且拥有简单的决断能力与简单的判断能力,所以人工神经网络在逻辑学推理演算中,比起人类大脑更加有优势。故,人工神经网络在一些比较简单同时需要大量计算的工作上比起人脑更有优势。于是,人工神经网络被广泛用于金属切削技术,并获得了大量的好评。

2.2人工神经网络使金属切削的过程更加智能化

人工神经网络具有自学习、联想存储与优化计算的能力,在金属切削中被大量运用。人工神经网络在金属切削中起着多传感器多信息融合与模式联想器的作用。在对选定的人工神经网络进行训练,通过人工神经网络的学习与记录作用,将人工神经网络训练为模型,并将这个模型运用于金属切削中,使金属切削过程智能化。1992年王卫平博士使用人工神经网络令金属切削机在金属切削的过程中智能化。李旭东利用BP网络与人工神经网络的学习性,实现了金属切削加工的智能化选择。实际上,国内有许许多多的人用人工神经网络实现了金属切削过程的智能化,而随着他们的成功,越来越多的人也将加入金属切削智能化的队伍中来。

并且随着我国技术的逐渐加强,人工神经网络技术的逐渐完善,金属切削智能化的程度只会越来越强。

2.3人工神经网络对于刀具磨损的检测

人工神经系统被运用于金属切削领域的初衷,就是希望借助它的智能化与信息处理的优越性,代替人工来检验刀具的磨损程度。

通过人工神经网络的学习性,可以轻易在网络中建模,使人工神经网络可以轻易地检测出刀具的正常状态与非正常状态――即刀具是否磨损。当刀具处于磨损状态时,人工神经网络可以发出警告。实际上,在刀具磨损状态下发出警报已经不再是现在的研究重点了,在无人参与定情况下,对整个金属切削过程进行识别,当刀具发生磨损,人工神经网络可以进行自主替换,这,才是理想中的智能刀具检验系统,同时也是研究热点。如果要实现上述内容,应该具备这些特点:对于来自多个传感器的信息可以快速处理;在拥有样本数据的情况下可以快速学习;可以根据外界数据的变化,快速调整自身,以适应周遭环境。

2.4通过人工神经网络的计算,预测金属切削加工中的状态.

在人工神经网络运用于金属切削中的一个重要研究,便是通过人工神经网络的计算来预测金属切削加工中的状态。可惜这项技术现在还只是处于理论研究与建模模拟的状态下,跟可以正式使用还有一定的距离。如果这项技术可以得到突破,那么,毋庸置疑得,不止在金属切削领域是一大进步,更加可以推动工厂全智能化、C械化,这无疑是一场重工业的一场大地震与大革命。

神经网络总结范文4

关键词:数据 神经网络 数据挖掘

中图分类号:TP311 文献标识码:A 文章编号:1007-9416(2015)12-0000-00

1引言

信息在数据库中被搜集出来通过统计、人工智能、情报检索、在线分析处理、机器学习等多种方法来进行数据的整理和分析,将数据整理的结果应用于商业管理、工程开发、股票管理和科学研究等多个方面。随着社会的不断进步人们对数据的要求也逐渐的增加,通过对数据的收集和分析来解决问提并提供更加可行的方案。而面对数据时代中大量的数据其中有真有伪,如何从中提取隐含在其中对决策有意义的信息,提高信息资源的利用率成为信息时代亟须解决的问题。这一需求就要求我们不断推进神经网络的研究和技术深化数字挖掘,才能让神经网络在数据挖掘中进行应用,方便社会中商业、科研等各领域的使用。

2数据挖掘

从海量的数据库中挖掘信息的过程挖掘就称之为数据挖掘(Data Mining)[1]。简而言之,数据挖掘就是从大量的、随机的数据中,提取隐含在其中的、但是又是潜在有用的信息和知识的过程[2]。

数据挖掘的主要流程是获取和整理数据的来源、使用相关的技术和知识、整合和检查数据、删除隐含着错误的数据、建立模型和假设、进行数据挖掘、测试和检验数据挖掘结果最终将挖掘的数据进行应用。

