卷积神经网络的定义范例6篇

前言:中文期刊网精心挑选了卷积神经网络的定义范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

卷积神经网络的定义

卷积神经网络的定义范文1

关键词: 列车车号; 车号识别; 卷积神经网络; LeNet?5

中图分类号: TN911.73?34; TP391 文献标识码: A 文章编号: 1004?373X(2016)13?0063?04

Abstract: For the character recognition of freight train license, the improved recognition method based on convolutional neural network LeNet?5 is proposed. Considering the structural features of the hierarchical convolutional neural network and local field, the parameters of quantity and size of each layer feature pattern in the network were improved correspondingly to form the new network model suitable for the freight train license recognition. The experimental results show that the proposed method has strong robustness to solve the license breakage and stain, and high recognition rate, which provides a guarantee for the accuracy of the entire license recognition system.

Keywords: train license; license recognition; convolutional neural network; LeNet?5

0 引 言

目前货运列车车号识别系统[1?2]主要是基于RFID技术实现的,但是,由于该系统的准确性依赖于列车底部安装的RFID标签,而RFID标签容易损坏、丢失,因此,此类系统无法保证车号识别的准确性。为此,研究者开发了基于图像的货运列车车号识别系统,系统根据视频采集到的图像,利用模糊集合论[1?2]、人工神经网络[3]、支持向量机[4]以及隐马尔可夫模型[4]等技术进行车号字符的识别。但是,由于货运列车车号存在因喷涂方式而导致的单个字符断裂,或者列车长期的野外运行导致的车厢污损,车号字符的残缺等现象,这使得目前的基于图像的货运列车车号识别系统的鲁棒性与识别率还有待进一步提高。

LeNet?5[5?7]是由YannLecun等人提出的一种专门用于二维图像识别的卷积神经网络,该网络避免了人工提取特征依赖于主观意识的缺点,只需要将归一化大小的原始图像输入网络,该网络就可以直接从图像中识别视觉模式。LeNet?5把特征提取和识别结合起来,通过综合评价和学习,并在不断的反向传播过程中选择和优化这些特征,将特征提取变为一个自学习的过程,通过这种方法找到分类性能最优的特征。LeNet?5已经成功应用于银行对支票手写数字的识别中。

为此,本文将卷积神经网络LeNet?5应用于列车车号字符的识别中,为了使之适用于列车车号字符的识别需求,去除掉了LeNet?5中的一些针对手写字符识别而特别设计的连接方式及参数,并在此基础上,改变网络中各层特征图的数量以形成新的网络模型。

1 LeNet?5的改进

卷积神经网络可以从很多方面着手改进。诸如多层前馈网络,可以考虑在误差函数中增加惩罚项使得训练后得到趋向于稀疏化的权值,或者增加一些竞争机制使得在某个特定时刻网络中只有部分节点处在激活状态等。本文主要从卷积神经网络的层次化以及局部邻域等结构上的特点入手,考虑卷积神经网络中各层特征图数量及大小对网络训练过程及识别结果的影响。

以LeNet?5结构为基础,去除掉LeNet?5中的一些针对手写字符识别而特别设计的连接方式及参数,得到改进后的神经网络。在此基础上,改变网络中各层特征图的数量以形成新的网络模型。定义一种新的网络模型,将其命名为LeNet?5.1,该网络结构与LeNet?5基本相同,主要做出以下改变:

(1) 将原先LeNet?5所采用的激活函数由双曲正切函数修改为Sigmoid函数,此时,网络中所有层的输出值均在[0,1]区间内,输出层的最终结果也将保持在[0,1]区间内。

(2) 省略掉F6层,将输出层与C5层直接相连,连接方式为全连接,而不是原LeNet?5中所采用的径向基函数(RBF)网络结构。

(3) 简化原LeNet?5中的学习速率。原LeNet?5网络中采用的学习速率为一个特殊的序列,而在本网络中将学习速率固定为0.002。

(4) 输入数据原始尺寸为28×28,采取边框扩充背景像素的方法将图像扩充至32×32。

之所以做以上相关改动,是因为原始的LeNet?5就是专门为手写字符识别任务而特殊设计的,这就造成了LeNet?5网络中相关的预处理及参数的选择过程或多或少均带有一些针对特定问题的先验知识。例如激活函数中参数的选择,学习速率定的速率序列以及数据预处理殊的填充方式等,这些特定的设计使得LeNet?5在其他任务的识别过程中并不一定适用,或者需要进行长期的观察实验以选得一组针对特定任务的较好的值,造成了LeNet?5不能快速的应用于除手写字符外其他的识别任务中。

2 改进后的网络对列车车号字符的识别

车号经过分割之后为一个个的单字符图像,采用边框扩充背景像素的方法将其归一化为32×32,如图1所示。

由图1中可以看出,待识别的字符图像质量不高,有的数字字符出现残缺、断裂或者严重变形。这都给识别任务提出了一定的挑战。

本文采集到的车号图像来自于不同型号的货运列车。从中选取400幅图像作为训练集,另外选取400幅图像作为测试集。用上一节提出的LeNet?5.1网络进行训练,误分类率曲线如图2所示。可以看出,在LeNet?5.1训练过程中,训练MCR(Misclassification Rate)和测试MCR的变化过程相对稳定,验证了改进后网络结构的合理性。在经过16次的迭代之后,测试MCR降至最低(5.75%),之后基本保持稳定,即16次迭代之后,网络达到了当前的最佳训练效果,达到了收敛状态。这时,训练MCR为0.5%,测试MCR是5.75%。

训练过程中的误分类率曲线

而针对相同的数据,采用原始的LeNet?5进行训练和测试后,误分类率如图3所示。从图3中可以看出,LeNet?5经过了18次的迭代后,测试MCR才达到相对稳定的状态,降至6%,最终的训练MCR为1%。相比之下,经过简化和改进的LeNet?5.1,由于改进了原始的LeNet?5中专门为手写字符识别任务而特殊设计的一些预处理及函数选择等固定模式,并且精简了网络结构,使得LeNet?5.1在列车车号的识别方面具有了更快的训练速度和收敛速度,另外,最终达到的准确度也有所提升。

