卷积神经网络存在的问题范例6篇

前言:中文期刊网精心挑选了卷积神经网络存在的问题范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

卷积神经网络存在的问题

卷积神经网络存在的问题范文1

关键词:深度学习;行为识别;神经网络

1 概述

动作行为识别是计算机视觉领域中的一个研究热点,已经广泛应用于智能监控、人机交互、视频检索等领域中[1]。动作行为识别技术是通过对视频或者图像中人体动作行为做出有意义的判断。有效表达图像(视频)中的实际目标和场景内容是最基本,最核心的问题。因此,对于特征的构建和选择得到广泛关注,例如STIP、SIFT、MSER等。但是,能通过无监督方式让机器自动从样本中学习到表征样本的特征,会让人们更好地利用计算机来实现人的视觉功能。而深度学习作为神经网络的延伸和发展,是通过逐层构建一个多层网络来使得机器自动学习到隐含在数据内部的关系,从而让学习到的特征更加准确性。

文章旨在探讨深度学习与机器学习(神经网络)之间的关系,并且介绍深度学习的由来、概念和原理;同时介绍目前深度学习在计算机视觉中的应用。最后提出深度学习目前发展所面临的问题,以及对未来的展望。

2 深度学习

2.1 深度学习概述

深度学习源于人工神经网络的研究,是机器学习的拓展。深度学习是经过组合低层特征来形成更加抽象的属性类别和特征,从中发现原始数据的特征表征[2]。现在用于动作行为识别的技术是通过“动作表征”+“动作分类器”的框架来进行行为识别的。其中“动作表征”是人们手动设计特征获取到的,也就是在目前识别框架内存在一个对动作图像(视频)的预处理过程。

深度学习和浅层学习相对。目前许多学习算法是浅层网络学习方法,具有一定的局限性,例如在样本有限的状况下,表示复杂函数的能力有限制,且对复杂分类问题的泛化能力也会受到一定约束[3]。而深度学习通过学习深层非线性网络结构,达到复杂函数逼近,又能在样本少的情况下学习原始数据的特征。BP算法作为传统神经网络的典型算法,虽然训练多层网络,但仅含几层网络,训练方法很不理想[3]。因为其输入和输出间非线性映射让网络误差函数形成含多个极小点的非线性空间,因而经常收敛到局部最小,且随着网络层数的增加,容易过拟合。而深度学习可以获得分布式表示,通过逐层学习算法来得到原始输入数据的主要变量。通过深度学习的非监督训练完成,同时利用生成性训练避免因函数表达能力过强而出现过拟合情况。

2.2 深度学习原理

传统机器学习仅含单层非线性变换的浅层网络结构,而且浅层模型单一。这对于深度网络来说易造成陷入最优或产生梯度分散等问题。因此,Hinton等人在基于深度置信网(DBNs)的情况下提出非监督贪婪逐层训练算法,随后提出了多层次自动编码器深层结构,这给解决深层网络结构相关的优化难题带来了希望。此外Lecun等人提出的卷积神经网络是第一个多层次结构的学习算法。同时深度学习还出现了许多结构:多层感知机、去噪自动编码器、稀疏编码等。

卷积神经网络是第一个真正采用多层次网络结构,具有鲁棒性的深度学习算法,通过探究数据在空间上的相关性,减少训练参数的数量。而且卷积神经网络(CNN)适应性强,善于发现数据的局部特征。它的权重共享结构降低了网络模型的复杂度,减少了权值的数量,使得卷积神经网络在模式识别中取得了很好的结果。

自动编码器的核心关键是将原始图像(视频)输入信号进行编码,使用编码后的信号来重建原始信号,使得两者之间的重建误差最小。通过将原始信号编码成另一形式,能够有效地提取信号中的主要信息,能够简洁地表达原始图像(视频)的特征。

3 深度学习的应用

3.1 语音识别

从2009年开始,微软研究院语音识别专家通过与Hinton合作,首先将RBM和DBN引入到语音识别声学模型训练中,使得语音识别的错误率相对减低30%,这彻底改变了语音识别原有的技术框架。在国际上,IBM、google等公司都快速进行了DNN语音识别的研究,并且速度飞快。国内方面,阿里巴巴,科大讯飞、百度、中科院自动化所等公司或研究单位,也在进行深度学习在语音识别上的研究。

3.2 视频中的动作行为识别

准确迅速识别视频中人的动作行为对于视频搜索和视频监控具有划时代的意义。最近几年,深度学习技术被应用于视频动作行为识别中。如Ji等人[4]提出多层网络的3D卷积神经网络来学习视频中的时空特征,并通过卷积来实现对整个视频特征的学习,从而代替之前的时空兴趣点检测和特征描述提取。在TRECVID数据库上进行的实验取得了不错效果。

4 结束语

文章对深度学习的主要概念进行了全面阐述,包括其由来、原理、研究进展和相应的应用等。在很多领域中,深度学习都表现了潜在的巨大价值,但深度学习作为浅层学习的延伸,仍处于发展阶段,还有很多问题值得我们深入探讨:

(1)我们需要了解深度学习的样本复杂度,需要多少训练样本才能学习到足够的深度模型。

(2)在推进深度学习的学习理论和计算理论的同时,我们是否可以建立一个通用的深度学习网络模型,作为统一的框架来处理语音、图像和语言。

(3)神经网络具有前馈性连接和反馈性连接,可是我们研究的深度网络中还没有加入反馈连接,这些都给深度学习的研究带来了严峻的挑战。

参考文献

[1]王亮,胡卫明,谭铁牛.人运动的视觉分析综述[J].计算机学报,2002,25(3):225-237.