数据挖掘的主要功能数据的分类是指在数据挖掘的过程中将数据库之中根据不同事物的属性、特点的不同进行划分,利用不同的组类来描绘事物以便对事物进行了解;数据的聚类是指根据分析对象的内在规律将数据库中的数据进行群组的划分,将整个数据库划分出不同的群组,并保证同一群组中数据的相似性以及不同群组之间有一定的差别;数据的关联规则和序列模式是指找出数据库中具有相关性的数据,就是某一事物在发生变化之后与之就有相关性的数据也会发生这一变化;数据的偏差检测是指针对数据中极少数的极端数据、偏差数据进行分析,找出其中的内在原因。

3人工神经网络

人工神经网络是某种抽象、简化和模拟,根据神经网络的结构和功能,先后提出的神经元模型有上百种。[3]

人工神经网络的主要优势是具有自学习功能。这种自学习功能能够在图像识别的过程中进行使用,只要把多个图像样板和需要识别的结果输入到神经网络之中就能够通过自学习功能对图像进行识别。这一功能对未来的预测具有极其重要的意义。通过人工神经网络对未来进行预测能够为经济、股市、市场等提供发展方向,推动经济发展。通过人工神经网络对一复杂问题进行大量的计算来寻求优化解。这一功能主要是依靠神经网络的高速运算能力来完成的,能够在短期内对问题进行优化解。

4 神经网络在数据挖掘中的应用

在最开始神经网络应用于数据挖掘之中并不被众人所看好,其主要原因是由于神经网络再解释自身行为上的能力欠缺以及神经网络容易出现过度训练,造成训练数据效果好而检验数据的效果不佳等问题造成的。然而不可忽视的是神经网络在数据挖据应用的过程之中的优势,可以用于数据中有时间单元的情况还能够对噪声数据进行很好的处理,与此同时还能够保证较低的错误率。

4.1数据准备

数据准备是整个数据挖掘之中至关重要的一项。只有数据准备的过程之中对数据进行合理处理、定义和表示,才能让数据挖掘的过程之中顺利的对数据进行的使用和分析。

数据清洗是指数据在装入数据库之前,通过基于规则的方法对字段定义域以及其与其他字段的相互关系对数据进行评估;通过可视化的方法将数据集以图形的形式展现出来,能够更快速的分辨脏数据;利用统计学方法更改错误数据,填补缺失数据。数据选择则是通过列和行利用SQL语言对本次数据挖掘所需要的数据进行选择。

数据处理是利用新字段、数据值的比例变换等方法对数据进行一个增强处理。这种信息增强处理不仅能够提高数据挖掘的质量而且能够降低数据挖掘的时间消耗,提高效率。由于神经网络只能够对数值性的数据进行处理,这就要求我们对数据进行转换,将文本数据处理成与之相对应的映射表,从而转化成为神经网络数据挖掘算法能够接受的形式。

4.2规则提取

目前,规则提取主要使用的方法有符号方法和连接主义方法两大类。符号方法基于粗集理论、决策树等技术支持,对分类知识进行分类规则的转换;而连接主义方法则主要在其结构中进行知识的存储但是不利于人们的理解。神经网络的这一方法不利于数据的挖掘,但由于神经网络分类精度高、鲁棒性好等优点在分类问题中表现突出,大多数的学者更注重专研从神经网络中进行提取规则。

4.3规则评估

在一个数据库之中隐藏着大量规则,为了在给定数据库中取得好的效果要对提取的原则进行最优的评估。规则评估主要从以下几方面进行考虑:首先要覆盖所有神经网络的知识,其次规则判定与神经网络知识相一致,再次判定是否存在相同前提下得出不同结论的规则,最后判断是否存在冗余规则。规则的正确性能够保证神经网络中的知识全部被提取,也能够保证提取规则与神经网络的一致性。

5结语

目前采用神经网络进行数据挖掘是比较常见的方式,因为能够对大量的数值性数据进行快速的处理,但是仍存在着文字数据等非数值型数据的处理、构造神经网络时要求对其训练许多遍等多种问题。这些问题都需要在将来的神经网络在数据挖掘的应用之中逐渐的解决,这些问题的解决能够给神经网络在数据挖掘的应用带来更强大的生命力。

参考文献

[1]沈达安 等.万维网知识挖掘方法的研究.计算机科学,2000,(2):79-8210.