在证明了改进后的LeNet?5.1网络的合理性之后,增加训练图像的规模,采用10 000幅车号数字字符图像用来训练,5 000幅用来测试。为了与其他方法进行比较,采用相同的训练数据对车号识别中常用的三层BP网络进行训练和测试,这里采用的BP网络隐含层节点数量为450,学习速率采用0.01。实验结果比较如表1所示。从表1可以看出,改进后的LeNet?5.1网络的识别率比BP网络的识别率高出4.62个百分点,在识别速度方面,LeNet?5.1也明显优于传统的BP神经网络。

3 针对车型号字母识别而改进的神经网络及其结果

货运列车车号的组成是由车型号与车号共同组成的,因此还需要对车型号进行识别,车型号中除了有阿拉伯数字字符之外,还有很多表示车种及车厢材质等属性的英文字母,这些英文字母同样采用卷积神经网络来识别。由于车型号很多,初期针对若干常用型号的列车进行识别,以测试网络的性能,后期对全车型进行识别。

3.1 常用列车车型的识别

在试运行阶段主要识别的车型局限于7种主要的车型:C64K,C64H,C70A,C70E,C80,C62AK和C62BK。由于车种都为敞篷车(第一个大写字母C),主要对后面代表该车型载重量的两位数字以及最后代表车厢材质等属性的字母进行识别。考虑到车型号字符串的固定模式,如图4所示,可以分别建立两个不同的卷积神经网络分别用来识别数字和字母,由于之前已经解决了数字的识别问题,接下来主要进行字母的识别。要识别的代表车厢材质的字母共有6个:K,H,A,E,A和B,为了尽可能的避免因字母分割问题而导致的识别错误,把AK和BK分别作为一个整体来识别,那么需要识别的字符组合变为:K,H,A,E,AK和BK。由于识别种类的减少,可以对网络模型LeNet?5.1进行相应的简化,命名该模型为LeNet?5.2。

LeNet?5.2是在LeNet?5.1的基础上进行改动而得到的:

(1) 卷积层C1的特征图由6个减少为4个,相应地,S2层的特征图也由6个减少为4个。

(2) 卷积层C3的特征图由16个减少为11个,相应地,S4层的特征图也由16个减少为11个。

(3) 卷积层C5的特征图个数由120个减少为80个。

(4) 输出分类的数目由10个减少为6个。

另外,卷积层C3层与次抽样层S2层的连接情况如表2所示。

表2的连接方式采用与表1相同的思想,每一列都说明了C3层中的一个特征图是由S2中的那几个特征图结合而成。卷积层C3中第0个至第5个特征图分别与次抽样层S2中的两个特征图相连接,一共6种组合。C3中的这6个特征图负责抽取上一层中某两个特征图所潜在的特征。C3层中第6个至第9个特征图中每个特征图分别对应上一层中的3个特征图的组合,而C3层中最后一个特征图则与上一层中所有的特征图相连接。这样卷积层C3中的特征图就包含了次抽样层S2中多个特征图的所有组合,这样使得卷积层C3抽取到的特征比S2层更抽象、更高级,同时,相对于输入数据,C3层相比S2层具有更好的对位移、扭曲等特征的不变性。

相比LeNet?5.1,LeNet?5.2将网络层中的特征图数量做了相应的削减,减少了网络中可训练参数的数量。

实验数据来自以上提到的7类常用车型。经过前面过程的定位和分割之后,将分割之后代表车厢材质等属性的字母图像收集起来。本实验中,共收集到6种代表不同车厢材质属性的字母共800幅,其中400幅用作训练数据,另外400幅用作测试数据。

图5为LeNet?5.2使用以上数据训练过程中得到的MCR曲线图。由图5中可以看出,在经过13次迭代之后,测试MCR达到最低的3.25%,并且在随后的迭代过程中基本保持稳定,而对应的训练MCR为0.75%。

3.2 全车型识别

经过对铁道行业标准《铁路货车车种车型车号编码》(TB2435?93)里面包含的所有车型号进行统计,除了10个阿拉伯数字外,包括了除O,R,V,Z四个字母外所有的大写英文字母,总共有32类字符。

训练过程中的误分类率曲线

针对车型号的识别需求,本文在LeNet?5.1的基础上提出了一种新的网络模型,称之为LeNet?5.3。与LeNet?5.2相反,LeNet?5.3是在LeNet?5.1的基础上对网络中各层的特征图数量进行扩充:

(1) 卷积层C1的特征图由6个增加至8个,相应地,S2层的特征图也由6个增加至8个。

(2) 卷积层C3的特征图由16个增加至24个,相应地,S4层的特征图也由16个增加至24个。

(3) 卷积层C5的特征图个数由120个增加至240个。

(4) 输出层神经元的个数由10个增加至32个。

其中卷积层C3层与次抽样层S2层的连接情况参考LeNet?5.2所采用的原则,使卷积层C3中的特征图包含次抽样层S2中多个特征图的主要组合。

与LeNet?5.1相比,LeNet?5.3需要有更多的输出类别,各层的特征图数量也做了相应的增加,以增加整个网络的识别性能。为了验证改进后的LeNet?5.3的性能,收集了大量真实列车车厢图片,经过车号定位和分割之后,将单个的数字字符或者大写字母字符图像尺寸依次归一化为32×32,分别建立训练图像库和测试图像库。

由于LeNet?5.1各层的特征图数量多,因此该网络涉及到的可训练参数也大大增加,这也意味着需要更多的数据样本用于网络训练。若训练集和测试集规模依然采用跟前面实验中一样的各400幅,训练过程中的误分类率曲线如图6所示,图6中的曲线变化非常不稳定,波动较大。测试MCR达到最低点后又突然升高,不能获得稳定的分类结果,训练过程无法收敛。

网络训练过程中无法收敛的主要原因在于相比网络中过多的需要训练确定的权值,数据集规模过小,已然不能满足学习的要求。从特征图角度来看,网络无法通过不充足的训练样本学习到稳定而有效的特征图组合,从而导致了网络不收敛。要解决这个问题需要加大测试样本的数量。

为了训练和测试LeNet?5.3,对数据集进行了扩充:训练图像库包含字符图像4 000幅,测试图像库包含字符图像2 000幅。训练过程中的误分类率曲线如图7所示。从图7中可以看出,经过32次迭代之后网络趋于收敛,并且达到了较好的识别率。

4 结 语

本文针对货运列车车号识别的难题,提出了基于卷积神经网络LeNet?5改进后的识别方法,主要对卷积神经网络中各层特征图数量及大小进行了改进。且与传统的BP网络进行了比较,从实验结果可以看出,改进后的卷积神经网络无论在鲁棒性还是识别率以及识别速度上都优于BP网络,可以很好地胜任列车车号识别任务。

参考文献

[1] 宋敏.铁路车辆车号自动识别系统的研究和开发[D].天津:河北工业大学,2011:1?5.

