神经网络的基本功能范例6篇

前言:中文期刊网精心挑选了神经网络的基本功能范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

神经网络的基本功能

神经网络的基本功能范文1

关键词:Robocup3D;机器人;截球;BP神经网络

0 引言

机器人世界杯足球比赛简称Robocup,Robocup3D仿真比赛近似于人类足球比赛,克服了机器人硬件的多方面限制,解决了很多现阶段硬件无法实现的功能,所以对多智能体系统(MAS)和分布式人工智能(DAI)的理论研究具有深远的影响。在Robocup3D仿真比赛系统中,每个机器人体系结构包括世界模型、通信、高层决策、动作模型等模块。其中动作模型中截球技术的优劣对整个Robocup3D仿真比赛的结果具有重要的影响。本文将仿真机器人截球技术分为两种情况,一种为远距离截球,另一种为近距离截球,将BP神经网络应用到远距离截球技术中,采用该方法缩短了截球时间,提高了截球成功率。

1 Robocup3D仿真系统简介

1.1 Robocup3D仿真系统结构

采用Client/Server方式设计RoboCup3D仿真机器人足球比赛系统,由监视器和客户端、服务器端组成该系统。对真实的物理三维世界的模拟可以由Robocup3D仿真环境实现,该系统主要对服务器的通信、基本动作及其决策、对球员的感知等基本功能模块进行了研究。图1为仿真系统结构示意图。

1.2 机器人截球技术

Robocup3D截球技术的研究目标是要确定球员最佳截球点,无论球距离自身距离为多远,球员都可以拦截到球。最佳截球点由仿真足球的当前位置信息以及速度信息确定,接下来使球员以最快的速度运动到该最佳截球点,从而在比赛中获得对球的掌控权。通过一些基本动作指令,例如转身指令、加速指令等,在实时分析球场信息之后,使得球员以最快的速度到达改最佳截球点。因为预测时间对于预测足球位置的精确度影响很大,如果能一两个周期内完成预测则相对精确,如果足球距离自身位置越远,那么球员到达截球点的时间就越长,越不能精确预测足球的位置,下面将机器人截球技术分为两种情况研究,一种为远距离截球技术,另一种为近距离截球技术。

2 近距离截球技术

近距离截球就是要在一两个周期内拦截到距离自身位置较近的球,通常将踢球距离的六分之一之内定义为距离自身较近。首先判断对足球在比赛过程中一两个时间周期之后的位置信息,接着预测球员在一两个周期之后与球的距离。如果在两个周期内该距离不能小于踢球距离d的六分之一,则说明不能实现近距离截球。具体过程为,首先对球员下个周期所处的位置进行预测,判断能否在一个时间周期之内截到,该判断根据的是球员当前的位置信息和速度信息,将球员下个周期自身位置沿视觉方向在水平面上的射影长度简称为射影长,以下个周期球的预测位置为中心,以足球半径r+d/6为半径。如果射影长与圆交点个数为1,那么该点为截球点;如果射影长与圆的交点个数为2,距离球员自身预测位置最近的点就是最佳截球点;如果射影长与圆的交点个数为0,则说明不能实现在一个周期内截到球。在一个周期内不能截到球的情况下,接着对两个周期之内能否截到球进程判断。第一步判断能否通过运行turn、dash动作指令截到球,先对两个周期之后的足球所处的位置信息p进行预测;第二步执行turnBodyToPoint指令,启用预测函数predictAfterTurn,通过第二步使球员朝向设定的目标位置转身,并且对球员自身的位置信息进行预测; playerSpeed_max表示球员最大球员速度,如果球员的预测位置与足球位置p的距离小于r+d+playerSpeed_max,表明可以在两个周期内截到球,反之判定在两个时间周期之内截不到球。

3 远距离截球

3.1 判断截球点

采用解析法进行远距离截球,预测出第i个周期后足球的位置信息p,然后设计出截球分析函数,对球员到达该位置p所需要的周期数进行计算,如果该周期数小于i,则表示能够截到球,函数输出截球所需周期数i以及截球点。

该方法的算法流程图如图2。

3.2 采用BP神经网络训练截球

截球点确定之后,一般情况下采用尝试的方法来确定采取dash和turn这两个动作指令中的哪一个,这样就导致截球效率低,也就是说即便得到了截球点也可能截不到球。为了避免出现这种情况,在截球技术中使用人工智能技术,其中神经网络技术计算简单,适用于连续空间,采用神经网络训练截球动作能够满足Robocup比赛的实时性要求。BP神经网络是现在比较成熟并且应用较多的神经网络模型,该模型的基本思想是通过对输入信号Xi进行非线形变换得到输出信号Yk,并且是通过隐层点使得输入信号作用于输出信号,由期望输出量t、输入向量X、以及期望输出值t与网络输出值Y之间的差值组成每个网络训练样本,对输出节点与隐层节点之间的联接强度以及阈值、还有隐层节点与输入节点之间的联接强度值进行调节,经过不断的调节使得误差能够沿着梯度方向不断降低,在不断的训练学习之后,得到与最小误差相关的阈值和权值。采用该训练好的神经网络对同类的样本输入信息进行训练,自动得到输出误差最小的信息。训练截球技术选取的是三层BP神经网络,其结构模型如图3所示。

图3中,将球速方向、球的方向、球距自身距离、球员速度方向和大小、球速大小作为截球BP神经网络的输入量。成功截球采取的动作为输出量,可采取的动作为dash和36个方向turn。网络传递函数: 。对上述样本数据进行训练,得到训练好的神经网络,用来进行截球。

4 实验结果及分析

4.1 实验环境与条件

4.2 结果分析

设定最小均方误差为0.005,BP神经网络的样本数据为30场Robocup3D足球仿真比赛中的500个截球动作序列。学习训练之后网络逼近均方误差约为0.00532。训练后得到的误差曲线如图4所示:

训练好神经网络之后,将该基于BP神经网络的截球算法在RoboCup3D仿真比赛中采用该基于BP神经网络的截球算法。通过编写代码在到仿真机器人截球程序中加入BP神经网络,对100次截球情况进行分析,进行多次仿真比赛后,得到截球效果对比表。

实验结果表明,在截球技术中采用BP神经网络技术,缩短了截球时间,提高了截球成功率。

参考文献:

[1]曹成才.机器人足球仿真系统的研究[D].成都:四川大学,2005:10-15.

[2]时长娥.Robocup机器人足球赛3D仿真组程序设计研究[D].南京:东南大学,2005:1-5.