[2]余凯,贾磊,陈雨强.深度学习的昨天、今天和明天[J].计算机研究与发展,2013,50(9):1799-1804.

卷积神经网络存在的问题范文2

人工智能、大数据、光纤网络等技术的发展和改进,人类社会已经进入到了“互联网+”时代,有力的促进了信息化系统的普及和使用,比如证券交易所开发了结算交易系统,政府机关开发了电子政务系统,旅游景区开发了旅游住宿管理系统等,提高了行业智能化、自动化和共享化水平。互联网虽然为人们带来了极大的方便,提高了各行业的信息化水平,但是其也面临着海量的安全攻击威胁,比如数以万计的病毒或木马,都给互联网的应用带来了极大的障碍。目前,网络中流行的攻击包括病毒木马、DDOS攻击等,这些病毒木马常常发生各类型的变异,比如2018年初爆发的勒索病毒,攻击了很多政企单位的服务器,导致终端操作系统无法登录和访问,传统的防火墙、杀毒软件等网络安全防御软件已经无法满足需求,需要引入大数据技术,以便能够将被动防御技术改进为主动防御技术,及时的查处网络中的病毒或木马,从而可以提高互联网防御水平。

1.网络安全防御现状研究

网络安全防御经过多年的研究,已经吸引了很多的学者和企业开发先进的防御技术,比如360安全卫士、访问控制列表、防火墙等,同时还提出了一些更加先进的深度包过滤和自治网络等防御技术,这些技术均由许多的网络安全防御学者、专家和企业进行研究提出,已经在网络中部署喝应用,一定程度上提高了网络防御水平。(1)防火墙防火墙是一种部署于因特网和局域网之间防御工具,其类似一个过滤器,可以不熟一些过滤规则,从而可以让正常的数据通过防火墙,也可以阻止携带病毒或木马的数据通过防火墙,防火墙经过多年的部署,已经诞生了数据库防火墙、网络防火墙、服务器防火墙等,使用枚举规则禁止查看每一个协议是否正常,能够防御一定的病毒或木马。(2)杀毒软件杀毒软件也是一个非常关键的程序代码,可以在杀毒软件系统的服务器中保存检测出的病毒或木马基因特征片段,将这些片段可以与网络中的数据信息进行匹配,从而可以查找网络中的病毒或木马,及时的将其从网络中清除。杀毒软件为了能够准确的识别病毒,目前引入了许多的先进技术,这些技术包括脱壳技术、自我保护技术等,同时目前也吸引了更多的网络安全防御公司研究杀毒软件,最为著名的软件厂商包括360、瑞星、江民、卡巴斯基等,同时腾讯公司、搜狗公司也开发了自己的安全管理技术,大大的提高网络防御能力。(3)访问控制列表访问控制列表是一个易于配置、安装简单和管理容易的网络安全防御工具,设置了黑白两个关键名单,白名单收录了安全数据源IP地址,黑名单收录了非法的数据源IP地址。访问控制列表已经可以在四个层次配置防御策略,分别是目录及控制级、入网访问控制级、属性控制级和权限控制级。访问控制列表级别越高访问性能越好,但是工作效率非常慢,不能够实时升级访问控制列表,因此应用的场所比较简单,一般都是不重要的中小学实验室等,许多大型政企单位都不用这个防御措施。(4)深度包过滤深度包过滤能够嵌入到硬件中形成一个固件,这样就可以快速的采集网络中的数据,然后利用深度包过滤的枚举检查规则,不仅检查数据包的头部IP地址、目的IP地址,还检查数据包中的内容,以便能够深入到数据包内部检查是否存在病毒或木马,一旦发现就可以启动防御软件。深度包过滤可以实施穿透式检查规则,分析每一个协议字段,深入到内部检查的更加详细和全面,从而避免病毒或木马隐藏在数据包内部,因此深度包过滤已经在很多领域得到应用,比如阿里云、腾讯云、百度云等都采用了这些技术,许多的政企单位也采用了深度包过滤技术,进一步提高了数据防御水平。(5)自治网络自治网络作为一种先进的互联网安全防御技术,其采用了自动愈合的建设理念,在网络中构建了一个冗余策略,一旦网络受到病毒或木马的攻击,此时自治网络就可以将这些一部分网络设备隔离,同时形成一个新传输通道为网络设备提供连接,知道数据修复完毕之后才能够将这些网络拓扑结构纳入到网络中。自治网络可以实现自我防御,也可以调动网络信息安全的许多的资源,将网络病毒导入备用服务器,此时就可以杀灭这些病毒。