神经网络总结范文5

作为重要的人工智能分支领域,神经网络是用来处理非线性问题的有效工具。在特性上,神经网络具有较好的非线性映射能力,并且具有较好的适应性和容错性。在应用神经网络进行问题的计算时,不需要先验模型就可以直接从数据中获得学习规律。所以,可以用神经网络解决一些传统数学方法难以解答的问题,也可以完成对建模困难的复杂问题的处理。所谓的建筑经济管理,其实就是对建筑活动进行有效的预测和控制。在这一过程中,需要完成对建筑活动的真实描述和分析,并利用规律完成对各种现象的合理解释。但在实际工作中,建筑经济管理将涉及大量的变量,并且大多变量具有模糊性。在这种情况下,变量与常量之间常常体现出非线性的关系,继而难以利用传统数学解析式完成对变量的合理解释。而就目前来看,在建筑经济管理方面,利用神经网络可以解决管理中的复杂问题的处理。在工程造价预测、经济预警和招投标等多个方面,神经网络都具有较好的应用前景。

2建筑经济管理中的神经网络的应用

2.1在造价预测方面的应用

在建筑工程造价预测方面,神经网络可以应用于工程费用的估计。利用BP网络可以构造出工程成本预测模型,并真实完成对工程生产、管理等各个环节活动的模拟。而通过分析成本的各种组成,并完成对工程价值链构成的跟踪,则可以适应工程的成本变化,继而完成对工程造价成本的预测。就目前来看,已经有工程实例对神经网络在造价预测方面的应用进行了验证,而其取得的应用效果显然要好于传统方法。在应用神经网络进行工程估价时,可以利用网络的“特征提取器”完成对工程特征的提取。从大量的工程资料中,神经网络可以找出预算资料与工程特征之间的规律关系,并且完成对其它因素造成的资料偏差的纠偏,以便确保预测结果的有效性。此外,由于神经网络采用的是并行方式进行数据的处理,所以其能够尽快完成工程造价预测,继而满足建筑工作的造价分析需求。而利用神经网络完成工程造价预测,则可以帮助建筑承包商更好的完成项目资金的管理,继而避免出现资金短缺等问题。

2.2在风险预警方面的应用

在建筑管理活动中,将存在财务风险、金融风险和市场风险等多种风险,继而使建筑经济管理具有一定的风险性。而利用神经网络可以完成对风险的预警,继而使建筑经济管理的风险性得到降低。在利用神经网络进行工程经营风险和收益的评估时,神经网络系统可以算作是一种投资决策工具。具体来讲,就是需要对神经网络的非线性映射和模式分析能力进行利用,以便建立动态的风险预警系统。在此基础上,则需要将风险来源因素当做是系统的输入单元,继而得出相应的风险等级,并得出风险可能出现的区间。而输入的风险来源因素有多种,如项目复杂程度和不可预见因素等等。就现阶段来看,一个风险预警系统需要由多个神经网络构成,比如建筑项目投资风险预警系统就由多个ART网络、BP网络和一个MAXNET网络构成。

2.3在工程投标方面的应用

在激烈的市场竞争环境中,建筑企业需要提前分析出影响工程项目投标决策的因素,以便在竞争中取得胜利。而涉及的因素包含了市场条件、竞争对手情况和工程情况等多个领域的内容,并且因素本身多为模糊变量,所以很难确定因素对投标报价的影响。但是,利用神经网络则可以根据以往相似工程信息分析出因素与投标报价之间的关系,继而完成对工程报价的推理。而承包商根据这一推理结果,则可以确定需要采取的投标策略。同时,结合工程造价预测结果,承包商则可以完成对投标价格的确定,继而获得更大的竞争优势。就目前来看,神经网络在工程投标管理方面已经取得了一定程度的应用,有关的工程投标报价决策支持系统和招投标报价专家系统已经得到了提出[4]。通过将管理费率、竞争对手情况和市场条件等因素输入到系统的输入层,则可以得出工程投标报价的报价率。

2.4在其他方面的应用

除了以上几个方面,神经网络在建筑经济管理的其他很多方面都可以得到应用。首先,在建筑企业管理者制定经营决策时,神经网络可以为管理者提供决策支持。就目前来看,虽然可以利用统计学模型帮助管理者制定决策,但是这些方法无法处理数据不完整的复杂非线性问题。而神经网络可以从不可预见的数据中总结规律,继而为管理者解决复杂问题提供决策支持。其次,想要降低建筑工程成本,还要使工程资源得到优化配置。但就目前来看,没有数学模型可以完成对设计变更和设备条件等各种要素的影响效果的分析,继而难以帮助管理者合理配置建设资源。而神经网络可以完成对资源的预测,并确定资源的优先级,继而可以帮助管理者优化资源配置。此外,利用神经网络可以完成对已有数据和信息的全面分析,继而帮助管理者选择建筑材料、设备和施工方法。