[3]Jan Lubbers.Rogier R.Spaans.The Priority/Confidence Model as a Framework for Soccer Agents[C].RoboCup-98:Robot Soccer World Cup II,Springer. 1998.pages 52-60.

[4]许元.RoboCup类人仿真足球机器人研究--SEU-RedSun仿真足球机器人队伍设计与实现[D].南京:东南大学,2008:1-5.

神经网络的基本功能范文2

关键词:电阻点焊;神经网络;消音锯片

0序言

电阻点焊过程是一个高度非线性,既有多变量静态叠加又有动态耦合,同时又具有大量随机不确定因素的复杂过程。这种复杂性使得传统方法确定最佳工艺参数存在操作复杂、精度低等缺陷。

本文通过深入研究提出了一种神经网络优化消音锯片电阻点焊工艺参数方法。以试验数据为样本,通过神经网络,建立焊接工艺参数与焊接性能之间的复杂模型,充分发挥神经网络的非线性映射能力。为准确预测点焊质量提高依据。在运用试验手段、神经网络高度非线性拟合能力结合的方式,能在很大程度上克服传统方法的缺陷,完成网络的训练、检验和最优评价,为电阻点焊过程的决策和控制提供可靠依据。

1原理

人工神经网络是用物理模型模拟生物神经网络的基本功能和结构,可以在未知被控对象和业务模型情况下达到学习的目的。建立神经网络是利用神经网络高度并行的信息处理能力,较强的非线性映射能力及自适应学习能力,同时为消除复杂系统的制约因素提供了手段。人工神经网络在足够多的样本数据的基础上,可以很好地比较任意复杂的非线性函数。另外,神经网络的并行结构可用硬件实现的方法进行开发。目前应用最成熟最广泛的一种神经网络是前馈多层神经网络(bp),通常称为bp神经网络。

神经网络方法的基本思想是:神经网络模型的网络输入与神经网络输出的数学关系用以表示系统的结构参数与系统动态参数之间的复杂的物理关系,即训练。我们发现利用经过训练的模型进行权值和阈值的再修改和优化(称之为学习)时,其计算速度要大大快于基于其他优化计算的速度。

bp神经网络一般由大量的非线性处理单元——神经元连接组成的。具有大规模并行处理信息能力和极强的的容错性。每个神经元有一个单一的输出,但可以把这个输出量与下一层的多个神经元相连,每个连接通路对应一个连接权系数。根据功能可以把神经网络分为输入层,隐含层(一或多层),输出层三个部分。设每层输入为ui(q)输出为vi(q)。同时,给定了p组输入和输出样本 ,dp(p=200)。

(6)

该网络实质上是对任意非线性映射关系的一种逼近,由于采用的是全局逼近的方法,因而bp网络具有较好的泛化的能力。

我们主要是利用神经网络的非线性自适应能力,将它用于消音锯片的电阻点焊过程。训练过程是:通过点焊实验获得目标函数与各影响因素间的离散关系,用神经网络的隐式来表达输入输出的函数关系,即将实验数据作为样本输入网络进行训练,建立输入输出之间的非线性映射关系,并将知识信息储存在连接权上,从而利用网络的记忆功能形成一个函数。不断地迭代可以达到sse(误差平方和)最小。

我们这次做的消音金刚石锯片电焊机,通过实验发现可以通过采用双隐层bp神经网络就可以很好的反应输入输出参数的非线性关系。输入神经元为3,分别对应3个电阻点焊工艺参数。输出神经元为1,对应焊接质量指标参数。设第1隐含层神经元取为s1,第2隐含层神经元取为s2。输入层和隐含层以及隐层之间的激活函数都选取log-sigmoid型函数,输出层的激活函数选取pureline型函数。

2点焊样本的选取

影响点焊质量的参数有很多,我们选取点焊时的控制参数,即点焊时间,电极力和焊接电流,在固定式点焊机上进行实验。选用钢种为50mn2v,φ600m的消音型薄型圆锯片基体为进行实验。对需要优化的参数为点焊时间,电极力和焊接电流3个参数进行的训练。最后的结果为焊接质量,通常以锯片的抗拉剪载荷为指标。

建立bp神经网络时,选择样本非常重要。样本的选取关系到所建立的网络模型能否正确反映所选点焊参数和输出之间的关系。利用插值法,将输入变量在较理想的区间均匀分布取值,如果有m个输入量,每个输入量均匀取n个值(即每个输入量有m个水平数), 则根据排列组合有nm个样本。对应于本例,有3个输入量,每个变量有5个水平数,这样训练样本的数目就为53=125个。

我们的实验,是以工人的经验为参考依据,发现点焊时间范围为2~8s,电极力范围为500~3000n,点焊电流范围为5~20ka时,焊接质量比较好。我们先取点焊电流,电极力为定量,在合理的范围内不断改变点焊时间,得到抗拉剪载荷。如此,可以得到不同点焊电流和电极力的抗拉剪载荷。根据点焊数据的情况,我们共选用200组数据。部分测试数据如表1:

神经网络建模的关键是训练,而训练时随着输入参数个数的增加样本的排列组合数也急剧增加,这就给神经网络建模带来了很大的工作量,甚至于无法达到训练目的。

3神经网络

我们用200组训练样本对进行神经网络训练,以err_goal=0.01为目标。调用matlab神经网络工具箱中的函数编程计算,实现对网络的训练,训练完成后便得到一个网络模型。

程序如下:

x1=[2.1 2.5 3 3.5 4……]; %点焊时间输入,取200组

x2=[1.3 1.5 1.9 2.1 2.3……];%电极力输入,取200组

x3=[9 10 11 12 13……];%点焊电流输入,取200组

y=[2756 3167 3895 3264 2877……]; %输出量,取200组

net=newff([1 10;0.5 3;5 20],[10 10 1],{'tansig''tansig''purelin'});

%初始化网络

net.trainparam.goal = 0.01;%设定目标值

net=train(net,[x1;x2;x3],y);%训练网络

figure; %画出图像

选取不同的s1,s2,经过不断的神经网络训练,发现当s1=8,s2=6时,神经网络可以达到要求。工具箱示意图如下图1。

图 1工具箱示意图

工具箱示意图非常清晰地表示了本实验的神经网络的输入,输出以及训练的过程。

神经网络的训练结果,如图2所示:

图2神经网络的学习过程

图中可以看出双层网络训练的sse在训练100次时,已经接近0.0001,效果较理想。

为了验证经过训练的网络模型的泛化能力,在输入变量所允许的区域内又另选多个样本进行了计算。发现:利用bp神经网络模型计算的测试输出与期望输出值相符,误差小于2%。

在已经训练好的网络中找出最大值:

for i=2:10 %点焊时间选择

for j=0.5:0.1:3%电极力选择

fork=5:0.1:20%点焊电流选择

a=sim(net,[i,j,k]);%仿真

ifa>n %比较仿真结果与最大值,取最大值n=a;

i(1)=i;%最大值的时间

j(1)=j;%最大值的电极力

k(1)=k; %最大值的电流

end

end

end

end

将i(1),j(1),k(1)以及n输出,n为最大值。得到点焊时间为3.4s,电极力为12.7kn,点焊电流为11.8ka,此时的抗剪拉剪载荷为4381n,为训练结果的最大值。将点焊时间为3.4s,电极力为12.7kn,点焊电流为11.8ka在点焊机上进行实验,得到结果为4297n。并且通过与实际的结果相比较,发现误差也在2%以内。

4结论

1)本文采用了插值法作为选取bp神经网络训练样本的方法。并且在数据变化剧烈的地方多选取了75组数据,这样可以得到较高精度的网络模型,使点焊模型的可行性。

2)基于此方法建立了三个点焊参数的bp神经网络模型,而且所建的bp模型具有较高的精度,可以很好的描述了这三个点焊参数与点焊质量的映射关系。

3)由于神经网络模型将系统结构参数与传统动态特性参数之间的物理关系,反映为神经网络模型的网络输入与网络输出的数学关系,因此,在神经网络模型上进行结构修正与优化比在其他模型上更直接,简单与高效。

本文采用神经网络的方法优化复合消音锯片的点焊工艺参数,为分析点焊质量提供了很好的辅助手段。通过与以前工艺相比较,提高了点焊质量。

参考文献:

[1] 方平,熊丽云.点焊电流有效值神经网络实时计算方法研究.[j].机械工程学报,2004(11).148-152.

神经网络的基本功能范文3

油气勘探与开采过程中,气测录井技术作用是分析钻井液中脱出的样品气中烃、非烃组分及其含量,从而对油气层进行判断。在钻井过程中进行气测录井,通过对录井资料的的利用能够及时发现油、气显示,并能预报井喷,因此气测录井技术在探井中得到广泛应用。由于气测录井技术的应用十分广泛,所以气测录井技术就要不断完善,才能在以后应用中运用自如。气测录井技术有需要多常见的类型,按照仪器的不同来分,可分为半自动气测和色谱气测;按照方式的不同来分,可分为随钻气测和循环气测。而气测录井资料中需要注意的是它的预处理、压力平衡校正、标准化校正等。

1 半自动气测和色谱气测都起到将空气中的甲烷和重烃或戊烃分开的效果,它们有各自的优缺点,需要重点研究。半自动气测是用烃类气体燃烧温度不同,从而起到分开甲烷和重烃的效果,但是它仅能得到甲烷和重烃的含量;色谱气测是根据色谱原理制成的分析仪器,它的分析速度快、数据多且准确,所以现在色谱气测的应用远大于半自动气测。

2 随钻气测和循环气测都能测定钻井液中气体含量和成分,两者方式不同。随钻气测是在钻井过程中因为岩屑的破碎进入内钻井液中而达到测定的效果;循环气测是在钻井液静止后再循环时,在渗透和扩散的作用下达到测定的效果,两者方式不同,但结果基本相同。

3 气测录井资料的预处理。影响气显示的因素大致分为地质因素和非地质因素。地质因素引起的气显示变化是气测所需要研究解决的问题;非地质因素本身存在的缺陷,它能够引起气显示的变化从而对显示结果产生不良影响,所以应排除。对非地质因素进行修正是一种不错的技术,能够进一步提高解释准确度。钻井过程中,破碎、渗透和扩散推动油气进入钻井液进而进入储层。但不同的钻井状态会产生不同影响,主要有欠平衡、平衡、过平衡。为达到气测资料的统一评价和有效利用,就需要对钻井液中的油气量进行平衡校正。要达到平衡的效果就要注意钻井液柱与地层的压力差。很多时候的气体分析结果的精确度会受到影响,这时就要采用校正方法,提高油气层评价的精确度和可靠性。

二、对油气层评价方法的探究

近年随着录井技术的发展,油气层评价手段也在多样化发展。油气层的评价方法及其系统可靠性程度不断提高。油气层评价工作向综合多种手段、逐步量化方向完善。经过油气层评价工作的实践,研究人员认识到油气层综合评价工作一定要更完善才能与时展同步。

检测油气储层评价有许多种方法,如数学法、人工神经网络法,每种方法中还有许多细节分法,每种方法有不同特点,我们应根据其特点来总结技术方法。油气层评价方法的基础是钻井液自动真空蒸馏定量脱气仪、岩屑烃组分检测分析仪、多套组合色谱分析仪的检测数据。在此基础上建立油气储层的综合解释评价系统,为实现现场油气层的自动、快速和有效识别奠定基础。

1 数学法中又分为Fisher判别分析法,Bayes判别分析法,模糊数学法等。利用Fisher判别分析法评价油气层时,应先用已有样本数据生成评价模型,再评价未知样本,建立灵活的判别模式;Bayes判别分析法是根据已知分组样品数据,在正太母体假设下对变量进行挑选,最大影响的分类来建立分类模型,然后根据Bayes准则建立起判别函数,最后对预测样本进行判别,其目的可达到对多组样品及新鲜品进行判别;模糊数学法的特点是允许元素在一个集合中部分隶属,较灵活,可使事物从“不隶属”到“隶属”逐渐过渡。

2 人工神经网络法可分为人工神经元模型、神经网络模型、BP网络等。神经网络模型是由大量神经元组合成的复杂网络,主要分为前向网络和相互连接网络。反映了人脑许多基本功能,具有并行处理性、分布式的存储、很强的容错性和联想性等。BP网络结构有输入层、隐含层和输出层组成,隐层神经元的传递一般采用一定值特性的连续可微的Sigmoid函数进行计算。神经元是神经网络的基本单位,它是一个多输入单输出的非线性信息处理单元。

3 这些对油气层评价方法的研究有各自突出特点,但应当一分为二的看待这些技术,不断完善发展技术,做到在继承传统基础上开拓创新。无论是数学法还是人工网络法,都对油气层评价做出了不小贡献,但我们不能懈怠,而是更应当努力,不断改进发展技术,使油气层评价的结果更加准确、科学。