2.基于大数据的网络安全防御系统设计

网络安全防御系统集成了很多先进的技术,尤其是快速的数据采集和大数据分析技术,能够将传统的被动网络安全防御模式转变为主动,提高网络安全防御性能。本文结合传统的网络安全防御功能及引入的大数据技术,给出了网络安全防御系统的主要功能,这些功能包括四个关键方面,分别是数据采集功能、大数据图1基于大数据的网络安全防御系统功能分析功能、网络安全防御功能和防御效果评估功能。(1)网络数据采集功能目前,人们已经进入到了“互联网+”时代,网络部署的软硬件资源非常多,访问的用户频次数以亿计,因此网络安全防御首先需要构建一个强大的数据采集功能,可以及时的采集网络中的软硬件数据资源,将这些网络数据发送给大数据分析功能。网络数据采集过程中可以引入深度包过滤功能,利用这个深度包过滤可以快速的采集网络数据,提高网络数据采集速度。(2)大数据分析和处理功能网络数据采集完毕之后,系统将数据发送给大数据分析和处理模块,该模块中包含了很多的病毒基因片段或特征,可以针对网络数据进行智能分析,将预处理后的网络数据与学习到的特征进行对比,以便能够发现这些数据信息中是否潜藏着木马或病毒,发现之后及时的将其发送给安全防御模块。(3)网络安全防御功能网络安全防御与传统的防御技术一致,采用木马或病毒查杀软件,因此一旦发现网络中存在病毒或木马,此时就可以启动网络安全防御工具,及时的将网络中的病毒或木马杀灭,并且可以跟踪病毒或木马来源,从而可以锁定源头服务器,将源头清除掉。如果源头涉及到犯罪就可以获取这些证据,同时将这些证据发送给公安机关进行侦破。(4)防御效果评估功能网络安全防御功能完成之后,系统可以针对处理效果进行评估,从而可以获取网络系统中的杀毒信息,将这些网络病毒消灭,避免网络中的病毒或木马复发。网络安全防御效果评估之后,还可以跟踪大数据分析的准确度,一旦准确度降低就可以及时进行学习,从而提高网络安全防御性能。大数据是一种非常关键的数据处理和分析技术,可以利用多种算法,比如BP神经网络算法、支持向量机、深度学习、K-means算法等挖掘数据中潜在的知识,这些知识对人们是有价值的,能够帮助人们进行决策。本文为了能够更好的展示互联网应用性能,重点描述了深度学习算法分析互联网安全数据过程。深度学习算法是一种多层次的卷积神经网络,包括两个非常关键的层次结构,一个是卷积层称为病毒数据特征提取层,一个卷积层为病毒数据特征映射层,可以识别病毒数据中的特征数据,同时将池化层进行处理,压缩和处理池化层数据信息,比如进行预处理、二值化等,删除病毒数据中的一些明显的噪声特征。池化层可以将海量的病毒数据进行压缩,减少卷积神经网络分析时设置的参数,解决卷积神经网络学习和训练时容易产生的过度拟合问题,避免病毒识别模型陷入到一个过度拟合状态,避免无法提高病毒识别能力,还会提升病毒识别处理开销。全连接层就是一个关键分类器,可以将学习到的病毒知识标记到一个特征空间,这样就可以提高病毒识别结果的可解释性。卷积神经网络通过学习和训练之后,其可以形成一个动态优化的网络结构,这个结构可以在一定时期内保持不变,能够实现病毒特征的识别、分析,为病毒识别提供一个准确的结果。

卷积神经网络存在的问题范文3

人工神经网络作为一种智能化的方法近年来在图像数据压缩领域得到了一定的研究与应用[6]。基于人工神经网络的数据压缩主要有2个步骤:①学习训练,将数据送入输入层作为训练样本,不断调整各层间的连接权值,从而使得网络的输出均方差达到最小;②压缩编码,将数据输入到训练好的网络,压缩后的数据通过隐含层输出。DEM数据具有相关性和连续性的特点,即DEM数据反映的是地形连续变化的特征,高程剧烈变化的部分是少有的并且DEM网格中某一点的高程值可以通过邻域值用非线性函数表示,这实质上非线性函数逼近或地形曲面拟合的过程。基于以上特点,学者们将人工神经网络引入到DEM数据压缩领域,冯琦等[7]采用BP神经网络实现DEM数据压缩,该研究特色在于:①采用L-M训练算法提高单隐层网络(SHLN)运算速率[8-9];②基于DEM数据相关性特点设置相对误差精度指标实现对最优BP训练网络的选取,在减少结点数的同时获得较高的压缩比;③该方法解压过程对于计算机硬件依赖性不高,能够进行数据的离线压缩处理。根据DEM数据的连续性特征,赵鸿森等[10]提出了一种基于RBF神经网络的压缩方法,该方法将山脊线、山谷线等地形特征作为样本点训练集,能够根据地形特征自适应确定网络结构,神经网络权值是通过网格点高程值获得,可获得较高的压缩比。

基于小波变换的DEM数据压缩

1.基于DWT的DEM数据压缩

DWT(DiscreteWaveletTransform)适合于处理各种冗余度低、相关性低的非平稳信号的压缩处理,对于不稳定、相关性差的DEM数据压缩具有较好的效果。DWT对于信号的压缩是基于其他具有多分辨率分析(MRA)这一特性,即根据Mallat算法[11]原始信号能够被逐级分解为高频和低频信号,由于高频分解信号含有绝大都数信息并且幅值小,通过设定一定的比例将最小幅值的分解系数置为0,再通过小波系数重构达到信号压缩的目的。经过理论分析,原始信号经过DWT,重构信号与原始信号具有高度的一致性。事实上重构信号与原始信号的差别往往不可忽略,特别是对于DME数据的压缩,压缩后数据相对于原始数据而言存在着严重的边界畸变、失真等问题,必须加以解决。针对这一问题,CHANG[12]等将二维离散小波变换的边界问题转变为一维离散小波变换来进行处理,研究结果表明该方法大大减小了边界失真区域,在提高压缩比的同时DEM重建数据精度也得以提高。