[2] LU S, CHEN B M, KO C C. Perspective rectification of document images using fuzzy set and morphological operations [J]. Image and vision computing, 2005, 23(5): 541?553.

[3] SHAH P, KARAMCHANDANI S, NADKAR T, et al. OCR?based chassis?number recognition using artificial neural networks [C]// Proceedings of 2009 IEEE International Conference on Vehicular Electronics and Safety (ICVES). [S.l.]: IEEE, 2009: 31?34.

[4] CHEN D, BOURLARD H, THIRAN J P. Text identification in complex background using SVM [C]// Proceedings of 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2001: 621?626.

[5] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient?based learning applied to document recognition [J]. Proceedings of the IEEE, 1998, 86(11): 2278?2324.

[6] LECUN Y A, BOTTOU L, ORR G B, et al. Efficient backprop [M]// Anon. Neural networks: tricks of the trade. Berlin: Springer Berlin Heidelberg, 1998: 9?50.

卷积神经网络的定义范文2

关键词:人脸识别技术;病毒管控;人工智能;神经网络

互联网在今天的社会中发挥着举足轻重的作用。如今社会,随着许多人工智能技术、网络技术、云计算等互联网技术不断发展,像人脸识别等技术的应用越来越广泛,在控制病毒传播途径等场合发挥了巨大作用,不断地提高着社会的安全性和便利性,不仅提高了防控中病毒检测效率,也为病毒的控制提供了可靠的技术方法,能够及时发现和控制公共场所的安全隐患因素,避免对社会经济、居民生活造成破坏,。但目前的人脸识别等技术还存在许多缺陷,需要完善和革新,充满着巨大的潜力和进步空间。

1人脸识别技术研究意义

人脸识别技术是一种生物特征识别技术,最早产生于上世纪60年代,基于生理学、图像处理、人机交互及认知学等方面的一种识别技术。相比于其他人类特征像指纹识别、声纹识别、虹膜识别等技术,人脸识别虽然存在人脸识别单一性低,且区分度难度高、易受环境影响等不足。但是人脸识别技术拥有速度快、大范围群体识别及非接触、远距离可识别等优势,都是其他生物识别识别技术所不具备的,而在传播性强、感染风险大的病毒传播过程中,这些显然是必须要考虑的重要影响因素。通过将人脸识别等人工智能技术引入信息管理系统,综合集成视频监控、图像处理、深度学习和大数据等技术,结合非接触测温、定位等技术,助力病情防控,在一定程度上推动病毒病情防控信息化、智能化发展进程。可作为加强公共场所的人员的体温实时监测、地址信息定位的监控管理,规范公共场所针对病毒传播的预防行为。

2人脸识别技术

2.1人脸检测技术

人脸检测是自动人脸识别系统中的一个关键环节。早期的人脸识别研究主要针对具有较强约束条件的人脸图象(如无背景的图象),往往假设人脸位置静止或者容易获取。人脸检测分为前深度学习时期,AdaBoost框架时期以及深度学习时期。前深度学习时期,人们将传统的计算机视觉算法运用于人脸检测,使用了模板匹配技术,依赖于人工提取特征,然后用这些人工特征训练一个检测器;后来技术发展,在2001年Viola和Jones设计了一种人脸检测算法,它使用简单的Haar-like特征和级联的AdaBoost分类器构造检测器,检测速度较之前的方法有2个数量级的提高,并且保持了很好的精度,称这种方法为VJ框架。VJ框架是人脸检测历史上第一个最具有里程碑意义的一个成果,奠定了基于AdaBoost目标检测框架的基础,使用级联AdaBoost分类器进行目标检测的思想是:用多个AdaBoost分类器合作实现对候选框的分类,这些分类器组成一个流水线,对滑动窗口中的候选框图像进行判定,确定检测目标是人脸还是非人脸。Adaboost框架技术的精髓在于用简单的强分类器在初期快速排除掉大量的非人脸窗口,同时保证高的召回率,使得最终能通过所有级强分类器的样本数数量较少。在深度学习时期,开始将卷积神经网络应用于人脸检测领域。研究方向有两种:一是将适用于多任务的目标检测网络应用于人脸检测中;另一种是研究特定的的人脸检测网络。人脸检测技术具有特殊唯一性和稳定性,在现今社会对于构建居民身份识别系统,病毒传播防控系统,以及计算机视觉交互模型的构建具有广泛的应用。人脸检测技术不仅作为人脸识别的首要步骤,也在许多其他领域发挥巨大影响,如人脸关键点提取、人脸追踪、基于内容的检索、数字视频处理、视频检测、安防监控、人证比对、社交等领域都有重要的应用价值。数码相机、手机等移动端上的设备已经大量使用人脸检测技术实现成像时对人脸的对焦、图集整理分类等功能,各种虚拟美颜相机也需要人脸检测技术定位人脸。评价一个人脸检测算法好坏的指标是检测率和误报率,我们定义检测率为:算法要求在检测率和误报率之间尽量平衡,理想的情况是达到高检测率,低误报率。

