卷积神经网络的方法范例6篇

前言:中文期刊网精心挑选了卷积神经网络的方法范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

卷积神经网络的方法

卷积神经网络的方法范文1

目前,卷积神经网络(Convolutional Neural Networks,CNN)已成为图像、文本、语音识别等领域的研究热点之一。20世纪60年代,Hubel和Wiesel在研究猫脑皮层中发现了用于局部敏感和方向选择的神经元结构,卷积神经网络就是在此生物学的基础上发展而来的。

二、卷积神经网络的发展历程

按照时间顺序,可以将卷积神经网络的发展可以分为三个阶段:初步探索阶段;全面兴起阶段;跃进试发展阶段。

2.1初步探索阶段

这一阶段只是在初步探索卷积神经网络的结构。197开始,福岛邦彦成功开发出了一种浅层自组织神经网络认知机[1]。随后,更多的科研工作者对该网络进行了改进。认知机及其变种并不是真正意义上的深度学习模型,因为的网络层数少,并不能进行深度学习特征。

2.2全面兴起阶段

这一阶段以LeNet-5的出现为开始。1Lecun等[2]提出的LeNet-5采用了基于梯度的反向传播算法对网络进行有监督的训练,LeNet-5在手写字符识别领域的成功应用引起了学术界对于卷积神经网络的关注。同一时期,卷积神经网络在语音识别、物体检测、人脸识别等方面的研究也逐渐开展起来。

2.3跃进试发展阶段

这一阶段以AlexNet的出现为起点,它的出现是卷积神经网络的一个历史性的时刻,在此后卷积神经网络在AlexNet的基础上衍生出许多变种。2012年,Krizhevsky等[3]提出了AlexNet,使得卷积神经网络成为了学术界的焦点。AlexNet之后,不断有新的卷积神经网络模型被提出,。并且,卷积神经网络不断与一些传统算法相融合,加上迁移学习方法的引入,使得卷积神经网络的应用领域获得了快速的扩展。

三、卷积神经网络的结构

CNN基础的结构是卷积层,池化层,最后为全连接层,所有的卷积神经网络模型都是在此结构上搭建而来。

3.1卷积层

图像经过卷积层及提取出其输入特征。卷积层的运算由特征提取阶段和特征映射阶段构成。

(1)特征提取阶段。在特征提取阶段,每个神经元的输入与前一层的局部接受域相连,使用卷积滤波器做卷积操作,提取出该局部的特征。设一个n*n的局部区域内第i个像素的输入值是Xi(i=1,2,..n*n),与n*n大小滤波器相对应的值为wi,这个滤波器的有个固定的偏置量为b,这个区域最后经过卷积操作变成了一个值y,卷积操作如公式(3-1)

全连接层一般放在最后,经过全连接层后得到特征向量,可将这个特征向量用于分类或者检索。全连接层其实就是一个卷积层,只不过最后得到的是一个向量。当选择的卷积核大小与输入的大小一样大时,经过征提取和特征映射阶段后。输出大小为1*1的区域。这样不同的卷积核卷积进过此层得到的是向量,1*1的区域值即是向量的一个值。

四、结语

卷积神经网络经过这些年的发展,对图像、语言、文本等二S数据的识别可以达到90%,远远高于传统的浅层特征学习的方法。目前,有学者将此方法迁移到了三维模型检索领域,并且取得了不错的结果。未来的卷积神经网络这一深层学习结构一定大有可为。

参 考 文 献

[1]K.福岛(Fukushima).Neocognitron:一个自组织的神经网络模型为了一个不受位置平移影响的模式识别的机能.生物控制论,36,193-202,1980

卷积神经网络的方法范文2

P键词:深度学习;文本分类;多类型池化

中图分类号:TP393 文献标识码:A 文章编号:1009-3044(2016)35-0187-03

1 引言

为了进行分类,我们建立句子模型来分析和表示句子的语义内容。句子模型问题的关键在于一定程度上的自然语言理解。很多类型的任务需要采用句子模型,包括情感分析、语义检测、对话分析、机器翻译等。既然单独的句子很少或基本不被采用,所以我们必须采用特征的方式来表述一个句子,而特征依赖于单词和词组。句子模型的核心是特征方程,特征方程定义了依据单词和词组提取特征的过程。求最大值的池化操作是一种非线性的二次抽样方法,它返回集合元素中的最大值。

各种类型的模型已经被提出。基于成分构成的方法被应用于向量表示,通过统计同时单词同时出现的概率来获取更长的词组。在有些情况下,通过对词向量进行代数操作生成句子层面的向量,从而构成成分。在另外一些情况下,特征方程和特定的句法或者单词类型相关。

一种核心模型是建立在神经网络的基础上。这种模型包含了单词包或者词组包的模型、更结构化的递归神经网络、延迟的基于卷积操作的神经网络。神经网络模型有很多优点。通过训练可以获得通用的词向量来预测一段上下文中单词是否会出现。通过有监督的训练,神经网络能够根据具体的任务进行良好的调节。除了作为强大的分类器,神经网络模型还能够被用来生成句子[6]。