2.基于IWT的DEM数据压缩

DWT是通过将信号分解系数直接置0的方式来进行压缩处理,重构信号与原始信号不可避免地出现误差,而基于IWT(IntegerWaveletTransform)信号压缩,由于小波分解系数通过有限精度数(FinitePrecisionNumber)来进行精确描述,因而适合于对信号进行无损压缩处理[13]。基于IWT的数据压缩具有以下特点:①压缩处理很大程度上依赖于多相矩阵因式分解的选择,而因式分解能否对压缩后图像给定一个适当的误差尺度,取决于图形迭代函数;②IWT采用提升方案,并且均为整数运算,数据处理的速率得以提高;③IWT完全可逆,既可以实现有损编码也可以实现无损编码。陈仁喜等[14]将整形小波变换用于DEM数据压缩处理,该方法首先将经过预处理的DEM数据进行整形小波变换,然后对变换系数进行阈值化处理,最后进行量化编码。该方法最大特点是实现了数据压缩比和质量以及数据质量和传输速度的很好折中,具体为:①量化方法基于SPIHT算法平面传送思想,重要信息主要集中于高位,将小波变换后的系数直接去掉后面的n个平面位,该方法在保证数据压缩质量的同时提高了压缩比;②采用基于位平面扫描的算法对量化后的数据进行压缩编码,这使得压缩后的数据具有质量渐进传输特性;③小波变换后各子带分别进行编码,在解码过程中可以不对高频子带解码,得到的恢复数据分辨率较低,这有利于对大型DEM数据进行快速检索和浏览。

3.基于SPIHT小波编码算法

EMZ(EmbeddedZerotreeWavelet)算法由Shaprio[15]于1993年提出,该算法包括嵌入式和零树,在零树结构与逐次逼近量化方法(SAQ)相结合的基础上实现嵌入式编码。该算法能充分利用小波系数特点使得输出的码流具有嵌入的优点,因而在图像处理[16-17]、生物医学[18]等领域得到广泛的应用研究。但该算法也存在着如在相互独立的零树进行编码时浪费大量字节等缺陷,研究者们也做了一些改进[19]。在EMZ算法基础上发展而来的SPIHT(SetPartitioninginHierarchicalTrees)[20]算法具有能够在保证数据压缩质量的前提下提高压缩比,能够进行优化嵌入式编码,均方根误差和计算复杂度低等优点,并且数据压缩后具有很好的渐进传输特性,目前该算法在图像压缩领域得到广泛应用。地形特征是影响DEM压缩质量的一个重要因素,平坦地区数据冗余量大而山地地势高低起伏,数据冗余则较小,但就现有的研究方法而言将这两种地形采用同样地压缩比,压缩结果不尽如人意,李毅等[21]提出了一种基于SPIHT小波的DEM自适应压缩方法,该方法特点在于:①考虑地形特征,根据地形的复杂度进行分析以确定数据压缩比,从而确保数据可视化质量;②自适应性编码,通过才用表征不同尺度的小波高频系数和地形尺度特征向量对地形复杂度进行评估,根据评估结果自适应调节编码算法。但该研究中数据压缩比是根据地形视觉效果选择,存在一定的经验性,在实际应用中很难得到较为理想的压缩比。

4.基于M进制小波的DEM数据压缩

多分辨率分析是传统二进制小波变换的基本特性,即能够获得信号在时间域和频率域局部化特征,这有利于对图像局部信息进行有效地识别和分析。当图像经过多层小波分解时,随着分解层数的增加,图像信息会出现不同程度的丢失,这成为二进制小波变换的主要缺陷。在二进制小波变换基础上发展的M进制小波变换具有如下特点:①能够对图像信号进行更加细致地分解,分解次数不受限制;②图像信息更加集中,并能够精确描述图像的频率分布;③图像重构具备较高的精度;④具有对图像信号相对狭窄的高频部分进行放大处理和对图像信号压缩的特性,这克服了正交小波分解所存在的缺陷.DME由于具有海量化数据,以及复杂的地形信息等特点一直是DEM数据压缩的难点,近年来研究者们将M进制小波变换引入DME数据压缩领域,王宇宙等[22]提出了一种基于多进制小波变换的DEM数据压缩方法,顾及DEM地形因素,将高频和低频信息分别进行编码处理是其主要特色,具体化为:①低频系数采用差分映射编码,这充分顾及地面变化的连续性以及大量数据冗余的情形,能够对低频信息进行无损的压缩编码;②并未直接舍弃系数值较小的高频小波系数,而是通过自适应对数量化表,对各个高频小波系数子块分别加以量化处理,能够获得较好的压缩效果。但该方法不足之处在于:对数量化位数是根据压缩率来进行确定,而事实上压缩率不能预先得知,从而量化位数也就无法精确得获得,基于具体地形信息的DEM数据精确压缩也就难以实现。多进制小波函数和尺度函数的构造是基于多进制小波DEM数据压缩的难点之一,对此吕希奎等[23]构造了一种具有插值性质的多进制小波函数和尺度函数,将DEM数据转变为二维图像压缩问题,能够在保持地形特征基本不变的前提下提高压缩比。但基于多进制DEM数据压缩本质上是有损压缩,细节信息的损失不可避免。#p#分页标题#e#

基于组合算法的DEM数据压缩

1.SPHIT算法与小波变换相结合的DEM数据压缩

整形小波变换(IWT)采用了提升方案(LS),避免了传统小波的卷积运算,并且计算过程完全在空间域进行,计算复杂度明显降低,便于硬件实现。因此,IWT能够对于冗余度较大的DEM数据进行有效地去相关性处理,实现对DEM数据的无损或近似无损的压缩。将IWT与新型编码方法的代表——SPIHT算法有机结合,为DEM数据压缩提供了一种有效方法。田继辉等[24]提出一种能够用于应急三维GIS的DEM数据压缩方法,该方法特点在于:①根据压缩精度要求,实现DEM数据单位转换;②对于每块DEM数据均减去其最小值,在降低了小波变换级数的同时使得SPIHT编码级数也得到降低;③通过设定一个小波系数阈值,将高于和低于该阈值的小波系数,分别进行SevenZip和SPIHT算法进行处理;④选用Int5/3实现对DEM数据压缩处理。该方法充分发挥IWT和SPIHT算法的优势,能够顾及到地形平坦和起伏较大情形下的压缩编码,研究表明该方法取得了较好的压缩效果,但对于DEM数据的边界问题并未提及,仍需要进一步加以研究。