2.2人脸识别技术

目前主要流行的人脸识别技术包括几何特征识别,模型识别,特征脸识别和基于深度学习/神经网络的的人脸识别技术等。人脸特征识别主要通过对人脸面部结构特征如眼睛、鼻子等五官几何特点及其相对位置分布等,生成图像,并计算各个面部特征之间的欧式距离、分布、大小等关系该方法比较简单,反应速度快,并且具有鲁棒性强等优点,但是在实际环境下使用容易受检测的环境的变化、人脸部表情变化等影响,精度通常不高,细节处理上不够完善。模型识别技术主要包括隐马尔可夫模型、主动表象模型、主动形状模型等,识别率较高,并且对表情等变化影响较小。特征脸识别来源于主成分描述人脸照片技术(PCA技术),从数学上来讲,特征脸就是人脸的图像集协方差矩阵的特征向量。该技术能有效的显示人脸信息,效率较高。基于深度学习的人脸识别是获取人脸图像特征,并将包含人脸信息的特征进行线性组合等,提取人脸图像的特征,学习人脸样本数据的内在规律和表示层次。可以采用如三层前馈BP神经网络。BP神经网络是1986年由Rumelhart和McClelland为首的科学家提出的概念,是一种按照误差逆向传播算法训练的多层前馈神经网络,是应用最广泛的神经网络模型之一。BP网络本质上是一种能够学量的输入与输出之间的映射关系的输入到输出的映射,从结构上讲,BP网络具有输入层、隐藏层和输出层;从本质上讲,BP算法就是以网络误差平方为目标函数、采用梯度下降法来计算目标函数的最小值。BP神经网路输入层有n个神经元节点,输出层具有m个神经元,隐含层具有k个神经元,采用BP学习算法训练神经网络。BP算法主要包括两个阶段:向前传播阶段和向后传播阶段。在向前传播阶段,信息从输入层经过逐级的变换,传送到输出层。这个过程也是在网络完成训练后正常运行时执行。将Xp作为输入向量,Yp为期望输出向量则BP神经网络向前传播阶段的运算,得到实际输出表达式为向后传播阶段主要包括两大步骤:①计算实际输出Op与对应理想输出Yp之差;②按极小化误差方法调整带权矩阵。之所以将此阶段称为向后传播阶段,是对应于输入信号的正常传播而言的,因为该阶段都需要收到精度要求进行误差处理,所以也可以称之为误差传播阶段。(1)确定训练集。由训练策略选择样本图像作为训练集。(2)规定各权值Vij,Wjk和阈值Φj,θk参数,并初始化学习率α及精度控制参数ε。(3)从训练集中取输入向量X到神经网络,并确定其目标输出向量D。(4)利用上式计算出一个中间层输出H,再用本式计算出网络的实际输出Y。(5)将输出矢量中yk与目标矢量中dk进行比较,计算输出误差项,对中间层的隐单元计算出L个误差项。(6)最后计算出各权值和阈值的调整量。所以,卷积神经网络算法是通过训练人脸特征库的方式进行学习生成,对不同环境下不同表现情况的人脸图像识别有更高的精确性。

2.3人脸识别软件实现方式

(1)采集人脸数据集,然后对数据集进行标注,对数据进行预处理变成训练格式。(2)部署训练模型,根据训练算法所需依赖部署电脑环境。(3)训练过程,下载预训练模型,将人脸数据集分批次作为输入开始训练,最终输出为训练好的模型。(4)部署训练好的模型,捕获画面即可对画面中的人脸进行实时检测。

3人脸识别在病毒传播防控中的应用

通过人脸识别技术,可以实现无接触、高效率的对流动人员进行信息的收集、身份识别、定位地址信息等操作,大大减少了传染的可能性,切断了病毒传播途径,大大提高了工作效率。通过提前收录人脸信息,采用深度学习对人脸特征模型的训练学习,即可获取人脸识别特征模型,再次验证时即可实现人脸识别和个人信息快速匹配。AI人工智能帮助人们更好的解放双手,为人们的生活和工作提供了重要的帮助。本文还提出了在人脸识别的系统基础上,可以加入定位系统、测温系统等,依托物联网技术和云计算大数据,更加优化管控系统的效率。病毒传播防控中人脸识别系统流程可以概括为图2。

4结语

本文研究了一种人脸识别技术在病毒传播管控系统中的应用,并分析设计了人脸识别实时监测及病毒管控系统的流程,大大提高了信息管理的效率,减弱了传播风险。作为一门新兴技术,目前的人脸识别技术还存在着诸多不足之处,像存在环境光的影响、人脸表情变化、妆容变化、佩戴口罩等都会影响到系统识别精度;另外安全问题也引人深思:现今人脸支付方式迅猛发展,录入的人脸模型信息数据库存在有一定的安全风险,一旦被不法分子盗取信息后果不堪设想,所以模型数据库安全、网络安全,也是系统开发中必须重视的问题。人脸识别为代表的人工智能技术的研究,在病毒传播管控作出重大贡献,依托我国领先的计算机网络技术和5G等技术,加强人工智能技术与5G通信技术的结合,优势互补,以此来加快大数据、人工智能和物联网技术发展进程,对我国社会进步,促进城市建设和管理朝着高效、秩序、和谐稳定的方向不断发展,增强我国的经济实力有着重大价值和研究意义。

参考文献

[1]王彦秋,冯英伟.基于大数据的人脸识别方法[J].现代电子技术,2021,44(7):87-90.

[2]李刚,高政.人脸自动识别方法综述[J].计算机应用研究,2003,20(8):4-9,40.

[3]马玉琨,徐姚文.ReviewofPresentationAttackDetectioninFaceRecognitionSystem[J].计算机科学与探索,2021,7(15):1195-1206.

[4]余璀璨,李慧斌.基于深度学习的人脸识别方法综述[J].工程数学学报,2021,38.

[5]王红星,胡永阳,邓超.基于LBP和ELM的人脸识别算法研究与实现[J].河南理工大学学报(自然科学版),2005.

[6]钟陈,王思翔,王文峰.面向疫情防控的人脸识别系统与标准研究[J].信息技术与标准化,2020,6,11-13,1671-539X.

[6]彭骏,吉纲,张艳红,占涛.精准人脸识别及测温技术在疫情防控中的应用[J].软件导刊,2020,10,1672-7800.

卷积神经网络的定义范文3

Abstract: Classifier selection is the key factor for data classification. K-mean classifier, ISODATA classifier and SOFM neural network classifier are compared in computational complexity and classification performance. The experiments show that three kinds of classifiers cost equal time on the same image, but the self organizing feature map neural network classifier is optimal in classification performance.