我们定义了一种卷积神经网络结构并将它应用到句子语义模型中。这个网络可以处理长度不同的句子。网络中的一维卷积层和多类型动态池化层是相互交错的。多类型动态池化是一种对求最大值池化操作的范化,它返回集合中元素的最大值、最小值、平均值的集合[1]。操作的范化体现在两个方面。第一,多类型池化操作对一个线性的值序列进行操作,返回序列中的多个数值而不是单个最大的数值。第二,池化参数k可以被动态的选择,通过网络的其他参数来动态调整k的值。

卷积层的一维卷积窗口对句子特征矩阵的每一行进行卷积操作。相同的n-gram的卷积窗口在句子的每个位置进行卷积操作,这样可以根据位置独立地提取特征。一个卷积层后面是一个多类型动态池化层和一个非线性的特征映射表。和卷积神经网络在图像识别中的使用一样,为丰富第一层的表述,通过不同的卷积窗口应用到句子上计算出多重特征映射表。后续的层也通过下一层的卷积窗口的卷积操作计算出多重特征映射表。最终的结构我们叫它多类型池化的卷积神经网络。

在输入句子上的多层的卷积和动态池化操作产生一张结构化的特征图。高层的卷积窗口可以获取非连续的相距较远的词组的句法和语义关系。特征图会引导出一种层级结构,某种程度上类似于句法解析树。这种结构不仅仅是和句法相关,它是神经网络内部所有的。

我们将此网络在四种场景下进行了尝试。前两组实验是电影评论的情感预测[2],此网络在二分和多种类别的分类实验中的表现都优于其他方法。第三组实验在TREC数据集(Li and Roth, 2002)上的6类问题的分类问题。此网络的正确率和目前最好的方法的正确率持平。第四组实验是推特的情感预测,此网络将160万条微博根据表情符号自动打标来进行训练。在手工打标的测试数据集上,此网络将预测错误率降低了25%。

本文的概要如下。第二段主要阐述MCNN的背景知识,包括核心概念和相关的神将网络句子模型。第三章定义了相关的操作符和网络的层。第四章阐述生成的特征图的处理和网络的其他特点。第五章讨论实验和回顾特征学习探测器。

2 背景

MCNN的每一层的卷积操作之后都伴随一个池化操作。我们先回顾一下相关的神经网络句子模型。然后我们来阐述一维的卷积操作和经典的延迟的神经网络(TDNN)[3]。在加了一个最大池化层到网络后,TDNN也是一种句子模型[5]。

2.1 相关的神经网络句子模型

已经有很多的神经网络句子模型被描述过了。 一种比较通用基本的模型是神经网络词包模型(NBoW)。其中包含了一个映射层将单词、词组等映射到更高的维度;然后会有一个比如求和之类的操作。结果向量通过一个或多个全连接层来进行分类。

有以外部的解析树为基础的递归神经网络,还有在此基础上更进一步的RNN网络。

最后一种是以卷积操作和TDNN结构为基础的神经网络句子模型。相关的概念是动态卷积神经网络的基础,我们接下来介绍的就是它。

2.2 卷积

一维卷积操作便是将权重向量[m∈Rm]和输入向量[s∈Rs]进行操作。向量m是卷积操作的过滤器。具体来说,我们将s作为输入句子,[si∈R]是与句子中第i个单词相关联的单独的特征值。一维卷积操作背后的思想是通过向量m和句子中的每个m-gram的点积来获得另一个序列c:

[ci=mTsi-m+1:i (1)]

根据下标i的范围的不同,等式1产生两种不同类型的卷积。窄类型的卷积中s >= m并且会生成序列[c∈Rs-m+1],下标i的范围从m到s。宽类型的卷积对m和s的大小没有限制,生成的序列[c∈Rs+m-1],下标i的范围从1到s+m-1。超出下标范围的si窄(i < 1或者i > s)置为0。窄类型的卷积结果是宽类型的卷积结果的子序列。

宽类型的卷积相比于窄类型的卷积有一些优点。宽类型的卷积可以确保所有的权重应用到整个句子,包括句子收尾的单词。当m被设为一个相对较大的值时,如8或者10,这一点尤其重要。另外,宽类型的卷积可以确保过滤器m应用于输入句子s始终会生成一个有效的非空结果集c,与m的宽度和s句子的长度无关。接下来我们来阐述TDNN的卷积层。

4 验与结果分析

我们对此网络进行了4组不同的实验。

4.1 电影评论的情感预测

前两组实验是关于电影评论的情感预测的,数据集是Stanford Sentiment Treebank.实验输出的结果在一个实验中是分为2类,在另一种试验中分为5类:消极、略微消极、中性、略微积极、积极。而实验总的词汇量为15448。