结语

气测录井资料及其油气层评价方法多种多样,我们只有不断努力探索才能使其跟上时代的步伐,同时为油气企业发展做贡献。我们有必要对气测录井资料及其油气层评价方法进行深刻的研究与讨论,不断壮大发展油气企业,为企业的未来奠定基础。应在集成的基础上发展,改进落后技术,继承优良技术,才能在未来发展中使油气企业更上一层楼。

参考文献

神经网络的基本功能范文4

关键词:电力系统;人工智能;继电保护;应用;

1引言

近年来,随着人工智能理论技术的不断发展,以模糊技术、人工神经网络和遗传算法为代表的智能理论方法在电力系统领域得到了十分广泛的应用。众所周知,电力系统是由各类发电装置、输配电线路、变压器以及用电装置等一系列单元组合而成的大规模动态系统,电力系统本质上是一个非线性动态大系统,存在着许多极为复杂的工程计算和非线性优化问题,例如:电力网络的无功优化调度电力系统规划运行、发电机组的优化组合、电力系统最优潮流计算、电力市场的交易定价等一系列问题。而这些问题都是多参数,多约束的非凸优化问题。长期以来,电力系统自动化研究者一直在寻找高效可靠的方法来解决这些问题。然而有许多电力系统中存在的问题无法得到快速与精确的结果。其主要原因在于:

(1)电力系统中的有些向题还无法建立精确切实的数学模型,包括不能完全用数学来表示反映问题实质的约束条件。

(2)随着问题的规模和复杂程度的增加,利用现有的算法和计算机条件,无法在较短的时问内获得满意的计算结果。

(3)许多问题的条件具有模糊性,对干系统的了解还不够精确,此外在求解问题的过程中需要专家的知识经验。这些都无法用精确的数学形式表示出来。

与传统的计算方法相比较,人工智能方法对于复杂的非线性系统问题求解有着极大的优势。它弥补了传统方法的单纯依靠数学求解的不足,解决了某些传统计算方法难于求解或不能解决的问题。

2人工智能技术在继电保护中的应用

2.1计算机化

随着计算机硬件的迅猛发展,微机保护硬件也在不断发展。某电力学院研制的微机线路保护硬件已经历了3个发展阶段:从8位单CPU结构的微机保护问世,不到5年时间就发展到多CPU结构,后又发展到总线不出模块的大模块结构,性能大大提高,得到了广泛应用。

某电力自动化研究院一开始就研制了16化CPU为基础的微机线路保护,已得到大面积推广,目前也在研究32位保护硬件系统。某大学研制的微机主设备保护的硬件也经过了多次改进和提高。某大学一开始即研制以16位多CPU为基础的微机线路保护,1988年即开始研究以32位数字信号处理器(DSP)为基础的保护、控制、测量一体化微机装置,目前已与某电自动化设备公可合作研制成一种功能齐全的32位大模块,一个模块就是一一个小型计算机。采用32位微机芯片并非只着眼干精度,因为精度受A/D转换器分辨率的限制,趟过l6位时在转换速度和成本方面都是难以接受的;更重要的是32位微机芯片具有很高的集成度,很高的工作频率和计算速度,很大的寻址空间,丰富的指令系统和较多的输入输出口,CPU的寄存器、数据总线、地址总线足32位的,具有存储器管理功能、存储器保护功能和任务转换功能,并将高速缓存(Cache)和浮点数部件都集成在CPU内。

电力系统对微机保护的要求不断提高,除了保护的基本功能外,还应具有大容故障信息和数据的长期存放空间,快速的数据处理功能,强大的通信能力,与其它保护、控制装置和调度

联网以共享全系统数据、信息和网络资源的能力,高级语言编程等。这就要求微机保护装置具有相当于一台PC机的功能。现在,同微机保护装大小相似的工控机的功能、速度、存储容量大大超过了当年的小型机,因此,用成套工控机作成继电保护的时机已经成熟,这将是微机保护的发展方向之一。某大学已研制成用同微机保护装置结构完全相同的一种工控机加以改造作成的继电保护装置。这种装置的优点有:①具有486PC机的全部功能,能满足对当前和未来微机保护的各种功能要求。⑦尺寸和结构与目前的微机保护装置相似,工艺精良、防震、防过热、防电磁干扰能力强,可运行于非常恶劣的工作环境,成本可接受。③采用STD总线或PC总线,硬件模块化,对于不同的保护可任意选用不同模块,配置灵活、容易扩展。

继电保护装置的微机化、计算机化是不可逆转的发展趋势。但对如何更好地满足电力系统要求,如何进一步提高继电保护的可靠性,如何取得更大的经济效益和社会效益,尚须进行具体深入的研究。

2.2人工神经网络

人工神经网络(ANN)是模拟人脑组织结构和人类认知过程的信息处理系统。它以其诸多优点,如并行分布处理、自适应、联想记忆等,在智能保护中受到越来越广泛的重视,而且已显示出巨大的潜力,并为智能化继电保护的研究开辟了一条新途径。应用ANN技术实现故障诊断不同于ES诊断方法。ANN方法通过现场大量的标准样本学习与训练,不断调整ANN中的连接权和阂值,使获取的知识隐式分布在整个网络上,并实现ANN的模式记忆。因此ANN具有强大的知识获取能力,并能有效的处理含噪声数据,弥补了ES方法的不足。

神经网络是一种非线性映射的方法,很多难以列出方程式或难以求解的复杂的非线性问题,应用神经网络方法则可迎刃而解,因此在继电保护中也得到越来越多的应用,例如在输电线两侧系统电势角度摆开情况下发生经过渡电阻的短路就是一非线性问题,距离保护很难正确作出故障位置的判别,从而造成误动或拒动;如果用神经网络方法,经过大量故障样本的训练,只要样本集中充分考虑了各种情况,则在发生任何故障时都可正确判别。近几年来,电力系统继电保护领域内出现了用人工神经网络来实现故障类型的判别、故障距离的测定、方向保护、主设备保护等。用人工神经网络原理来实现高压输电线的方向保护,提出用BP模型作为方向保护的方向判别元件。研究结果表明,该方向判别元件能准确、快速地判别出故障的方向。基于神经网络的继电保护系统的优越性;论证了由单层感知器网络或TH网络可以实现最小二乘算法,这两种网络都可以在极短的时间(数纳秒或几百纳秒)内完成全部运算;给出了电流继电器、圆特性以及四边型特性阻抗继电器的神经网络模型,并证明了三种模型都具有很强的自适应性。基于人工神经网络的智能型自适应继电保护原理,利用了比传统保护多得多的信息量。它比传统保护能区分更多的故障类型,提高了继电保护的适用范围,从原理上解决了经高阻抗的短路故障保护问题。利用人工神经网络实现自适应电流保护的方法。该方法充分利用了人工神经网络所具有的强大的自适应能力,学习能力和模式识别能力,实现对电力系统中的各种故障情况的识别,解决电流保护中的灵敏度补偿和故障方向识别问题,使电流保护对正方向各种故障都有足够的保护范围,而对反方向的各种故障实行闭锁,从而实现电流保护的自适应。