2.基于小波变换与熵编码相结合的DEM压缩算法

该算法实现主要有3个步骤:①小波变换,即选择恰当的小波基函数对DEM数据进行小波变换;②量化,经过小波变换后数据相比原始数据而言更加集中,但其数量大小并未改变,必须采用一定的量化方法进行数据量化;量化通常有矢量和标量量化两种方法;③编码,通过将小波变换后的量化数据进行编码,将其转化为字符流。就整个小波压缩流程而言,数据经过压缩后边界失真现象的克服,数据压缩比的提高,以及在于量化和编码方法的选择是该压缩算法的难点所在。DEM数据具有不稳定、相关性差、信息熵高,并且DEM在平原地区具有较大的冗余,而在山区则冗余度较低等特点,这使得数据压缩比难以得到提高,常占强等[25]利用具有线性相位的双正交小波变换与混合熵编码相结合的方法对山区DEM数据进行压缩处理,具体来说:首先对DEM数据进行小波变换,通过选取最大分解系数的1/6作为自适应阈值并与硬阈值函数相结合,对小波分解后的高频系数进行处理,能够使得大约95﹪小波系数为0;然后将高频和低频分解系数分别采用游程编码和Huffman编码;最后再次通过游程解码和Huffman解码进行数据解压。该研究充分发挥了小波变换与编码方法各自的优势,在提高数据重建精度的同时获得了较高的压缩比,但小波阈值的选取局限于单一的情形,对多种情形的小波阈值的自适应确定规则的研究仍有待于进一步深入。

3.纹理优化技术与其他方法相结合的DEM数据压缩

纹理数据作为一种重要的场景数据,在对三维DEM数据进行渲染时一般存在两个问题:①由于采用分辨率高而且颜色丰富的纹理,从而存消耗急剧增加;②无法有处理决纹理分辨率与视距之间的关系,即相机与图的距离较近时,图形分辨率较大,相机与图形距离较大时,图形分辨率较小。Mipmap(Multi-imagepyramidmap)技术能够很好解决以上问题,该技术由Willams提出,并很快得到了广泛的研究和应用。从广义角度上分析,DME数据压缩、传输与显示是一个有机整体,同属于DEM数据压缩范畴,即广义DEM数据压缩。杨晓东等[26]结合Mipmap纹理优化技术与顶点法向量编码方法对DEM数据进行压缩处理,该研究主要实现如下功能:①数据的渐进传输和显示:通过对DEM数据进行小波变换,分别采用标量量化器和EZW对小波系数进行量化和编码;②DEM数据优化显示,采用顶点法向量的计算和编码方法并结合Mipmap纹理优化技术,能够对模型数据进行光照效果的计算。该研究突破了将DEM数据的压缩、传输以及优化显示有机结合,突破了现有的DEM数据压缩的固有模式,为该领域提供了一个较好的研究思路。

4.基于判别规则(指标)的DEM数据压缩

TIN由于采用不规则的空间分布高程采样点描述地形,在数据结构、三角网生成算法等方面相对于排列规则且结构简单的Grid数据而言,数据压缩方面难度较大。通过预先定义某一判别规则(指标)来对数据量进行适当的取舍,从而实现对DEM数据的压缩,是实现DEM数据压缩处理的一种有效方法。蔡先华等[27]提出DEM数据压缩地形描述误差(Ep)这一判别指标来实现对DEM数据压缩,该方法首先在充分考虑DEM高程采用点、地形描述以及数据压缩等误差相互影响的基础上,确定数据压缩误差限值EP0;然后对不是TIN边界的高程点产生的地形误差Ep与所给限值进行比较,剔除小于该值的高程点,从而实现DEM数据的压缩。三角网在地形起伏较大的情况下,相邻法线向量之间夹角较大,而当地形平坦时,相邻法线向量近乎平行。刘春[28]等提出一种基于TIN的DEM数据压缩方法,该方法将相邻三角形法线间的夹角作为判别依据,判别阈值步骤如下:①确定大概阈值T,采用该阈值进行TIN压缩;②计算DEM采样点高程差的方差S;③将S与压缩误差允许值进行比较,如果大于该值则适当减少阈值T,并重新计算;反之则增大阈值T并重新计算直到满足要求为止。该方法间接地顾及地形特征,并且阈值的选择是根据所给点的压缩误差指标进行迭代选择的,研究表明该方法对TIN数据压缩较为有效,但对于特殊地面模型的压缩处理仍有待于进一步研究。