3结论

神经网络总结范文6

摘要:

高轨卫星是我国卫星导航系统的重要组成部分。提升该类卫星的轨道预报精度有利于用户定位精度的提高。提出了一种改进高轨卫星轨道预报精度的新方法。该方法避开了精化动力学模型的困难,尝试从轨道预报误差的规律中寻找突破。利用神经网络作为建立预报模型的工具,将某历史时刻的轨道预报误差作为训练样本,利用训练好的神经网络模型补偿当前时刻的预报轨道以提高轨道预报精度。对影响神经网络模型补偿效果的各因素进行了详细分析,制定了适应于高轨卫星短期、中期和长期预报的神经网络最优模型。利用实测数据进行了试验分析,结果表明:预报8,15及30d应选择的训练步长分别为10,20及25min;轨道预报8~30d时,训练噪声均选取0.01。神经网络模型有效地改进了高轨卫星的轨道预报精度,预报4~30d,轨道精度提高幅度为34.67%~82.37%不等。

关键词:

神经网络;轨道预报;训练噪声;训练步长;地球静止轨道卫星;倾斜地球同步轨道卫星

高轨卫星在我国的航天系统中应用十分广泛。特别是我国的卫星导航系统BDS(Beidousystem),其主要包括GEO卫星和IGSO卫星。导航卫星星历的精度是定位精度的基础,而广播星历本身便是轨道预报的结果。预报精度问题是制约BDS卫星导航系统服务性能的关键因素,因此有必要对导航系统中的高轨卫星轨道预报精度展开研究[1]。改进轨道预报精度的一种方法是建立更加精准的动力学模型[2 ̄3]。然而由于该方法需要长期精密轨道数据的支撑,周期长、难度大。改进轨道预报精度的另一种方法可以从轨道预报误差的规律中寻找突破[4]。神经网络作为一种新兴的建模工具,特点在于处理高维性、非线性的问题时不需要准确知道输出输入函数的结构参数。只要通过训练来掌握它们之间的内在关系,在输入训练集以外的数据时,神经网络可以获得它们之间正确的映射关系。该方法的优势在于不确定性系统的控制和预测。目前在轨道预报中使用神经网络工具的相关研究较少,文献[5]根据GPS卫星星历的相关周期特性,以时间系列预报作为基础,利用神经网络建立预报模型。在没有任何动力学模型的情况下得到了精度为数百米(1周)的预报结果。但是由于将卫星位置量直接作为神经网络的输出,神经网络算法的状态量动态范围大,限制了预报精度的提高。文献[6]利用GPS卫星精密星历已知的优势,将神经网络与动力学模型相结合组成混合预报模型,改进GPS导航卫星的中长期预报。该方法可以在一定程度上改进轨道预报精度,但不是每次改进均能成功,存在改进失效的情况。针对高轨卫星的高精度轨道预报这一难题展开研究。以神经网络作为建立预报模型的工具,在动力学模型基础上建立神经网络模型,通过对历史时刻预报误差的学习及训练,掌握其变化规律,再用于补偿和改进当前时刻的预报轨道,以达到提高预报精度的目的。针对神经网络训练及补偿特性,分析了不同因素对神经网络模型性能的影响。基于此制定了短、中、长期轨道预报的最优模型,最后利用不同类型卫星进行了试验分析。