利用神经网络可以在一定程度上提高故障诊断效率,解决用常规继电保护方法难以解决的问题,但该方法也存在“性能取决于样本是否完备、不擅长处理启发性的知识、训练时容易陷入局部最小”等问题。由于专家系统方法与神经网络方法在许多方面可以协调工作、互为补充,因此,如何取长补短将神经网络技术与故障诊断专家系统融为一体,以弥补诊断中的不足,并提供新的诊断技术和方法,具有很大的潜力和广阔的前景,是值得我们深入探讨和研究的。

2.3模糊理论(Fuzzy Sets Theory)的应用

模糊逻辑能够完成传统数学方法难以做到的近似计算。近几年来,模糊集理论在电力系统中的诸多应用领域取得了飞速进展,包括了潮流计算、系统规划、模糊控制等方面。例如对干负荷变化和电力生产的不确定性,就可运用模糊值来表示某不确定负荷在实际集合中的隶属函数,建立起电力系统最优潮流的模糊模型。

传统无功电压优化算法一般是单目标优化问题,并没有考虑有功网损的降低和限制控制量调节数最少,而且在处理电压约束时,未考虑“软约束”特性。可引入模糊线性规划算法以解决这一问题。为很好地协调降低网损、限制调节量和确保节点电压裕度三者的关系,在有限控制量调节的前题下,可实现校正违界电压、降低系统网损和确保所有节点电压留有一定的裕度。利用模糊综合评判的方法对电能质量进行综合评价的二级评判法。

2.4遗传算法(Genetic Algorithms,GA)的应用

遗传算法是基于自然选择和遗传机制,在计算机上模拟生物进化机制的寻优搜索算法。他能在复杂而庞大的搜索空间中自适应的搜索,寻找出最优或准最优解,且算法简单,适用,鲁棒性强。遗传算法对待求解问题几乎没有什么限制,也不涉及常规优化问题求解的复杂数学过程,并能够得到全局最优解或局部最优解集,这是他优于传统优化技术之处。遗传算法从优化的角度出发基本上可以解决故障诊断问题,尤其是在复故障或存在保护、断路器误动作的情况下,能够给出全局最优或局部最优的多个可能的诊断结果。但是如何建立合理的输电网络故障诊断模型是使用遗传算法的主要“瓶颈”。如果能够建立合理的数学模型,那么不仅可以使用遗传算法解决故障诊断问题,还可以使用其他类似的启发式优化算法解决故障诊断问题。

3智能方法的综合应用

每种智能控制方法都有其内在的局限性,难以满足处理电力系统实际复杂问题的需要。如何将这些控制方法结合起来形成一种综合的智能控制,使综合的智能控制系统能够体现出各种控制方法的优势而尽量避免各自的不足,综合利用模糊理论及人工神经网络各自的特点形成的模糊神经网络成为提高电力系统的可靠性、快速性、灵敏性及选择性的主要研究方向。结合ES和ANN实现对以变电站故障诊断为基础的分层分布时故障诊断系统。基于模糊理论与神经网络理论,根据特征气体法和改良IEC三比值法,建立了模糊神

经网络的变压器故障诊断模型。该模型有效的处理了故障诊断中的不确定因素,并具有较强的知识获取能力。从基于人类思维发展模式的角度,融合设备故障诊断的ES和ANN模型,构造了电力变压器的故障诊断分析系统。

综上所述,将不同的人工智能技术结合在一起。分析不确定因素对智能诊断系统的影响.从而提高诊断的准确率,是今后智能诊断的发展方向。

4结语

人工智能技术在电力系统的应用中已经获得了良好的发展。然而在我国,人工智能技术在电力系统中的应用研究才刚刚开始。随着我国电力系统的持续发展,电力系统数据总量的不断增加,管理上复杂程度的大幅度增长,以及市场竞争的影响和加大,为人工智能技术在电力系统的应用提供了广阔前景。可以预见,加强智能科学在电网中的科研和应用,将能更好的保证电网安全稳定经济运行。

参考文献

[1]韩富春,王娟娟;基于神经网络的电力系统状态估计[J];电力系统及其自动化学报,2002(6):49-51.

神经网络的基本功能范文5

(广西职业技术学院,广西南宁530226)

摘要:实验室中的电子设备和化学试剂等对温度条件的要求较高,需要进行智能温度控制。传统的实验室温度控制方法采用BP神经网络控制方法,系统连接权值表现为一种静态属性相关权重,难以适应实验室温度自适应控制的需求。提出一种基于变结构BP神经网络自适应校正的实验室智能温度控制算法。进行实验室温度数据的挖掘和预处理,构建变结构BP神经网络自校正控制模型,采用自适应校正方法对温差进行调整,采用比例元进行温度过高情况下的微调,采用积分元进行温度过低下的微调,实现控制算法改进。基于TMS320VC5509A DSP芯片进行智能温控系统的核心电路设计。仿真结果表明,采用该系统能有效实现实验室温度智能控制,性能较好,可靠性高。

关键词 :实验室;温度控制;BP神经网络;系统设计

中图分类号:TN911?34;TP373 文献标识码:A 文章编号:1004?373X(2015)20?0084?04

收稿日期:2015?04?25

基金项目:基于嵌入式的蔗糖结晶过程自动控制系统研究(桂教科研[2014]8号(YB2014488));基于物联网技术的高校消防管理系统的设计与应用研究(桂教科研[2015]2 号(KY2015LX614))

Research on laboratory’s intelligent temperature control system based onBP network correction algorithm

LUO Yunfang

(Guangxi Vocational and Technical College,Naning 530226,China)

Abstract:The electronic equipment and chemical reagents in laboratory need intelligent temperature control due to theirhigh requirements for temperature conditions. The traditional temperature control method with BP neural network control can notmeet the requirements of laboratory temperature self?adaptive control since the system connection weight is a kind of relativeweight of static attribute. An intelligent temperature control algorithm based on structure?transform BP neural network self?adap?tive correction is proposed for laboratories. On the basis of the data mining and preprocessing,the improvement of the control al?gorithm is realized by the methods that the BP neural network self?adaptive control model is constructed,the adaptive correctionmethod is adopted to adjust the temperature difference,the proportion element is used to conduct fine adjustment of excess tem?perature,and the integral element is employed to execute fine adjustment of too low temperature. the core circuit of intelligenttemperature control system based on DSP TMS320VC5509A chip was designed. The simulation results show that the system caneffectively achieve the laboratory temperature intelligent control.