表示的是电影评论数据集情感预测准确率。NB和BINB分别表示一元和二元朴素贝叶斯分类器。SVM是一元和二元特征的支撑向量机。在三种神经网络模型里――Max-TDNN、NBoW和DCNN――模型中的词向量是随机初始化的;它们的维度d被设为48。Max-TDNN在第一层中滤波窗口的大小为6。卷积层后面紧跟一个非线性化层、最大池化层和softmax分类层。NBoW会将词向量相加,并对词向量进行非线性化操作,最后用softmax进行分类。2类分类的MCNN的参数如下,卷积层之后折叠层、动态多类型池化层、非线性化层。滤波窗口的大小分别7和5。最顶层动态多类型池化层的k的值为4。网络的最顶层是softmax层。5类分类的MCNN有相同的结构,但是滤波窗口的大小分别为10和7,k的值为5。

我们可以看到MCNN的分类效果远超其他算法。NBoW的分类效果和非神经网络算法差不多。而Max-TDNN的效果要比NBoW的差,可能是因为过度池化的原因,丢弃了句子太多重要的特征。除了RecNN需要依赖外部的解析树来生成结构化特征,其他模型都不需要依赖外部资源。

4.2 问题分类

问题分类在问答系统中应用非常广泛,一个问题可能属于一个或者多个问题类别。所用的数据集是TREC数据集,TREC数据集包含6种不同类别的问题,比如一个问题是否关于地点、人或者数字信息。训练集包含5452个打标的问题和500个测试集。

4.3 Twitter情感预测

在我们最后的实验里,我们用tweets的大数据集进行训练,我们根据tweet中出现的表情符号自动地给文本进行打标签,积极的或是消极的。整个数据集包含160万条根据表情符号打标的tweet以及400条手工标注的测试集。整个数据集包含76643个单词。MCNN的结构和4.1节中结构相同。随机初始化词向量且维度d设为60。

我们发现MCNN的分类效果和其他非神经网络的算法相比有极大的提高。MCNN和NBoW在分类效果上的差别显示了MCNN有极强的特征提取能力。

5 结语

在本文中我们阐述了一种动态的卷积神经网络,它使用动态的多类型池化操作作为非线性化取样函数。此网络在问题分类和情感预测方面取得了很好的效果,并且不依赖于外部特征如解析树或其他外部资源。

参考文献

[1]. Yann LeCun, Le ?on Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, November.

[2]. Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Y. Ng, and Christopher Potts. 2013b. Recursive deep mod- els for semantic compositionality over a sentiment treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Process- ing, pages 1631C1642, Stroudsburg, PA, October. Association for Computational Linguistics.

[3]. Geoffrey E. Hinton. 1989. Connectionist learning procedures. Artif. Intell., 40(1-3):185C234.

[4]. Alexander Waibel, Toshiyuki Hanazawa, Geofrey Hinton, Kiyohiro Shikano, and Kevin J. Lang. 1990. Readings in speech recognition. chapter Phoneme Recognition Using Time-delay Neural Networks, pages 393C404. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

卷积神经网络的方法范文3

关键词:卷积神经网络;语言模型;分析

1 卷积神经网络语言模型

CNN语言模型基本结构包括输入层、卷积层、池化层及后续的分类层。输入层是表示语言的矩阵,该矩阵可以是通过Google word2vec或GloVe预训练得到的词嵌入表示,也可以是从原始数据重新训练的语言的向量表示。输入层之后是通过线性滤波器对输入矩阵进行卷积操作的卷积层。在NLP问题中,输入矩阵总是带有固定顺序的结构,因为矩阵的每一行都表示离散的符号,例如单词或者词组等。因此,使用等宽的滤波器是非常合理的设置。在这种设置下,仅需要考虑滤波器的高度既可以实现不同尺寸的滤波器做卷积操作。由此可知,在处理NLP问题时,卷积神经网络的滤波器尺寸一般都是指滤波器的高度。

然后,将卷积层输出的特征映射输入池化层,通过池化函数为特征映射进行降维并且减少了待估计参数规模。一般的,CNN池化操作采用1-max池化函数。该函数能够将输入的特征映射统一生成维度相同的新映射。通过池化操作,可以将卷积层生成的特征连接成更抽象的高级特征,所得到的高级特征尺寸与输入的句子不再存在直接关系。

最后,将得到的高级特征输入softmax分类层进行分类操作。在softmax层,可以选择应用dropout策略作为正则化手段,该方法是随机地将向量中的一些值设置为0。另外还可以选择增加l2范数约束,l2范数约束是指当它超过该值时,将向量的l2范数缩放到指定阈值。在训练期间,要最小化的目标是分类的交叉熵损失,要估计的参数包括滤波器的权重向量,激活函数中的偏置项以及softmax函数的权重向量。