关键词: K-均值分类器;ISODATA分类器;SOFM神经网络分类器

Key words: K-mean classifier;ISODATA classifier;SOFM neural network classifier

中图分类号:TP7 文献标识码:A 文章编号:1006-4311(2013)04-0182-02

0 引言

K-均值分类器、迭代自组织数据分类器和自组织特征映射神经网络分类器在遥感图像分类方面应用广泛。王晓军等人将非监督K-均值分类用在合成孔径雷达SAR图像各极化通道上进行参数估计[1]。包健等人将K-均值算法用于高光谱遥感影像的非监督分类中,具有较强的实用性[2]。贾明明等人选取对气候变化敏感的澳大利亚作为研究区。利用了ISODATA分类结果、NDVI阈值及其时间序列主成分分析特征量对研究区土地利用/覆被进行分类[3]。李正金等人进行了基于TM卫星遥感技术和小麦估产模型的冬小麦产量监测研究,采用优化的ISODATA分类方法,结合人机交互式判读解译作物信息[4]。夏浩铭等提取地物在空间上的联系,利用神经网络分类,获得较好的地物分类精度[5]。文章阐述了三种分类器的工作原理,分析了三种分类器的计算复杂度和分类效果。

1 K-均值分类器

基本K-均值思想很简单。首先,选择k个初始聚类中心,其中k是目标分类数目。每个样本按照距离函数计算与所有聚类中心的距离,样本加入到与之距离最短的聚类中心所在分组。新样本加入后,更新该分组的聚类中心。重复训练和更新,直到每类的聚类中心不发生变化为止。当分类数目已知时,利用K-均值分类方法能够方便地计算出样本聚类中心。但是在实际应用中,分类数目可能无法估算,这在一定程度上限制了这种方法的应用。

K-均值算法特点是每次调整样本后,修改一次聚合中心和准则值,当考察完n个样本后,一次迭代运算完成,新的聚合中心和准则值也计算出来。在迭代过程中,准则值逐渐减小,直到它的最小值为止。如果在一次迭代前后,准则值没有变化,说明算法已经收敛。

2 ISODATA分类器

ISODATA算法通过对样本迭代来确定聚类的中心。每一次迭代时,首先是在不改变类别数目的情况下改变分类。然后将样本平均矢量之差小于某一阈值的类别合并起来,根据样本协方差矩阵来决定其分裂与否。主要环节是聚类、集群分裂和集群合并等处理。

ISODATA分类算法最优迭代次数很难设定,一般遥感图像的数据量大,若迭代误差取值较小,分类也很难实现。沈照庆等人[6]以某次迭代中“合并”和“分裂”都为零为求最优分类数的迭代条件,而不是预先设定迭代次数;取最大和最小隶属度取代每一个隶属度为比对特征值,提高了分类速度和精度;利用等效转换研究隶属度矩阵的迭代误差变化规律,得出变化速度趋于稳定时为求解最优隶属度矩阵的智能迭代控制,减少人为事先干预。

3 SOFM神经网络分类器

神经网络由被称作神经元的相互连接处理单元组成。自组织特征映射(Self-Organizing Feature Map,简称SOFM)网络模拟大脑的神经系统自组织特征映射的功能,在学习过程中不需要指导,进行自组织学习。SOFM网络可用于图像压缩、语言识别、机器学习和优化问题等。

训练SOFM网络时首先初始化连接权重为小的随机数,训练开始后,输入向量送入网络。每输入一个样本矢量,各神经元的加权和中必然有一个最大值,经过侧反馈作用,在最大值点周围连接权重自适应调节。SOFM网络已经证明,网络通过反复学习输入模式,可使连接加权矢量空间分布密度与输入模式的概率分布趋于一致,也就是连接权矢量空间分布能反应输入模式的统计特征。训练好的网络在竞争层产生了一个或几个最大输出,它们在竞争层中的位置反映了输入向量在自身空间的特征。

4 实验结果分析

实验选取2003年青岛市一景SPOT5图像作为数据源,截取城乡结合部某地作为实验区域,实验区域在红波波段显示为图1(a)。对于实验区的遥感图像分别采用上述分类器进行地物分类实验。

用ENVI 4.3的分类功能根据K-均值算法分类。参数设置为:分类数量15(一般为最终输出分类数的2-3倍),最大迭代次数为40(默认是15),其它参数取默认值。K-均值关注的是不同波段的灰度信息,系统自动分类时,得到的分类数目为八类,结果如图1(b)所示。从分类结果上可以看出,K-均值分类算法对水体的分类效果较好,水体用红色表示,不但能分出主河道而且显示出在耕地中有一条灌溉沟渠。绿地在分类图中用绿色表示,图上中部的绿地分类正确,但在河道附近,部分耕地错分为绿地了。耕地被分为蓝色、黄色和暗绿色三类。反射系数高的南北方向道路和屋顶较亮的厂房被归为一类,东西走向的道路两边毛刺现象严重。建筑物错分率也较高。

在ENVI 4.3环境下,利用ISODATA算法分类。参数设置为:类别数范围[5-15](一般最小数量不能小于最终分类数,最大数量为最终分类数量的2-3倍),最大迭代次数为40(默认是15),其它参数取默认值,结果见图1(c)。从分类结果上看,ISODATA分类算法对灰度值一致性好的水体分类效果较好,水体用红色表示。能区分出主河道而且显示出在耕地中有一条灌溉沟渠,但将图像下方,靠近南北走向的道路的一间面积较大的厂房错分为水体。绿地在分类图中用绿色表示,图上中部的绿地分类正确较好,但在河道附近,相当一部分耕地错分为绿地了。耕地分类效果表较好,但有部分错分为绿地。东西走向的道路线条比较连贯,两边有点毛刺现象,但不严重。的空地用粉红色表示,居民区是暗绿色,部分工厂厂房的屋顶错分为水体。