Keywords:laboratory;temperature control;BP neural network;system design

0 引言

大型的实验室采用封闭设计,空气循环和温度调节需要通过实验室的温度传感器和空调进行智能控制,对实验室温度的精确控制,对保证实验结果准确性具有重要意义。通过对大型实验室温度传感数据状态模式的准确挖掘,以此为样本数据,实现对实验室温度的精确控制,提高实验分析的精度和性能。由于实验室中的电子设备和化学试剂等对温度条件的要求较高,需要进行智能温度控制,研究实验室的温度自适应智能控制系统设计和控制算法改进具有重要的意义,相关的研究受到了广大学者和专家的重视[1]。

在进行实验室智能温控过程中,实验室温度传感数据状态采集系统进行温度信息的感知,实现温度数据的挖掘和采集,实验室温度数据采集方法主要有热催化式测定法、半导体气敏传感器测量法、光纤吸收法、光声光谱法等,热催化式的测定方法中探测元件的寿命较短,无法在温控要求较高的实验室中进行精确测试,关于实验室温控智能控制系统的设计中,传统光干涉的温度控制设计方法较为复杂,无法进行大规模的普及。更多是采用光电检测技术进行信号处理后对温度进行检测[2 ? 4]。温度控制理论上,传统的温度控制主要从控制论出发,通过传感器数据状态模式的挖掘实现对实验室温度的精确控制,常见的如PID控制方法[5?8]。传统方法中对实验室温度传感器的数据状态模式挖掘采用半导体气敏传感器测量法进行数据采集,并采用神经网络控制法实现数据状态模式挖掘和温度控制,方法受限于温度数据的均衡控制无法准确把握,控制效果不好[9]。而采用BP神经网络控制方法,神经网络控制的连接权值表现为一种静态属性相关权重,难以适应实验室温度自适应控制的需求。

针对上述问题,本文提出一种基于变结构BP神经网络自适应校正的实验室智能温控方法,并进行系统设计。首先进行实验室温度控制算法设计,然后采用DSP芯片进行实验室温控系统的硬件设计与实现,最后进行仿真实验实现性能测试和验证,得出有效性结论。

1 实验室温度数据的挖掘和预处理

为了实验室温度智能控制,需要进行数据分析,本文进行实验室温度数据采集方法采用半导体气敏传感器测量法,实验室温度数据的采集流程如图1所示。

结合图1所示的算法流程图,进行温度传感数据的状态模式挖掘,采用PID控制器进行实验室的温度调节和自适应控制,根据实验室温度的非线性控制特性,采用粗糙低分辨率的模糊训练集,得到实验室的温度控制模糊决策函数的输入为: 式中:Emax 表示传感器节点采集的温度数据的模糊论域最大值;a 为常数。此时智能温控传感器系统向CTCS发送温度控制指令,得到实验室的温度传感信息包络指向性特征表示为:

随着实验室温度变化,实验室温度传感数据的自相关控制状态方程为:

式(3)表明,可以用自动模糊匹配方法实现对实验室温度数据的冲激响应特征分析,采用 来描述列实验室温度控制中心的脉冲响应频率,得到温度控制量偏差为:

温度传感器记录到的输入温度变化幅度s(t) 为一个带宽为W 的冲激响应函数,根据抽样定理,其等效低通滤波输出可以表示为:

式中:B = W 2

为实验室温度控制的带宽,温度采样间隔。输出等效低通温度调整配置权重为:

式中,温度控制的权系数α 应随控制状态和环境因素自适应变化,得到稳态误差输出为:

通过解调和A/D转换,输出实验室温度数据的挖掘结果,以此为数据基础,进行信息融合和分析,为后续控制系统提供信息输入。

2 实验室温度智能控制算法改进设计

在上述进行数据挖掘和特征提取的基础上,得到了温度数据传感信息,以此作为数据源,进行温度控制。传统的实验室温度控制方法采用BP 神经网络控制方法,难以适应实验室温度自适应控制的需求。本文提出一种基于变结构BP神经网络自适应校正的实验室智能温度控制算法。BP神经网络自适应校正控制算法的设计描述如下。

首先构建变结构BP神经网络自校正控制模型,如图2所示。

图2 变结构BP神经网络自校正控制模型图2 中,变结构BP 神经网络自校正系统的输入向量为第1节所述中提取的温度传感器采集的温度数据原始数据r1,r2 ,?,rn ,作为变结构BP神经网络的温度变化幅度输入,在神经网络系统中,输入层为2n 个神经元结构,温度控制偏差变化率ec ,偏差积分ed ,此时BP神经元输入为:

变结构BP神经网络采用双闭环控制,通过振幅调制使测量的实验室温度控制信号为一个低频信号,当温度控制偏差较小时进行系统细调,得到神经元的状态为:

实验室温度控制的BP神经网络第三层神经元的输出为:

式中:1和-1分别表示温度控制系统中出现温度过高和过低的情形,在限定条件下实验室温度数据的温度控制结构需要进行自适应校正,实现温差补偿,得到被控量序号( s = 1,2,…,n);BP神经元中i 为子网输入层序号( i = 1,2)。通过上述分析,采用自适应校正方法对温度的温差进行调整,得到实验室温度控制的模糊匹配系数表达式为:

在BP神经网络系统中,采用比例元进行温度过高情况下的微调,其中比例元的状态为:

采用积分元进行温度过低下的粗调,得到BP神经网络的积分元状态为:

测试温度进行粗调后的预测值,得到BP神经网络的微分元状态为:

通过上述处理,实现BP神经网络下的实验室温度自适应校正,得到校正后的温度控制系统的隐含层各神经元的输出为:

式中:s 为温度扫描周期;j 为子网中隐含层神经元序号( j = 1,2,3);wsij 为温度控制BP神经网络输入层至隐含层的连接权重值。通过上述处理,使得实验室的温度变化率、积分时间和微分时间通过线性组合的方式进行自适应组合,提高温度控制精度。

3 智能温控系统硬件设计与实现

在上述算法设计的基础上,进行实验室温度智能控制系统的硬件设计,本文采用DSP芯片进行温度控制和核心电路设计,数字信号处理器选用了TI 公司的TMS320VC5509A,整个系统的硬件设计如图3所示。