结束语

卷积神经网络存在的问题范文4

    可以看出,krisch算子的运算量比较大。其次在边缘检测中边缘定位能力和噪声抑制能力方面,有的算子边缘定位能力强,有的抗噪声能力比较好:roberts算子利用局部差分算子寻找边缘,边缘定位精度较高,但容易丢失一部分边缘,同时由于没经过图像平滑计算,不能抑制噪声。该算子对具有陡峭的低噪声图像响应最好;sobel算子和prewitt算子都是对图像进行差分和滤波运算,差别只是平滑部分的权值有些差异,对噪声具有一定的抑制能力,不能完全排除检测结果中出现伪边缘。这两个算子的边缘定位比较准确和完整,但容易出现边缘多像素宽。对灰度渐变和具有噪声的图像处理的较好;krisch算子对8个方向边缘信息进行检测,因此有较好的边缘定位能力,并且对噪声有一定的抑制作用,该算子的边缘定位能力和抗噪声能力比较理想;laplacian算子是二阶微分算子,对图像中的阶跃型边缘点定位准确且具有旋转不变性即无方向性。但该算子容易丢失一部分边缘的方向信息,造成不连续的检测边缘,同时抗噪声能力比较差,比较适用于屋脊型边缘检测(将在第3节中讨论)。 2.2  最优算子     最优算子又可以分为马尔算子(log滤波算子)、坎尼(canny)边缘检测、曲面拟合法。 torre和poggio[5]提出高斯函数是接近最优的平滑函数,marr和hildreth应用gaussian函数先对图像进行平滑,然后采用拉氏算子根据二阶导数过零点来检测图像边缘,称为log算子。对于log算子数学上已经证明[6],它是按照零交叉检测阶跃边缘的最佳算子。但在实际图像当中,高斯滤波的零交叉点不一定全部是边缘点,还需要进一步确定真伪[7];坎尼把边缘检测问题转换为检测单位函数极大值问题,根据边缘检测的有效性和定位的可靠性,研究了最优边缘检测器所需的特性,推导出最优边缘检测器的数学表达式。与坎尼密切相关的还有deriche算子和沈俊算子,它们在广泛的意义下是统一的;曲面拟合的基本思想是用一个平滑的曲面与待测点周围某邻域内像素的灰度值进行拟合,然后计算此曲面的一阶或二阶导数。该方法依赖于基函数的选择,实际应用中往往采用低阶多项式。 2.3  多尺度方法     早期边缘检测的主要目的是为了处理好尺度上的检测和定位之间的矛盾,忽略了在实际图像中存在的多种干扰边缘,往往影响到边缘的正确检测和定位。     rosenfeld等[8]首先提出要把多个尺寸的算子检测到的边缘加以组合;marr倡导同时使用多个尺度不同的算子,并提出了一些启发性的组合规则。这一思想后来经witkin等发展成了尺度空间滤波理论,说明了不同尺度上的零交叉的因果性;lu jain对二维信号进行了类似的研究;yuille和poggio证明了对于任意维信号,当用高斯函数滤波时,尺度图中包含了数目最小的零交叉,并且可以由粗到细地跟踪这些零交叉。     多尺度信号处理不仅可以辨识出信号中的重要特征,而且能以不同细节程度来构造信号的描述,在高层视觉处理中有重要的作用。     其中小波变换是近年得到广泛应用的数学工具。与傅立叶变换和窗口傅立叶变换相比,小波变换是时间和频率的局域变换,因而能有效地从信号中提取信息,它通过伸缩和平移等运算功能对函数或信号进行多尺度细化分析,解决了傅立叶变换不能解决的很多困难问题,因而被誉为“数学显微镜”。信号突变点检测及由边缘点重建原始信号或图像是小波变换应用的一个很重要的方面。 从边缘检测的角度看,小波变换有以下几个优点:     (1)小波分解提供了一个数学上完备的描述;     (2)小波变换通过选取合适的滤波器,可以极大地减小或去除所提取的不同特征之间的相关性;     (3)具有“变焦”特性:在低频段可用高频分辨率和低时间分辨率;在高频段可用低频分辨率和高时间分辨率;     (4)小波变换可通过快速算法来实现。     文献[9]提出了一种基于层间相关性的小波边缘检测算法,依据的是信号主要分布在低频部分或低尺度部分,而噪声分布于高频部分或高尺度部分的特点。另外小波变换具有较强的去相关性,变换后的小波系数之间仍然存在大量的相关性质,即小波系数在不同分辨率下的对应系数之间具有较强的相关性或称层间的相关性。通过对比该方法能够较好多的防止噪声干扰,又能有效地保留图像边缘。 2.4  自适应平滑滤波方法     该方法是边缘检测的一个重要方法[10],无论是对于灰度图象处理还是距离图像和平面曲线处理都是非常有效的。它的优点是:     (1)平滑滤波的迭代运算使信号的边缘得到锐化,此时再进行边缘检测,可以得到很高的边缘定位精度;     (2)通过自适应迭代平滑,实现了将高斯平滑之后的阶跃边缘、屋顶状边缘和斜坡边缘都转化为理想的阶跃边缘,提高了图像的信噪比;     (3)经过多次迭代运算,图像按边缘分块实现自适应平滑,但不会使边缘模糊;     (4)应用自适应平滑滤波得到一种新的图像尺度空间描述。 2.5  其他方法     近年来随着模糊数学、神经网络的发展,人们不断探索将其应用于图像的边缘检测中。文献[11]和[12]依据模糊理论讨论了边缘检测算法的抗噪性和检测速度问题,并证明了模糊集合理论能较好地描述人类视觉中的模糊性和随机性;应用人工神经网络提取图像边缘成为新的研究分支,目前已提出了很多算法,具有计算简单功能强的特点,但是速度慢,稳定性差。但是神经网络边缘检测可以避免自适应确定阈值的问题,具有较好的容错性和联想功能。 2.6  边缘检测的步骤     边缘检测分为彩色图像边缘检测和灰度图像边缘检测两种,由于彩色图像有八种彩色基,在边缘检测时选用不同的彩色基将直接影响实时性、兼容性和检测效果,因此本文只限于灰度图像的边缘检测研究,其步骤如图2.1所示。

   