2 卷积神经网络语言模型应用分析

CNN语言模型已经广泛应用于诸如文本分类,关系挖掘以及个性化推荐等NLP任务,下面将对这些应用进行具体的介绍与分析。

2.1 CNN在文本分类中的应用分析

kim提出了利用CNN进行句子分类的方法。该方法涉及了较小规模的参数,并采用静态通道的CNN实现了效果很优异的句子分类方法。通过对输入向量的调整,进一步提高了性能实现了包括情感极性分析以及话题分类的任务。在其基础上为输入的词嵌入设计了两种通道,一种是静态通道,另一种是动态通道。在卷积层每一个滤波器都通过静态与动态两种通道进行计算,然后将计算结果进行拼接。在池化层采用dropout正则化策略,并对权值向量进行l2约束。最后将该算法应用于MR、SST-1与SST-2、Subj、TREC、CR以及MPQA等数据集。MR数据集为电影评论数据集,内容为一句话的电影评论,其分类包括积极情感极性与消极情感极性两类。SST-1与SST-2数据集为斯坦福情感树库是MR数据集的扩展,但该数据集已经划分好了训练集、验证集及测试集并给出了细粒度的标记,标记包括非常积极、积极、中性、消极、非常消极等情感极性。Subj数据集为主观性数据集,其分类任务是将句子分为主观句与客观句两类。TREC数据集为问题数据集,其分类任务是将所有问题分为六类,例如关于数字、人物或位置等信息的问题。CR数据集为评论数据集,包括客户对MP3、照相机等数码产品的评论,其分类任务是将其分为积极评价与消极评价两类。MPQA数据集是意见极性检测任务数据集。通过实验证明,该方法在这几个典型数据集上都能取得非常优异的效果。

2.2 CNN在关系挖掘中的应用分析

Shen等人提出了一种新的潜在语义模型,以词序列作为输入,利用卷积-池化结构为搜索查询和Web文档学习低维语义向量表示。为了在网络查询或网络文本中捕捉上下文结构,通过输入单词序列上下文时间窗口中的每个单词来获取词汇级的n-gram语法特征,将这些特征聚合成句子级特征向量。最后,应用非线性变换来提取高级语义信息以生成用于全文字符串的连续向量表示。该模型的不同之处在于,输入层与卷积层之间加入了word-n-gram层与letter-trigram层,它们能够将输入的词序列转变为letter-trigram表示向量。在卷积层通过上下文特征窗口发现相邻单词的位置特征,并变现为n-gram形式。然后通过max池化将word-n-gram特征合并为句子级的高级特征。在池化层之后增加了语义层来提取更高级的语义表示向量。

2.3 CNN在个性化推荐中的应用分析

Weston等人提出了一种能够利用标签(hashtag)有监督的学习网络帖子短文本特征表示的卷e嵌入模型(Convolutional Embedding Model)。该方法利用提出的CNN模型在55亿词的大数据文本上通过预标注的100,000标签进行训练。该方法除了标签预测任务本身能取得好的效果外,学习到的特征对于其它的文本表示任务也能起到非常有效的作用。该模型与其它的词嵌入模型类似,输入层为表示文本的矩阵,但是,在用查找表表示输入文本的同时将标签也使用查找表来表示。对于给定的文档利用10万条最频繁出现的标签通过评分函数对任何给定的主题标签进行排序。

其中,econv(w)表示CNN的输入文档,elt(t)是候选标签t的词嵌入表示。因此,通过对分数f(w,t)进行排序可以获取所有候选主题标签中排序第一的话题进行推荐。实验数据集采用了两个大规模语料集,均来自流行的社交网络文本并带有标签。第一个数据集称作people数据集,包括搜集自社交网络的2亿1000万条文本,共含有55亿单词。第二个数据集被称作pages,包括3530万条社交网络文本,共含有16亿单词,内容包括企业、名人、品牌或产品。

3 结束语

卷积神经网络应用于语言模型已经取得了非常大的发展,对于自然语言处理中的各项任务均取得了优异的结果。本文通过对几项典型工作的分析,探讨了不同卷积神经网络模型结构在不同任务中的表现。通过综合分析可以得出以下结论。首先,CNN的输入采用原始数据训练的向量表示一般效果会优于预训练的词嵌入表示;其次,在卷积层滤波器的尺寸一般采用宽度与输入矩阵宽度相等的设置;最后,为了优化结果可以采用dropout正则化处理。

卷积神经网络的方法范文4

[关键词]卷积网络,mnist,深度学习;

中图分类号:TP391 文献标识码:A 文章编号:1009-914X(2017)02-0168-01

1 概述

几年来,深度卷积网络技术飞速发展,在图像,语音,自然语言处理等多个人工智能领域纷纷取得领先。深度卷积网络作为深度神经网络的一种,其具有独特的类似于人眼局部感受野的卷积核,以及类似于生物神经的层次级联结构。由于权值共享的特性,网络的参数大大减少,同时降低了对训练数据过拟合的风险,具有比其他种类的深度网络更加易于训练的好处。