SOFM网络利用MATLAB中的神经网络工具箱实现。设定SOFM网络的输入矢量各维的数据范围是像素灰度在[1,32]之间,邻域像素卷积[25,800]之间,学习率为0.9,距离函数是欧氏距离函数,训练步长是5000。输入训练样本,每类500个,5类共2500个样本,距离为5类,每类表征一种地物类型。网络对类型的定义储存在训练网络中。利用训练好的网络对实验图像所有像元进行分类。分类结果用灰度图像表示,像素的颜色代表分类的类型,像素的位置对于测试图像同位置的地物,如图1(d)所示。白色表示道路,浅灰表示建筑物,灰色表示绿地,深灰表示耕地,黑色表示水体。从分类结果图上看,纵横贯穿郊区的主干道和楼区内的道路基本能够正确分类。由于反射系数与道路相近,工厂厂房的屋顶也被错分为道路。建筑物、耕地和绿地总体上分类正确。水体的分类结果令人满意,主水道和灌溉的沟渠都能清楚地分出。分类器处理样本图像的时间接近,都是20分钟左右。

5 总结

K-均值分类中耕地被分三类,道路两边毛刺现象严重,建筑物错分率也较高,分类效果最差。SOFM网络对道路、水体、耕地和绿地总体上分类正确,分类正确率最高。ISODATA分类对水体、耕地、道路分类基本正确,建筑物错分较多。

参考文献:

[1]王晓军,王鹤磊,李连华,孟藏珍,马宁.基于C均值分类的极化SAR图像白化斑点滤波方法[J].系统工程与电子技术,

2008,30(12):2389-2392.

[2]包健,厉小润.K均值算法实现遥感图像的非监督分类.机电工程,2008,25(3):77-80.

[3]贾明明,刘殿伟,宋开山,王宗明,姜广甲,杜嘉,曾丽红.基于MODIS时序数据的澳大利亚土地利用/覆被分类与验证.遥感

技术与应用,2010,25(3):379-386.

[4]李正金,李卫国,申双.基于ISODATA法的冬小麦产量分级监测预报.遥感应用,2009,8:30-32.

卷积神经网络的定义范文4

关键词:诱发脑电;事件相关电位;信号提取;生物医学信号处理

中图分类号:TP391文献标识码:B

文章编号:1004-373X(2008)22-139-03

Review of Methods for Extracting Evoked Potential

HUANG Rihui,LI Ting,FU Yan,WANG Zhaodong

(School of Information,Wuyi University,Jiangmen,529020,China)

Abstract:Estimation of Evoked Potential(EP)is one of the pop issues in biomedical signal processing.As the review of extracting evoked potential,the theories of EP estimation using the methods of coherent average,independent component analysis,wavelet transform,time sequence analysis and neural network in application are introduced.The problems in application with the upper five methods are indicated,it provids a theory basis for research.

Keywords:evoked potential;event related potential;signal extract;biomedical signal processing

诱发脑电(Evoked Potential,EP)是指人为地对外周感觉神经、感觉通路与感觉系统有关的任何结构进行施加适当刺激时所引起的脑电位变化,事件相关电位(Event Related Potential,ERP)是一种特殊的诱发脑电信号,两者区别主要在于EP是受感觉刺激(视、听或体感)后神经系统对刺激的直接电生理反应,ERP则是受试者受某一事件刺激后,对该事件所携带的某种信息的反应,涉及到人的高级认知活动。

在实际中,由于诱发脑电总是淹没在较强背景噪声(包括自发脑电、工频干扰、眼电、肌电、心电等) 中,其幅值只有0.2~20 μV,信噪比为0~10 dB,而且脑电信号本身又具有随机性和非平稳性,诱发脑电和自发脑电在频谱上有相当大的重叠区,使得从观测的脑电信号中提取诱发脑电更加困难。目前用于脑电信号提取的主要方法如下文所述。

1 相干平均

目前较多用于提取诱发脑电的方法是相干平均[1],采用相干平均法进行诱发脑电提取是基于以下3个假设的:

(1) 诱发脑电和噪声为加法性的关系,且相互独立;

(2) 每次刺激后所获得的诱发脑电波形是一致的,即诱发脑电为确定性信号;

(3) 噪声与刺激无关,且是零均值的随机信号。诱发脑电、噪声和记录到的信号表示如下:

由于各次记录下来的诱发脑电信号基本不变,而自发脑电及其他噪声信号却是随机呈现的,故式(2)中的第二项1N∑ni=1ni(n)=0。因此,叠加平均后得到的诱发脑电信号的信噪比提高了N倍。由于各次刺激和响应间的潜伏期有随机性[2]:

其中,ni是随机的潜伏期,在进行记录的信号xi(n)累加时不能简单地以刺激开始时刻作为对齐数据的参考点,而需要对齐各次记录信号后再进行叠加。用原始模板0(n)和xi(n)做互相关,由互相关极大处得到延迟ni,对齐后再做平均,并把平均后的结果作为新的模板。

相关平均可以减少不相关自发脑电、噪声干扰的影响,并可以突出诱发脑电;但这样需要耗费更多的时间来进行实验,而且并不是每次实验都会产生诱发脑电,相干平均后反而会使得诱发脑电更小[3]。

2 独立分量分析

独立分量分析(Independent Component Analysis,ICA)是信号处理领域在20世纪90年代后期发展起来的一种全新的处理方法。ICA的发展是和盲信源分离(Blind Source Separation,BSS)紧密联系的,并在通信、特征提取、生物医学信号处理、语音信号处理、图像处理等方面得到广泛的应用。近年来,ICA逐渐应用于脑电信号处理中,如用ICA进行眼电、肌电、工频干扰等脑电伪迹(artifact)的去除[4],及单次(或少次)的诱发脑电信号的提取[5],并比较了使用PCA和ICA进行脑电去噪的效果[6]:

(1) 后者适用于去除更多不同种类的脑电干扰;

(2) 分离分析不需要分开不同类型的干扰;

(3) 同时把EEG和干扰信号分离成独立分量;

(4) 在训练完成后,能同时提取各通道中的无干扰的脑电信号;