1基于BP神经网络的轨道预报算法

BP神经网络是一种多层网络的“逆推”学习算法[7 ̄9]。利用神经网络进行轨道预报分为训练和补偿两个阶段。在训练阶段,采用拼接方法得到一条长时间的精密轨道,用于衡量动力学模型预报误差及神经网络模型的训练误差。针对拼接处小量级的跳跃现象,采用Robust ̄loess数值滤波方法进行轨道预报误差平滑[10]。由于预报轨道和预报误差为训练样本,故需要对两者的特性进行分析。同时神经网络模型参数在一定程度上影响神经网络的训练效果,因此有必要对影响神经网络模型的一些关键因素进行分析,以确定最优的神经网络模型。在补偿阶段,将当前时刻的预报轨道X(T)和V(T)作为神经网络模型的输入;将利用函数f(X,V)计算得到神经网络模型的输出作为当前时刻预报轨道的补偿值ΔXNN(T),将改进后的预报轨道X(T)和V(T)作为最终轨道输出。在神经网络具体应用中,为了提高网络性能以完成预定任务,需要认真考虑训练集预处理、网络结构设定以及训练算法等内容。网络的性能主要表现在训练效率及泛化能力。泛化能力是指辨识训练样本中所隐藏的规律并且当被输入样本以外数据时,网络能正确地反应这种规律的能力。关于网络泛化能力的相关讨论及改进措施,已有文献进行了比较详实的总结。这里涉及到的方法主要包括下列3个方面:一是处理训练样本的方法[11],将神经网络的训练样本进行归一化处理,使其在[-1,1]变化,以提高神经网络的性能;二是训练步长的选取;三是增加随机噪声[12 ̄13]。

2不同因素对神经网络模型性能的影响

分别针对预报轨道和预报误差特征、训练步长的选择、训练噪声的大小对神经网络模型性能的影响进行讨论。

2.1预报轨道和预报误差的特征分析

2.1.1中长期预报轨道和预报误差特征将短期轨道预报弧长定位为1~13d,中期轨道预报弧长为14~27d,长期轨道预报弧长大于27d。以某初始时刻的预报误差作为训练样本训练得到的神经网络可以对其他初始时刻的预报轨道提供补偿,但前提是两个初始时刻的预报误差数值大小及波形图要相近。对GEO卫星的预报误差进行时间序列分析,结果可以看出,预报误差最大值呈现以14d为周期的变化规律;IGSO卫星具有相同的特征。文中选取的训练弧长与当前时刻的轨道预报弧长相等。对于中长期轨道预报可以采用以下方案:假设预报弧长为md(14n≤m≤14(n+1),n≥1),用当前时刻起14(n+1)d之前那天的预报误差和预报轨道作为训练样本,训练弧长为md,训练得到神经网络模型。采用神经网络模型计算得到的补偿误差波形对当前的预报误差进行补偿。对于短期预报,由于预报弧长小于14d,其轨道预报方案中还考虑了预报误差波形的最佳匹配。即充分结合预报误差和预报轨道的动力学特性,建立了一个训练样本集。根据当前时刻的预报误差波形变化特征在样本集中搜索最佳训练样本,实现两者波形变化的最优匹配,从而实现最优的补偿效果。在中长期预报中未采用波形匹配算法的主要原因是,需要兼顾工程应用中的实时性,波形匹配耗时较长。

2.1.2短期预报中的波形匹配算法航天器是一个受摄动力系统,其初值不稳定性使得利用不同初始轨道得到的预报轨道和预报误差的特性均不同。这就导致不同初始时刻的预报误差并无规律。为了实现最佳的神经网络模型补偿效果,必须找到与当前时刻预报误差变化波形最为相近的历史时刻中的一条预报轨道。采用历史时刻的预报轨道和预报误差作为训练样本,训练得到神经网络模型。在实际工程应用中,因为当前时刻之后的预报弧段中的精密轨道无法获取,故不能获得当前时刻的预报误差波形变化规律,所以并不能直接通过预报误差波形比对来寻找补偿当前时刻预报轨道的训练样本。但是基于动力学模型外推可以得到当前时刻的预报轨道,如果能找到预报轨道与预报误差之间的波形变化对应关系,就可得到当前时刻的预报误差波形变化规律。由于预报误差的变化周期与轨道周期相同,对于GEO/IGSO卫星均为1d,通过对比预报误差波形变化最大值和最小值出现的时刻,搜寻得到用于补偿当前时刻预报误差的训练样本。由于预报轨道在数值上远远大于预报误差,为了便于分析问题,将两者进行归一化处理,即分别将两者除以各自的最大值,这样它们就在±1之间变化。图2和图3分别给出了某GEO卫星和某IGSO卫星在2013年第23天预报8d的轨道与相应的预报误差之间的对应关系。其中,横坐标表示预报时间,单位为d;纵坐标表示归一化后的数值,无量纲。1)对于两种类型的卫星,在J2000坐标系中X和Y轴方向,当预报轨道X/Y=0时,对应时刻的预报误差为最大值(峰值)或最小值(谷值)。预报轨道从正值变化为负值经过零值的时刻对应着预报误差的峰值,从负值变化为正值经过零值的时刻则对应着预报误差的谷值。2)在Z轴方向,GEO卫星的预报轨道和预报误差之间并无明显的对应关系;IGSO卫星存在与X/Y轴相同的对应关系。将作为训练样本的预报误差选择定义在J2000坐标系中,主要是因为在该坐标系中预报误差的规律性强,并且与预报轨道之间存在一定的对应关系。