2 深度卷积网络

2.1 深度卷积层的结构

一个典型的深度卷积网络结构如图2-1所示。

深度卷积网络的第一层是输入层,接下来是若干个卷基层和下采样层,最后是一个分类器,如softmax分类器,由分类器输出相应的分类结果。通常,每一个卷基层后面都紧跟一个下采样层。在卷基层,利用局部连接和权值共享可以减少网络的训练参数,降低计算的复杂性。通过卷积运算,得到的卷积结果通过sigmoid等激活函数的输出得到这一层的特征图,然后作为下一层(下采样层)的输入。在下采样层。将前一层对应的特征图中相邻若干个特征通过池化操作合并成一个特征。输入的图像数据可以直接传送到第一个卷积层,进行逐层特征学习,最后利用有标签样本数据输入到softmax分类器,通过后向反馈微调整个网络的参数。

2.2 深度卷积网络的学习算法

2.2.1 卷积层的学习

卷积层是利用局部连接和权值共享,减少网络的自由参数个数,降低网络参数选取复杂度。在每一个卷积层中,用一个可学习的卷积核与上一层若干个特征图进行卷积,再通过一个激活函数f,如sigmoid利用式2-1就可以得到相应的输入特征。

这里l表示层数,k是卷积核,*表示二维卷积,表示偏置,是输入特征图集合。

2.2.2 下采样层的学习

下采样层利用图像局部相关性原理,对图像进行子抽样,在减少数据处理量的同时保留有用信息。这里通常是对前一层对应的特征图中的向量特征进行池化操作。池化分为平均池化和最大池化等,池化后特征图数量不变,但特征图变小,输出的特征可用式2-2计算。

其中对应权值,b表示相应偏置,dowm表示下采样函数。

深度卷积网络,输入端直接输入图像像素,采用由前向后的逐层学习方式,计算损失函数,再通过bp算法对整个训练参数进行调整。

3 深度学习中常用方法

3.1 线性校正单元

线性校正单元(ReLU)是当前最普遍使用的非线性激活函数,其函数形式为f(x)=max(x,0)。在过去神经网络通常使用Tanh或Sigmoid函数作为激活函数。研究表明,生理神经元编码可能是以稀疏分布的形式表示,因为神经元的活动电位和突出后效应消耗了绝大部分能量,同时能激活的神经元数量预测在1%至4%之间,所以大部分神经元处在静息状态。尽管ReLU非线性,并且在零点处不可微分,但是它可以生成真正的零来进行稀疏表示,所以对生理神经元激活的拟合更好。实验表明,ReLU作为激活函数,在网络中学习的更快。

3.2 Dropoup

在网络的训练过程中,过拟合是个常见的问题,尤其是在训练大规模网络的时候,Dropout 是处理这个问题的一种方法。Dropout 是指在训练的时候,以随机概率抛弃神经元的连接,进而增加网络的健壮性。若在训练中使用了 Dropout,则会导致网络连接数变少,所以测试的时候需要通过对该层的所有权值等比例缩小,以平均近似训练时的网络。神经元与Dropout 随机挑选的单元进行训练,会使得每个单元不依赖于特定单元从而变得更加健壮,进而产生有用的特征信息。

4 仿真实验

本文采用matlab仿真环境,网络采用五层结构,前两层为卷积层,卷积核分别为3和5。中间两层为全连接,最后一层是softmax分类器。实验结果如图4-1所示。结果可以看到,错误率大约为0.48%左右,此网络拥有很高的识别率。

参考文献

[1] 段宝彬,韩立新. 改进的深度卷积网络及在碎纸片拼接中的应用[J].计算机工程与应用,2014,50(9):176-181.

[2] 郑昌艳,梅卫,王刚. 基于深度卷积神经网络的蛇形机动航迹图像识别[J].火力与指挥控制,2016.05.

[3] 张宏毅. 基于深度卷e网络的同款商品图像检索研究[J].图形图像,2016.04.

[4] 刘畅. MRI脑影像的深度卷积网络分割和三维可视化[D].

[5] Glorot X, Bordes A, Bengio Y.Deep sparse rectifier neural networks;International Conferenc e on Artificial Intelligence and Statistics[C], 2011.

[6] Lennie P.The cost of cortical computation [J].Current biology,2003,13(6):493-497.

卷积神经网络的方法范文5

Abstract:the mechanical transmission system is widely used in national defense, aerospace, production and other fields of industry. Among them, the gear transmission system is the most frequently used mechanical transmission mechanism. However, because of long time of mechanical work, gear wear and tear parts easily happened, and lead to the occurrence of a variety of mechanical failure. In this paper, the author analyzes the gear transmission process, the system fault diagnosis methods and solutions.