(5) 在大部分的情况下,ICA比PCA保留更多有用的脑电信号。

独立分量分析是基于信号高阶统计量的信号处理方法[7],其基本含义是将多道观测信号按照统计独立的原则通过优化算法分解为若干独立成分,复现出原来的独立信源。前提是各源信号为彼此统计独立的非高斯信号(最多有一个源信号符合高斯分布)。

在以往的多导信号处理中,主分量分析(Principal Component Analysis,PCA)和奇异值分解(Singular Value Decomposition,SVD)是较常用的方法之一,但按PCA或SVD分解出来的各分量,只能保证它们之前各不相关,除非它们都是高斯过程,才可以保证各分量之间相互独立。ICA不仅实现了信号的去相关,而且要求各高阶统计量独立。

ICA的基本原理框图如图1所示[8],多导观测信号X是由多个等效源S(独立信源)经混合系统A组合而成。ICA的任务是在假定各等效源S独立且S与A均为未知的条件下,求取最优的解混系统B,使得X通过B后得到的Y逼近S。

图1 ICA原理图

独立分量分析实际上是在某一衡量独立性的优化判据最优的意义下寻求其近似解,使Y中各分量尽可能独立;Y与S不但只是近似,而且在排列次序和幅度上都允许不同。较常用的判据如下:互信息极小化,信息极大化,极大似然判据,代价函数极小化等。

由于各种伪迹与脑电信号在时间上是相互独立的,而且观测信号可视为它们与脑电无延迟的线性组合,伪迹等效源的数目一般比头皮上测得的脑电导数要少,所以可以应用ICA来进行脑电去噪,并已经取得了很好的效果[4]。

也有一些研究者把ICA应用于诱发脑电信号的单次提取中[5],主要是假定诱发脑电和背景脑电EEG为相互独立的信号成分,通过寻找线性变换,在上述优化判据最优的意义下,将观测到的脑电信号分解为尽可能相互独立的成分。在将观察信号分解成相互独立的分量以后,为了达到增强或提取诱发脑电信号的目的,把不相干的分量置零或对其中的某些分量幅值做适当的衰减,然后再用处理后的独立分量重建原始信号。

3 小波变换法

如果信号x(t)∈L2(R),小波变换定义为信号x(t)和小波函数ψa,b(t)的卷积:

小波变换是同时具有时域和频域的良好局部化性质的时频分析方法。小波变换的主要优点在于它具有可变的时-频分析窗口,对于低频信号可用宽的窗口分析,对于高频信号可用窄的窗口分析。这样小波变换可以在所有频率范围内为信号分析提供最优的时-频分辨率。而且,由于小波变换窗口范围能够自动地适应每个尺度的瞬时事件,因此它能够精确地检测到神经信号定事件产生的时间、瞬变程度及其频率随时间变化的情况,所以特别适合于分析脑电信号等非平稳信号[9,10]。

在诱发脑电信号处理方面,主要应用小波变换的多分辩率分析,当尺度a较大时小波视野宽而分析频率低,可以观察信号的概貌;当尺度a较小时小波视野窄而分析频率高,可以观察信号的细节。但不同a值下分析的品质因数(指中心频率与带宽的比值)却保持不变。

如果把小波ψj,k对每一分辨率j所产生的L2子空间用Wj表示,当j∞时WjL2(R),包含整个平方可积的实函数空间。则空间L2可以分解成一系列的子空间Wj之和[9]:

L2=∑j∈ZWj(6)

定义子空间为:

Vj=Wj+1Wj+2…j∈Z(7)

子空间Vj是L2的多分辨率近似,它是由尺度函数φj,k经伸缩和平移产生的。对于子空间Vj会有一个与之相对应的正交子空间Wj:

Vj-1=VjWjj∈Z(8)

假设有一能量有限的离散信号x(n)a0(n),可依照下面的关系式连续对信号进行分解:

aj-1(n)=aj(n)dj(n)(9)

这里aj(n)∈Vj,它表示信号的概貌;而dj(n)∈Wj,它表示每一尺度(j=0,1,…,N)的细节。因此对每一分辨率N>0,信号的分解形式可表示为:

x(n)a0(n)=d1(n)+d2(n)+…+dN(n)+aN(n)(10)

因此每一分辨率分解把该级输入信号分解成一个低频的近似信号和高频的细节信号。

诱发脑电是由刺激引起的观测脑电信号中的变化,它与刺激作用存在锁时关系。尽管诱发脑电淹没在强背景噪声中(含自发脑电及其他干扰信号),而且部分EEG和EP在频率上重迭,但可根据它们时间位置的不同区别出来。如较常用着实验的P300(事件相关电位的一种),它是在受刺激后约250~400 ms期间脑电产生的正向波峰,频率范围集中在2~8 Hz间,与自发脑电中的θ波(4~8 Hz)和δ(0~4 Hz)在频率上有重叠。

利用小波变换的多分辨率分析后,把与P300有关频带的小波系数保留,然后从保留频带的小波系数中取出在250~400 ms之间的小波系数,用这些小波系数进行诱发脑电信号的重构,从而从强背景噪声中提取出微较的诱发脑电信号。

4 时间序列分析法

由于在诱发脑电中,信号与噪声频谱重叠,一般的滤波方式很难将其分开。有些学者试图通过时间序列分析方法,用AR或者ARMA模型对诱发脑电信号建立数学模型,再通过滤波等方法提取诱发响应信号。

1988年Sprechelsen[11]等的方案中,利用卡尔曼滤波对已知随机信号建立模型,根据前一个估值和最近一个观察数据估计信号的当前值,自动跟随信号统计性质的非平稳性,从而提取出诱发响应信号。

李鲁平[12]等还提出了带外输入的自回归算法和附加信号处理方法两种基于时间序列分析的方法;关力[13]的则提出了维纳滤波在诱发脑电信号处理上的应用。

5 神经网络法

Nishida[14]等1994年提出了用神经网络方法自动提取P300的方案。1999年Fung KSM[15]等提出了一种自适应信号处理与神经网络相结合的方法,文献[16]对这种方法进行了总结。

神经网络可以把专家知识结合进一个数学框架,并通过训练对专家的经验进行学习,而不需要任何对数据和噪声的先验统计假设;但它只能用于提取EP信号的特征,无法提取整个波形,因而丢失了部分重要的信息。

6 结 语

相干平均在实现上较为容易,但相干平均后只反映多次平均的结果,不能反映诱发脑电的逐次变化,而随着实验次数的增多,会使得受试者疲劳或不适,影响实验结果。独立分量分析和小波变换能从单次(或少次)刺激中提取出诱发脑电,但ICA后的各独立分量所对应的物理意义有待进一步研究;如何在减少检测通道数的同时,能有效地分离出各独立分量也是ICA在诱发脑电提取方面有待研究的方向。SVM能很好地区分观测信号中是否存在诱发脑电,但它只能提取特征,不能提取信号,因而丢失了部分信息。如何能有效地在单次(或少次)刺激中提取诱发脑电是这方面研究的发展方向。

参考文献

[1]胡广书.数字信号处理――理论算法实现[M].北京:清华大学出版社,1996.