系统设计主要包括时钟发生器、部存储器、电源电路、外围电路、模拟信号到数字信号的转换器等,时钟发生器将接收到的温度传感信息数据输入时钟变换电路中,通过CPU 及其外设所需要的工作时钟进行温度控制系统的A/D 转换和数据调节。另外温度控制系统需要进行外部存储器扩展,系统中选用了SRA,flash和SDRAM三种不同类型的存储器,进行温度数据的存储和调度。温度控制系统外部存储器电路结构如图4所示。

硬件系统设计的另一个重要子系统为温度传感数据的波形发生器,波形发生器是依据直接数字频率合成(DDS)原理来设计的。频率精密可控,其范围为2~200 Hz,可输出两路波形,一路正弦波,一路方波。两路输出分别有同步信号输出,以供调试使用。且方波占空比可控,范围为5%~70%。幅度固定为(4±0.1)V,控制由键盘输入,并带有LCD 显示系统当前状态。该子程序的基本功能是:当接收到FPGA 给出的启动信号时,定时器3(T3)开始工作;当定时器内部计数器值达到预设的周期值时,启动ADC 转换,同时进入A/D 中断,在A/D中断子程序中完成对数据的读取,并保存到预先设定的数组里面,然后等待下一时刻中断,如此循环;当数组数据储存满时,关闭定时器,进入温度传感数据处理子程序来处理先前保存的那一组数据。并通过接入电阻使输出电压为0~10 V。VAA为+5 V电压输入,VDD,VEE为±15 V 电压供电,由此实现了实验室温度的智能控制。实验室智能温控系统的逻辑控制电路如图5所示。

4 系统仿真实验与结果分析

为了测试本文设计的改进的实验室智能温控系统的性能,进行仿真实验,中心频率32 阶可控,可达140 kHz;根据设计的温度传感器数据采集系统,进行实验室的温度数据采集,行实验室温度原始数据采集中,采用双通道温度信息采集传感装置,基于4位控制信号来实验室温度信息的偏差和衰减量。得到温度数据采样结果见表1。根据上述温度数据采集样本,进行温度BP 自校正控制,设温度控制的BP 神经网络的系数为:KI = 0.05 ,KP = 0.02 ,KD = 0 ;中心频率32阶可控,可达140 kHz;时钟范围为40 Hz~4.0 MHz。根据上述结果,得到温度数据的幅值采用结果如图6所示。

从图6可见,采用本文设计方法能有效实现温度信息的提取和数据感知,为进行温度控制提供准确的数据基础。以此为基础,调整FPGA输出波形时显示当前信号频率、方波占空比、信号幅度及衰减器衰减值,得到温度控制处理结束时显示波形和所需数据,实现智能温控,得到仿真结果如图7所示。从图可见,采用本文算法,能有效实现实验室温度智能控制,对实验室温度的微调和粗调的精度都较高。

5 结语

实验室中的电子设备和化学试剂等对温度条件的要求较高,需要进行智能温度控制。传统的实验室温度控制方法采用BP神经网络控制方法,神经网络控制的连接权值表现为一种静态属性相关权重,难以适应实验室温度自适应控制的需求。提出一种基于变结构BP神经网络自适应校正的实验室智能温度控制算法。首先进行实验室温度控制算法设计,采用比例元进行温度过高情况下的微调,采用积分元进行温度过低下的粗调,测试温度进行粗调后的预测值,实现BP神经网络下的实验室温度自适应校正,然后采用DSP芯片进行实验室温控系统的硬件设计与实现,系统设计主要包括时钟发生器、部存储器、电源电路、外围电路、模拟信号到数字信号的转换器等。仿真结果表明,采用本文设计的系统能有效实现实验室温度智能控制,性能较好,可靠性高。

参考文献

[1] 雷琪.焦炉加热燃烧过程的智能集成优化控制策略及其应用研究[D].长沙:中南大学,2007.

[2] 王伟,吴敏,曹卫华,等.基于组合灰色预测模型的焦炉火道温度模糊专家控制[J].控制与决策,2010,25(2):185?190.

[3] 高宪文,刘浩,赵亚平.模糊复合控制方法在焦炉控制系统中的应用研究[J].控制与决策,2005,20(4):434?438.

[4] 张小冰.变频器优化控制方法研究与仿真[J].计算机仿真,2011,28(11):409?412.

[5] 郭伟.基于互信息的RBF神经网络结构优化设计[J].计算机科学,2013,40(6):252?255.

[6] 闻新,张兴旺,张威.基于HBF神经网络的自适应观测器[J].电子学报,2015,43(7):1315?1319.

[7] 杨大为,丛杨,唐延东.基于结构化的加权联合特征表观模型的目标跟踪方法[J].信息与控制,2015,44(3):372?378.

[8] MEI X,LING H. Robust visual tracking using L1 minimization[C]// Proceedings of 2009 IEEE International Conference onComputer Vision. Berlin,Germany:Springer,2009:1436?1443.

神经网络的基本功能范文6

关键词:入侵检测;信息系统;安全防护

中图分类号:TP393.08 文献标识码:A 文章编号:1007-9599 (2012) 13-0000-02

一、引言

随着互联网的应用逐步走向深入,如何防范计算机系统被入侵的事件的发生是当前信息系统研究的热点问题。计算机软件的漏洞、计算机病毒以及外部黑客的入侵、攻击等需要实时监控,从而实现对计算机网络安全运行的宏观掌控,并结合实际情况对安全技术进行必要的调整。为了保证信息系统能够安全稳定运行,需要开发一个发现入侵行为并进行报警的平台,实现对系统的实时监测。Snort是一个轻量级网络入侵检测系统,本文通过开发以snort为核心的入侵检测系统,完成了系统结构设计、探测器的设计与实现以及数据控制中心、管理控制中心的部署,对保证计算机网络系统的安全稳定运行具有很好的理论价值与实践意义。

二、入侵检测系统的设计思路

为了能够使计算机网络系统微电网保持安全稳定的状态,就必须保持分布在网内的控制及保护装置可以结合网络的实时状态迅捷地调整配置,进行安全报警和控制。Snort是基于规则匹配的入侵检测工具,因此,网络入侵检测保护与控制信息平台首要的目标是能够快速获取实时的系统数据,监控网中的各类入侵攻击或威胁的发生和存在,进行快速的检测与划分,及时探测异常状态并产生告警,对告警信息数据进行记录、存储及备份,从而实现对网络系统的控制。系统的模块设计均遵循CIDF标准,以Snort构建入侵检测的引擎,通过协议分析和模式匹配,一方面提升入侵检测效率,另一方面增强准确率和俘获率。