关键词:机械传动系统;故障诊断及解决

Keywords: mechanical transmission system; Troubleshooting and solutions

1. 引言

机械传动系统广泛运用于国防、航天航空、生产等各个领域及行业中,因此,确保其安全性和可靠性具有非常重要的意义。齿轮传动系统,作为当今世界上运用频率最高的机械传动系统之一,对其故障的早期、及时诊断和解决,不仅有利于经济合理地安排设备维修的时间,更能有效避免重大人身或设备伤亡事故的发生。

2. 齿轮传动系统故障的诊断方法

2.1 常见齿轮传动系统故障

根据经验总结,常见的齿轮传动故障一般可分为两种:一种是分布在一个齿轮的各个轮齿上的分布式故障;另一种则是只集中于一个齿轮的某一个或者某几个轮齿上的局部故障。以下就具体的系统故障做诊断方法分析。

2.2 齿轮故障的诊断方法

2.2.1 小波分析方法

小波变换是一种多分辨率的时频分析方法。目前,齿轮传动故障分析中使用最广泛的小波分析方法是二进离散小波变换法。而随着小波分析技术的不断发展,和计算机容量、运算能力的飞速提高,连续小波变换也开始逐步应用于齿轮传动故障的诊断分析。而且,与二进离散小波变换相比,连续小波具有时间和尺度网格划分更细致、小波基无需正交和具有“时(移)不变”特性等多方面优势,更适合机械动态信号的检测和故障诊断。

2.2.2 神经网络分析方法

神经网络,在充分学习经验样本的基础上,将知识转换成为神经网络的权值和阈值,并将其存储在整个神经网络中。虽然神经网络模型可以映射出故障征兆的特征空间和模式空间,但是它不能解释故障诊断的技术内容和实质,因此又相当于知识表达的“黑箱结构”。人工神经元网络,是基于对人大脑中神经元结构特性的模仿,而建立起来的一种简单的非线性动力学互联网络。人工神经元网络的优点很多,例如:具有大规模并行处理能力、适应性学习和处理复杂多模式。BP网络、Hopfield网络和BAM网络是齿轮传动系统故障诊断领域常用的3种神经网络。其中,BP网络可以看作是一个静态的系统,具有模式分类能力。

2.2.3 独立变量分解法

之所以使用独立变量分别是存在两方面原因的。一方面,由于齿轮箱体表面测量到的振动信号是齿轮传动系统的振源信号与系统结构的脉冲响应函数的卷积,直接对齿轮传动的振源信号进行故障诊断非常困难;另一方面,独立分量分析法(ICA)是具有盲源分离和盲反卷积功能的新型多变量数据统计方法。因此,独立分量分析法在齿轮传动系统故障的诊断中具有非常重要的作用。根据ICA盲源分离原理进行齿轮传动故障诊断的方法主要可分为3类:①振动信号的盲源分离;②振动信号的单向分解;③利用部分已知信息进行盲源分离。ICA反卷积运算方法也是多种多样,例如:窄带信号卷积模型法。

3. 齿轮故障的解决方法

3.1 正确安装和使用齿轮传动系统,是预防系统故障发生的重要环节

只有严格遵守相应的安装程序和操作技能要求,对齿轮传动系统进行正确的安装和使用,才能确保机械设备的正常运行。首先,要注意齿轮安装的精度要求。齿轮安置精度的肯定,要在连系传动齿轮的承载本领和使用寿命的基础上举行肯定。其次,不管是新安置、改换齿轮,仍是检验安置齿轮,都应该严格依照技术标准请求执行。最后,为了防止过度损坏齿轮的轴承或出现断轮,安装时切忌用铁锥敲打。

3.2 正确使用和管理剂,是延长机械传动齿轮使用寿命,减少故障发生的关键环节

剂的正确使用和管理,对避免齿轮传动系统故障的发生,延长其使用寿命具有至关重要的作用。一方面,为了防止齿轮的加速老化磨损和使用寿命的不正常缩短,应该结合齿轮的运转情况、工作条件和环境等因素,正确使用剂。首先要科学记录传动齿轮的工作情况、每个部位使用的剂型号、使用时间等。然后根据出厂标准制定维修计划,并结合实际工作环境和季节的变化,及时、适当地更换和加装剂,保证机械传动齿轮的正常工作。另一方面,还应该严格以科学的技术标准为指导,对剂的选择、使用和更换过程进行严格把关。

3.3 完善生产技术和管理,对避免机械传动齿轮故障也有重要意义

虽然机械传动齿轮只是一个生产部件,但它与机械的轴和轴承都是相互联系、相互作用的,每个部件的精度对生产都有重要影响作用。因此,必须严格按照出厂标准,对每一个部件进行安装调试,以保证传动齿轮和相关设备的精度,从而确保生产。日常生产管理过程中,也要在严格按照技术要求进行的基础上,对其进行综合的科学化管理,避免超负荷、故障生产。

4. 结论

齿轮传动系统在国防、农业、工业和生产等领域的机械设备中都有广泛的运用。因此,及时、早期的诊断和解决齿轮传动系统中的故障,确保其安全性和可靠性具有非常重要的意义。首先,本文以小波分析方法、神经网络分析方法和独立变量分解法为例,详细分析了齿轮故障的的诊断方法,并对故障的解决提出了3点建议:①正确安装和使用齿轮传动系统;②正确使用和管理剂;③完善生产技术和管理。

参考文献:

[1]李涛.探析机械传动系统关键零部件故障预测技术[J].中小企业管理与科技,2014(8).

[2]闫慧.关于采煤机械传动齿轮失效问题的探讨[J].科技创新与应用,2011(19).