其中边缘定位是对边缘图像进行处理,以得到单像素宽的二值边缘图像,通常使用的技术是阈值法和零交叉法。边缘定位后往往存在一些小的边缘片断,通常是由于噪声等因素引起的,为了形成有意义的边缘需要对定位后的边缘进行链接。通常有两种算法:局部边缘链接和全局边缘链接。 3  边缘模型的分类及性能分析     本小节从边缘检测“两难”问题出发,总结了实际图像中可能出现的七种边缘类型,并分别给出了数学模型描述,最后分析比较了不同边缘类型表现出的特性及不同类型的边缘定位与平滑尺度的关系。 3.1  边缘检测的“两难”问题     首先来了解一下边缘检测的常用定义[13]:边缘检测是根据引起图像灰度变化的物理过程来描述图像中灰度变化的过程。引起图像灰度不连续性的物理过程可能是几何方面的(深度的不连续性、表面取向、颜色和纹理的不同),也可能是光学方面的(表面反射、非目标物体产生的阴影及内部倒影等)。这些景物特征混在一起会使随后的解释变得非常困难,且实际场合中图像数据往往被噪声污染。信号的数值微分的病态问题:输入信号的一个很小的变化就会引起输出信号大的变化。令 f(x)为输入信号,假设由于噪声的影响,使 f(x)发生了一个很小的变动:               式(3.1)     其中 ε<<1。对式(3.1)两边求导数则:          式(3.2)     由式(3.2)可以看到,若w足够大,即噪声为高频噪声时,会严重影响信号  f(x)的微分输出,进而影响边缘检测的结果。为了使微分正则化,则需要先对图像进行平滑。然而图像平滑会引起信息丢失,并且会使图像平面的主要结构发生移位。另外若使用的微分算子不同,则同一幅图像会产生不同的边缘,因此噪声消除与边缘定位是两个相互矛盾的部分,这就是边缘检测中的“两难”[14,15]。 3.2  边缘分类及性能分析     图像中的边缘通常分为:阶跃边缘、斜坡边缘、三角型屋脊边缘、方波型屋脊边缘、楼梯边缘、双阶跃边缘和双屋脊边缘[1]。     (1)阶跃边缘     模型为: f(x)=cl(x) ,其中 c>0为边缘幅度, 为阶跃函数。若存在噪声,可以选用大尺度的模板平滑图像,不会影响边缘的定位。     (2)斜坡边缘     理想的斜坡边缘模型为:,其中s为边缘幅度,d为边缘宽度。斜坡边缘的检测不仅跟尺度有关,还与边缘本身的宽度有关,若边缘宽度比较小,则在小的平滑尺度下也能检测到边缘;无论是检测极值点还是过零点,边缘的定位都没有随着尺度的变化而变化。因此,对于斜坡边缘若存在噪声,可以选用大尺度的模板平滑图像。而不会影响到边缘定位。     (3)三角型屋脊边缘     模型为:,其中s为边缘幅度,d为边缘宽度。对于三角型屋脊边缘若存在噪声可以选用大尺度的平滑模板,而不会影响边缘的定位。     (4)方波型屋脊边缘     方波型屋脊边缘的模型为:,其中s为边缘幅度,d为边缘宽度。对于方波型屋脊边缘检测,不仅与平滑尺度有关,还与边缘宽度有关,若存在噪声,可以选用大尺度的平滑模板,而不会影响边缘的定位。     (5)楼梯边缘     楼梯边缘模型为:,其中c1、c2、l均为常数。这种检测的特点是平滑后的楼梯边缘不能准确定位,必须对检测到的边缘位置进行移位校正。     (6)双阶跃边缘     双阶跃边缘与方波型屋脊边缘相同,不同之处为:双阶跃边缘的边缘点为x=-d/2与 x=d/2,而方波型屋脊边缘的边缘点为 x=0。双阶跃边缘的两个边缘点通过检测一阶导数的两个极值点和二阶导数的两个过零点获得。因此对于双阶跃边缘大尺度下不能准确定位,必须对检测到的边缘位置进行移位校正。     (7)双屋脊边缘     模型为:,     其中:

卷积神经网络存在的问题范文5

关键词:小波变换;多分辨率分析;谐波;电能质量

中图分类号:TM714.3 文献标识码:B

文章编号:1004373X(2008)0313402

Application ofWaveletandMulti―resolution

Theory to the OilfieldDistributionNetworkHarmonic Detection

WEN Jiabin1,LI Jinghua1,ZONG Jidong2

(1.Electric & Electronic Engineering College,Harbin University of Science Technology,Harbin,150040,China;

2.The Seventh Oil―producing Factory,Daqing Oil Field Co.Ltd.,Daqing,163000,China)

Abstract:Regarding low voltage distribution network of The Seventh Oil―producing Factory,Daqing Oil Field as the research background,the power quality of multi―points in this factory is detected.In view of the harmonic situation,the wavelet and multi―resolusion theory with favorable retractility and translation characteristic is selected,using Matlab to analyze the harmonic current,according to the harmonic reconstruction and the error account,the method of harmonic detection is proved to have very good performance.