三、入侵检测系统的具体设计

(一)系统架构设计

本文所设计的网络安全入侵检测系统,是一个三层体系结构,具体的层次部署如下图。

由图可知,在网络系统中重要的节点部署安全探测器,截取数据包并对其进行协议分析和安全检测,在把必要的分析结果传输至数据存储中心,并按照一定的规则存储在入侵数据库中。系统用户通过管理控制中心对系统进行设置和管理。系统设计为分布检测、集中管理的模式,在安全管理平台上引入windows系统,以.NET& C#开发管理程序。主要是由于C#程序拥有较好的扩展性,对系统将来的升级有所帮助。在系统开发中,充分利用程序的多线程模式。编写之后的系统能够和与其他网内的保护设备实现互联互通。本文引入Winpcap开发包进行流量数据包的获取,数据库选用MYSQL,管理控制台使用ACID。

(二)入侵检测探测器的设计

探测器是入侵检测系统的核心部件,其主要功能为从被监控网段获取数据并简单处理后,结合入侵检测规则来发现其中是否蕴藏了入侵行为。本文所设计的探测器由五个模块组成,如下图。

下面阐述模块的设计与实现过程:

1.数据包捕获模块

入侵检测的前提便是对数据包进行捕获,数据包捕获模块的功能是将网络上的院直属举报抓取下来,传输给数据包解码器进行解析。

考虑到Snort并未向用户提供捕获数据包的工具,且本文所设计的入侵检测系统是基于windows环境,因此本文引入了Winpcap作为捕获数据包的工具。在Winpcap捕获工具中,开发了一系列遵循相关标准的抓包接口,因此结合Winpcap的功能便能够抓取被监测的网路上流经所有主要节点的不同类别的数据包,在Winpcap抓包工具中,还预设了方便使用者进行自定义的规则,利用这些规则,在所抓取的数据包被送去检测之前,可以对其进行必要的处理和过滤。

2.数据包解码器模块

使用Winpcap捕获到数据包之后,入侵检测探测器必须以相关的协议和规约对这些数据包进行解码操作。因此,数据包解码模块可以看做是结合具体的网络协议对数据流解码的模块。解码的流程为如下图所示,首先为Winpcap捕获的数据包构建一个堆栈数据结构,然后从下到上,分别历经解码传输协议、解码网络协议以及解码数据连接协议,对流经的每一个数据包进行解码操作。解码完成后,所有的数据被存入数据结构中,传输至预处理器进行分析。

3.预处理器

预处理组件是入侵检测探测器单元的核心组成部分,预处理组件的主要功能是进行当前捕获的数据包进行预处理。在本设计中,其具体操作包括数据包检查、数据包丢弃或修改数据包,目的是解析数据包,提升系统的实时响应能力。基于Snort的预处理过程主要由不同功能的插件完成,包括数据分片重组及数据流重组、协议解码以及异常检测三个类别的功能。为了获取完整的数据,预处理组件必须和位于其他节点的组件进行沟通。基于Snort的特点能够提升预处理的时间满意度,减轻服务器端负担。预处理器实现以下的功能:

①分片重组数据

经由数据包解码器模块解码之后的数据在流经网络逻辑边界时,因为不同的子网对最大传输单元的设置阈值有所不同,网络交换机便会根据数据包体积的大小对其进行分片操作。一部分网络攻击者会结合子网之间的这个特点,特意构造一部分已经分片之后的虚假数据包,来避免被检测系统检查。攻击者分片之后的数据已经被打碎,因此其具体的攻击属性已经存在于数个不同的分片之中,以最大限度地隐藏攻击。对于这部分数据,在预处理器中应该首先对其进行分片重组。举例来讲,预处理器可以对其接收到的所有分片进行重组。而对于遵循TCP规约的网络,入侵者将入侵数据打碎之后避免被检测的操作非常常见,所以预处理器也应执行数据包重组操作,在对数据包重组之后,还能够体现出相对完整的会话状态数据。

②协议解码

协议解码功能对特殊编码的数据进行报文解析,它的基本功能为将这些数据统一格式,从网络节点上接收报文,并按照标准中定义的报文的格式提取出采样值值。它是整个入侵检测系统的数据来源,因此它工作的稳定性直接影响整个系统的安全性能。

③异常检测。

网络中还有一部分如期你攻击是难以用基于一般规则的检测方法发现的,因此异常检测非常重要。异常检测主要进行基于网络异常行为的检查和统计汇总,一旦探测到诸如端口一场扫描等不正常行为便会启动警报进程并将数据存储入系统安全日志。

4.检测引擎

检测引擎通过相关算法对网络数据包进行分析。本研究在对数据包进行检测的过程中,引入优化神经网络算法,基于遗传算法的优化目的是以遗传算法的全局搜索性来克服神经网络过度依赖梯度下降的缺陷,通过计算适应度与遗传误差,对神经网络权值和阈值进行持续调整,计算隐含层、输出层单元输出与隐含层、输出层单元误差,从而确定最佳权值。通过模式匹配来检测入侵行为,预测精度在可接受的区间内,是一个可行的预测模型,并且有效规避了传统神经网络方法的一些缺陷。此外,随着入侵检测数据的分析进程,检测节点还需要结合一定的条件来判断是否需要获取其他节点的数据包,本研究设置为集中管理目录、分布式存储文件,充分避免了由于数据传输过于频繁而导致的通道阻塞问题。具体的检测流程为:首先,对手机到的数据包进行协议分析,在此基础上进行数据包的初步分类,将分类的数据包分别于既定的规则进行匹配,匹配的算法和依据来自规则库中的规则解析数据,如果未能匹配,则说明该报文正常,如果匹配成功,则说明探测到入侵现象,需要向数据管理中心发送日志和告警信息。

四、结束语

本研究结合snort的发展趋势和计算机系统实际安全需求,构建了入侵检测保护与管理平台,并阐述了其基本功能的设计与实现。只有将计算机网络作为一个单独系统的整体系统进行管理和控制,才更加有利于其运行,及时的发现入侵行为并进行报警。

参考文献:

[1]Wang Hun,Zhou yang,Xu Shujiang. Research of IPv6 IDS based on Snort[C].2012通信与信息技术会议论文集(下),2012

[2]李振强等.基于Snort的IPv6入侵检测系统的研究与实现[J],电信科学,2007