卷积神经网络的方法范文6

关键词:人机大战;人工智能;发展前景

中图分类号:TP391 文献标识码:A

0.引言

2016年3月15日,备受瞩目的“人机大战”终于落下帷幕,最终Google公司开发的“AlphaGo”以4∶1战胜了韩国九段棋手李世h。毫无疑问,这是人工智能历史上一个具有里程碑式的大事件。大家一致认为,人工智能已经上升到了一个新的高度。

这次胜利与1997年IBM公司的“深蓝”战胜国际象棋世界冠军卡斯帕罗不同。主要表现在两个方面:

(1)AlphaGo的胜利并非仅仅依赖强悍的计算能力和庞大的棋谱数据库取胜,而是AlphaGo已经拥有了深度学习的能力,能够学习已经对弈过的棋盘,并在练习和实战中不断学习和积累经验。

(2)围棋比国际象棋更加复杂,围棋棋盘有361个点,其分支因子无穷无尽,19×19格围棋的合法棋局数的所有可能性是幂为171的指数,这样的计算量相当巨大。英国围棋联盟裁判托比表示:“围棋是世界上最为复杂的智力游戏,它简单的规则加深了棋局的复杂性”。因此,进入围棋领域一直被认为是目前人工智能的最大挑战。

简而言之,AlphaGo取得胜利的一个很重要的方面就是它拥有强大的“学习”能力。深度学习是源于人工神经网络的研究,得益于大数据和互联网技术。本文就从人工智能的发展历程与现状入手,在此基础上分析了人工智能的未来发展前景。

1.人工智能的发展历程

AlphaGo的胜利表明,人工智能发展到今天,已经取得了很多卓越的成果。但是,其发展不是一帆风顺的,人工智能是一个不断进步,并且至今仍在取得不断突破的学科。回顾人工智能的发展历程,可大致分为孕育、形成、暗淡、知识应用和集成发展五大时期。

孕育期:1956年以前,数学、逻辑、计算机等理论和技术方面的研究为人工智能的出现奠定了基础。德国数学家和哲学家莱布尼茨把形式逻辑符号化,奠定了数理逻辑的基础。英国数学家图灵在1936年创立了自动机理论(亦称图灵机),1950年在其著作《计算机与智能》中首次提出“机器也能思维”,被誉为“人工智能之父”。总之,这些人为人工智能的孕育和产生做出了巨大的贡献。

形成期:1956年夏季,在美国达特茅斯大学举办了长达2个多月的研讨会,热烈地讨论用机器模拟人类智能的问题。该次会议首次使用了“人工智能”这一术语。这是人类历史上第一次人工智能研讨会,标志着人工智能学科的诞生。其后的十几年是人工智能的黄金时期。在接下来的几年中,在众多科学家的努力下,人工智能取得了瞩目的突破,也在当时形成了广泛的乐观思潮。

暗淡期:20世纪70年代初,即使最杰出的AI程序也只能解决问题中最简单的部分,发展遇到瓶颈也就是说所有的AI程序都只是“玩具”,无法解决更为复杂的问题。随着AI遭遇批评,对AI提供资助的机构也逐渐停止了部分AI的资助。资金上的困难使得AI的研究方向缩窄,缺少了以往的自由探索。

知识应用期:在80年代,“专家系统”(Expect System)成为了人工智能中一个非常主流的分支。“专家系统”是一种程序,为计算机提供特定领域的专门知识和经验,计算机就能够依据一组从专门知识中推演出的逻辑规则在某一特定领域回答或解决问题。不同领域的专家系统基本都是由知识库、数据库、推理机、解释机制、知识获取等部分组成。

集成发展期:得益于互联网的蓬勃发展、计算机性能的突飞猛进、分布式系统的广泛应用以及人工智能多分支的协同发展,人工智能在这一阶段飞速发展。尤其是随着深度学习和人工神经网络研究的不断深入,人工智能在近几十年中取得了长足的进步,取得了令人瞩目的成就。

人工智能发展到今天,出现了很多令人瞩目的研究成果。AlphaGo的胜利就是基于这些研究成果的一个里程碑。当前人工智能的研究热点主要集中在自然语言处理、机器学习、人工神经网络等领域。

2.人工智能l展现状与前景

人工智能当前有很多重要的研究领域和分支。目前,越来越多的AI项目依赖于分布式系统,而当前研究的普遍热点则集中于自然语言处理、机器学习和人工神经网络等领域。

自然语言处理:自然语言处理(Natural Language Processing,简称NLP),是语言学与人工智能的交叉学科,其主要功能就是实现让机器明白人类的语言,这需要将人类的自然语言转化为计算机能够处理的机器语言。

自然语言处理主要包括词法分析、句法分析和语义分析三大部分。词法分析的核心就是分词处理,即单词的边界处理。句法分析就是对自然语言中句子的结构、语法进行分析如辨别疑问句和感叹句等。而语义分析则注重情感分析和整个段落的上下文分析,辨别一些字词在不同的上下文定的语义和情感态度。