2.2训练步长对预报精度的影响预报误差改进率的计算公式如下。以某GEO卫星为例,表1给出了不同预报弧长、不同训练步长下利用神经网络模型得到的预报误差改进率。分析表1中的数据可以看出下列3点。1)训练步长越小,神经网络模型的改进率就越高。2)预报弧长的长度与对训练步长的敏感度成反比,即弧长越长,训练步长的延长对改进率的影响就越小。训练步长从5min延长至40min,预报8,15和30d的改进率分别降低5.68%,3.9%和1.36%。3)由于训练步长越小,训练时间越长,因此改进率与训练时间是一对矛盾体。从综合改进率和训练时间的要求考虑,即改进率应尽可能高,而训练时间应尽可能短。故预报8,15和30d应选择的训练步长分别为10,20和25min。

2.3训练噪声对预报精度的影响以某初始时刻的轨道预报误差(称为训练值)作为训练样本训练神经网络模型,用其补偿另一个初始时刻利用动力学模型外推得到的预报误差(称为期望值)。如果训练值和期望值在同一时刻吻合的很好,那么利用神经网络模型一定能很好地修正动力学模型的预报误差。以某GEO卫星轨道预报8d为例,图4给出了采用不同噪声值时训练值和期望值之间的吻合关系。分为无噪声、噪声为0.01、噪声为0.05和噪声为0.10共4种情况。从图4中可以看到,不加噪声时训练值与其期望值的差别较大,因此应加入训练噪声以提高神经网络的泛化能力;加入噪声后训练值与期望值吻合的较好,但无法区分噪声值为多大时预报精度最高。表2给出了采用不同训练噪声时,经神经网络模型补偿后的轨道预报误差最大值的统计结果。其中原始预报误差为未进行补偿时的采用动力学模型外推得到的预报误差。表2不同训练噪声下的预报分析表2中数据可以看出下列两点。1)无噪声时,前4d无改善,精度反而降低;预报8d及更长弧段时预报误差略有改善,故应加入训练噪声。2)增加噪声后,噪声从0.001~0.100的变化对预报精度的改进幅度相当。但从总体来看,噪声越小,前6d的预报精度越高;但预报8d以及更长弧段时噪声为0.010的预报误差最小,故应选择训练噪声为0.010。

3试验结果及分析

根据上述短、中、长期轨道预报方案,并结合不同神经网络模型参数的优化设计分析,给出了利用神经网络模型进行轨道预报的试验结果。通过与精密星历比对可以分别得到动力学模型和神经网络模型的预报精度。表3列出了BDS系统中两颗GEO、三颗IGSO共5颗卫星在2013年第23天利用神经网络模型和动力学模型外推得到的预报误差(其中NN代表神经网络模型;Dyn代表动力学模型)。Sat02卫星由于轨道机动未能统计其中长期预报结果。表3中误差是在一定弧段内预报误差的最大值。从表3可得,神经网络模型1d预报误差有时会大于动力学模型的预报误差;但预报4,8,15及30d各卫星采用神经网络模型补偿后的预报精度均有所提高。这主要因为1d的预报弧段规律性不强,不利于神经网络模型的学习及训练。随着弧段的增长,训练样本的规律性增强,神经网络模型的补偿效果有所提高。为了更好地衡量神经网络模型的改进效果,给出各卫星的预报精度提高幅度,其与预报误差改进率的计算公式相同。表4给出了各卫星经神经网络模型补偿后的预报精度提高幅度。从表4中可以看出,预报4d各卫星的轨道精度改进幅度为40.25%~60.31%;预报8d各卫星的轨道精度改进幅度为63.28%~72.59%;预报15d改进幅度为47.01%~82.37%;预报30d改进幅度为34.67%~82.35%。可见神经网络模型在改进轨道预报误差中的作用显著。

4结论