Keywords:wavelet transformation;multi―resolution analysis;harmonic;power quality

1 引 言

目前,油田钻采系统与油气集输系统的驱动装置逐步由恒速的交流电动机传动改为可调速的电气传动系统,油田电系统中电力半导体装置日益增多,导致供配电网中谐波日益严重,这对用电设备和系统设备产生严重危害,必须对其进行研究并采取相应的措施。

本文对大庆油田有限责任公司第七采油厂葡三联合站、敖包塔联合站、葡四联合站站内低压配电网进行大量点的电能质量检测,针对近年来应用变频设备、无功补偿装置对电网及其用电设备产生的谐波影响这一问题,运用小波方法开展谐波检测技术的研究。

从国内外的现状来看,主要的谐波测量及分析方法有4种:基于傅里叶变换的谐波检测方法;基于瞬时无功功率理论的谐波检测方法;基于人工神经网络的谐波分析、检测方法;基于小波变换的谐波分析、检测方法。本文主要选用小波变换的方法对谐波电流进行检测分析。

2 小波变换与傅里叶变换

小波变换的思想来源于伸缩和平移方法,其概念是在1984年由法国地球物理学家J.MorLet正式提出[1]。小波变换作为一种新的数学工具,是传统傅里叶变换的发展,在信号处理领域中有着巨大的潜在应用前景。传统的快速傅里叶变换,是对信号在整个时间过程中变化情况的分析,所以尽管在频域内是局部的,在时域内却是全局的、非局部的。小波是一个时间函数,他的正负波动同时速降为零,其傅里叶变换也呈现为带通滤波器的频率特性,也就是说,小波在时域和频域内都是局部化的。将小波函数伸缩和平移得到的一组函数称为分析小波,他在时域和频域内也是局部化的。与窗口傅里叶变换不同的是,小波变换的时间――频率窗不是固定不变的,这也是小波变换与傅里叶变换相比最大的优势。因此小波变换非常适合于提取电力信号中的暂态信号。

3 小波多分辨率分析法

采用正交小波变换时,任意信号X(t)∈L2(R)可采用多分辨率分解公式表示为:

式中,φj,k=2-J/2φ(2-Jt-k)为尺度函数;Ψj,k=2-J/2为小波函数;{φj,k(t)}为尺度空间Vj的标准正交基;{Ψj,k(t)}为小波空间Wj的标准正交基。Vj-1=VjWj,其中Wj为Vj在Vj-1空间的正交补空间。J为尺度j的某个特定值,分解系数aj(k)和dj(k)分别称为离散平滑近似信号和离散细节信号。其递推公式如下:

式中,h0和h1分别是低通数字滤波器和高通数字滤波器的单位取样响应。取h1(k)=(-1)kh0(k),构成正交镜像对称滤波器组。aj+1(k)和dj+1(k)分别是h0(-k)和h1(-k)卷积后再抽取得到的信号序列。多分辨率分解只是对低频部分进一步分解,而高频部分则不予以考虑。所以小波多分辨率信号分解可用多抽样率子带滤波器组来实现,在小波分解中,设采样频率为fs,则 x(n)占据的频带为0~fs/2 , 经过J级分解,得到d1(k),d2(k),…dj(k),aj(k)这J+1个号序列,所占据的频带依次为fs/4~fs/8,fs/8~fs/16,…,fs/2j+1~fs/2j,0~fs/2j+1,由此可以将所需的频段提取出来,这就是用滤波器组实现小波多分辨率分析的原理[2]。

图1 三层分辨率分解树结构图

Daubechies小波具备刻画信号的全局和局部奇异性变化的特点,尤其是对局部奇异变化非常敏感。由前边的分析可知多分辨率分析的实质是不同尺度下的带通滤波器和低通滤波器的设计。

4 检测实例分析

本文以大庆油田有限责任公司第七采油厂的三联输油岗2号外输泵进变频50 Hz电流为例进行分析,测量仪器选用日本日置电能质量分析仪,图2为根据测量数据绘制出来的电流波形和基波波形。

根据所测的电流绘制的电流频谱图见图3,测量数据表明在接入变频器情况下电流谐波较为严重,以5次、7次为主且已超出GB/T14549―93《电能质量公用电网谐波》的标准。

在进行小波变换时,根据Daubechies小波的变换原理[3] ,选用db24小波进行4次分解,采样频率为3 kHz。经小波分解,得到不同频带分量,具体的各高频、低频部分如图4所示。

图2 测得的原始电流及其基波电流

图3 2号外输泵谐波电流频谱分析

图4 小波分解后的低频、高频部分

图4为经过db24小波分解后的高频及低频部分,其中,a(4)~a(1),b(4)~b(1)的频带如表1所列:

其低频系数为a(4),他所占据的频带为0~f/25,原始信号中占0~93.75 Hz范围内的仅含基波,所以由a(4)重构即可得基波分量。

将提取基波波形放大(见图5),与原基波波形比较,可以看到,低频的第四层将正弦信号中的最低频率组成清晰地分离出来了。

图5 提取的基波放大波形

图6为经dbN小波重构后的谐波波形及重构误差,由图6可知,重构后的波形与原波形误差很小,仅为9.671 0e-8,重构效果较好。

图6 经dbN小波重构后的波形及误差

由于小波分析是基于多分辨率分析的信号处理理论,因而在上述谐波检测仿真中,不同的尺度具有不同的时间和频率分辨率,因而小波分解能将原始信号的不同频率成分分开,所以谐波可以检测出来。

5 结 语

本文对大庆油田有限责任公司第七采油厂变频、无功补偿装置的谐波电流进行了检测分析,运用具有良好的伸缩、平移特性的小波分析方法,对谐波进行了仿真研究。分析和仿真结果表明,小波多分辨分析法可以有效地检测电力系统的电压和电流中的谐波含量并分解出基波信号和谐波信号,故其可以应用于谐波的检测和补偿。

参考文献

[1]胡昌华,张军波.基于Matlab的系统分析与设计――小波分析[M].西安:西安电子科技大学出版社,2001.

[2]梁玉娟,李群湛,赵丽平.基于小波分析的电力系统谐波分析[J].电力系统及其自动化学报,2006,15(6):67―70.