当前自然语言的处理主要有两大方向。一种是基于句法-语义规则的理性主义理论,该理论认为需要为计算机制定一系列的规则,计算机在规则下进行推理与判断。因此其技术路线是一系列的人为的语料建设与规则制定。第二种是基于统计学习的经验主义理论,这种理论在最近受到普遍推崇。该理论让计算机自己通过学习并进行统计推断的方式不停地从数据中“学习”语言,试图刻画真实世界的语言现象,从数据中统计语言的规律。

机器学习:机器学习(Machine Learning)是近20年来兴起的人工智能一大重要领域。其主要是指通过让计算机在数据中自动分析获得规律,从而获取“自我学习”的能力,并利用规律对未知数据进行判断和预测的方法。

机器学致可以分为有监督的学习和无监督的学习。有监督的学习是从给定的训练数据集中练出一个函数和目标,当有新的数据到来时,可以由训练得到函数预测目标。有监督的学习要求训练集同时有输入和输出,也就是所谓的特征和目标。而依据预测的结果是离散的还是连续的,将有监督的学习分为两大问题,即统计分类问题和回归分析问题。统计分类的预测结果是离散的,如肿瘤是良性还是恶性等;而回归分析问题目标是连续的,如天气、股价等的预测。

无监督学习的训练集则没有人为标注的结果,这就需要计算机去发现数据间的联系并用来分类等。一种常见的无监督学习是聚类分析(Cluster Analysis),它是将相似的对象通过静态分类的方法分成不同的组别或者是特定的子集,让同一个子集中的数据对象都有一些相似的属性,比较常用的聚类方法是简洁并快速的“K-均值”聚类算法。它基于K个中心并对距离这些中心最近的数据对象进行分类。

机器学习还包括如半监督学习和增强学习等类别。总而言之,机器学习是研究如何使用机器来模拟人类学习活动的一门学科,而其应用随着人工智能研究领域的深入也变得越来越广泛,如模式识别、计算机视觉、语音识别、推荐算法等领域越来越广泛地应用到了机器学习中。

人工神经网络:在脑神经科学领域,人们认为人类的意识及智能行为,都是通过巨大的神经网络传递的,每个神经细胞通过突出与其他神经细胞连接,当通过突触的信号强度超过某个阈值时,神经细胞便会进入激活状态,向所连接的神经细胞一层层传递信号。于1943年提出的基于生物神经元的M-P模型的主要思想就是将神经元抽象为一个多输入单输出的信息处理单元,并通过传递函数f对输入x1,x2…,xn进行处理并模拟神经细胞的激活模式。主要的传递函数有阶跃型、线性型和S型。

在此基础上,对神经网络算法的研究又有诸多进展。日本的福岛教授于1983年基于视觉认知模型提出了卷积神经网络计算模型。通过学习训练获取到卷积运算中所使用的卷积系数,并通过不同层次与自由度的变化,可以得到较为优化的计算结果。而AlphaGo也正是采用了这种深度卷积神经网络(DCNN)模型,提高了AlphaGo的视觉分类能力,也就是所谓的“棋感”,增强了其对全盘决策和把握的能力。

3.人工智能的发展前景

总体来看,人工智能的应用经历了博弈、感知、决策和反馈这几个里程碑。在以上4个领域中,既是纵向发展的过程,也是横向不断改进的过程。

人工智能在博弈阶段,主要是实现逻辑推理等功能,随着计算机处理能力的进步以及深度学习等算法的改进,机器拥有了越来越强的逻辑与对弈能力。在感知领域,随着自然语言处理的进步,机器已经基本能对人类的语音与语言进行感知,并且能够已经对现实世界进行视觉上的感知。基于大数据的处理和机器学习的发展,机器已经能够对周围的环境进行认知,例如微软的Kinect就能够准确的对人的肢体动作进行判断。该领域的主要实现还包括苹果的Siri,谷歌大脑以及无人驾驶汽车中的各种传感器等。在以上两个阶段的基础上,机器拥有了一定的决策和反馈的能力。无人驾驶汽车的蓬勃发展就是这两个里程碑很好的例证。Google的无人驾驶汽车通过各种传感器对周围的环境进行感知并处理人类的语言等指令,利用所收集的信息进行最后的决策,比如操作方向盘、刹车等。

人工智能已经渗透到生活中的各个领域。机器已经能识别语音、人脸以及视频内容等,从而实现各种人际交互的场景。在医学领域,人工智能可以实现自动读片和辅助诊断以及个性化t疗和基因排序等功能。在教育领域,机器也承担了越来越多的辅助教育,智能交互的功能。在交通领域,一方面无人车的发展表明无人驾驶是一个可以期待的未来,另一方面人工智能能够带来更加通畅和智能的交通。另外人工智能在安防、金融等领域也有非常广阔的发展前景。总之,人工智能在一些具有重复性的和具备简单决策的领域已经是一种非常重要的工具,用来帮助人们解决问题,创造价值。

参考文献

[1]阮晓东.从AlphaGo的胜利看人工智能的未来[J].新经济导刊,2016 (6):69-74.