[2]杨福生,高上凯.生物医学信号处理(二)[M].北京:高等教育出版社,1995.

[3]Bayliss J D.A Flexible Brain-computer puter Science Dept.,Univ.of Rochester,Rochester,NY,2001.

[4]Jung T P,Humphries C,Lee T W,et al.Removing Electroencephalographic Artifacts by Blind Source Separation [J].Psychophysiol,2000,37:163-178.

[5]Jung T P,Makeig S,Westerfield,et al.Analysis and Visuali-zation of Single-trial Event-related Potentials[J].Human Brian Mapping,2001,14(2):166-185.

[6]Jung T-P,Humphries C,Lee T-W,et al.Removing Electroencephalographic Artifacts:Comparison between ICA and PCA.Neural Networks Signal Processing,1998:63-72.

[7]Hyvarinen A,Oja E.Independent Component Analysis:Algorithms and Applications [J].Neural Network,2000,13:411-430.

[8]杨福生,洪波.独立分量分析的原理与应用[M].北京:清华大学出版社,2006.

[9]Quiroga R Quian.Obtaining Single Stimulus Evoked Potentials with Wavelet Denoising.Physica,2000,145(3):278-292.

[10]R.Quian Quiroga,Sakowitz O W,Basar E.Wavelet Transform in the Analysis of the Frequency Composition of Evoked Potentials.Brain Research Protocols,2001,8:16-24.

[11]Spreckelsen M V.Estimation of Single Evoked Cerebral Potentials by Means of Parametric Modeling and Kalman Filtering.IEEE Trans.BME,1988,35(9):691-700.

[12]李鲁平,吴延军,程敬之.诱发脑电动态提取方法研究[J].国外医学生物医学工程分册,1995(18):195-201.

[13]关力.诱发电位检测技术的进展[J].国外医学生物医学工程分册,1995(18):125-129.

[14]Nishida S,Nakamura M,Suwazono S,et al.Automatic Detection Method of P300 Waveform in the Single Sweep Records by Using a Neural Network[J].Med.Eng.Phys.,1994,14: 425-429.

[15]Fung K S M,Chan F H Y,Lam F L,et al.A Tracing Evoked Potential Estimator[J].Signal Processing,1994,36:287-314.

[16]朱常芳,胡广书.诱发电位快速提取算法的新进展[J].国外医学生物医学工程分册,2000(23):211-216.

作者简介

黄日辉 男,1982年出生,广东台山人,五邑大学在读硕士研究生。研究方向为脑电信号处理。

卷积神经网络的定义范文5

关键词:信息融合;多传感器;移动机器人;定位

中图分类号:TP18 文献标识码:A 文章编号:1009-3044(2017)04-0171-02

The Study of Multi-sensor Information Fusion bested on Localization of Mobile Robot

FAN Chun-mei

(Shaoguan University, Shaoguan 512026, China)

Abstract:Robot localization is one of the most important issues to tackle in navigation. In order to meet the requirement of accurate localization,a localization method based on multi-sensor information fusion is proposed.The advantage and the method of theory of multi-sensor information fusion technology in detail is described in text, especially it gives an in-depth discussion to comparition of technologies. At last, future development trends of this technology are also presented.

Key words: mobile robot; multiCsensor; information fusion; location

1 引言

智能移踊器人是能够通过传感器控制行为与执行命令,感知环境,感知自身状态等的机器人系统。它的定位技术研究的是创建地图、同步定位、路径规划等。

移动机器人定位技术除了可以利用传感器确定机器人的位置信息,周围环境信息,还可以采用信息融合算法通过对信息整合后确定目的地,根据所建立的模型找出合适的路径。

由于移动机器人技术在多个领域占据举足轻重的地位,如:遥感,工业,医疗系统,金融系统,外星探测等。本文指出定位技术的优越性,对定位技术的常用方法进行详细对比,并进一步地探讨其发展趋势。

2 信息融合基本概念及优越性

信息融合可定义为:利用计算机技术对多个和/或多类传感器信息按一定准则加以协调管理、自动分析、优化综合以完成目标检测识别、态势描述、威胁评估、判断决策等任务而进行的信息处理以及传感器与数据库的管理过程。

信息融合技术从理论结合实际出发,在多个领域的应用中体现了它无可厚非的优越性:增加系统的生存能力,改善系统的可靠性,扩展时间、空间覆盖范围,信息处理速度快,提升系统对抗性能,信息获取成本低等。

3 基于多传感器的信息融合技术的理论方法

3.1 多传感器信息融合技术的常用方法

3.2 信息融合技术的比较

3.2.1 加权平均法

优点:实现简单,运算量小。

缺点:在不同的传感器能够独立进行定位时才有效,应用受限制。

3.2.2 Bayes推理方法

优点:Bayes网络推断有许多精确方法和近似方法,参数自适应和结构自适应方法。

缺点:所有要求的数据都必须是独立的,会给系统造成比较大的困难;在系统中增减一个规则时,需要重新计算所有的概率,才能保证系统的相关性和一致性。

3.2.3 Kalman滤波

优点: 可以估计平稳的一维随机过程和非平稳的多维随机过程,适合于实时处理并可减少实时在线计算量。它被广泛应用于制导系统、定位系统、通遥感、金融等。

缺点:只适用于线性系统,并且要求观测方程也必须是线性的。

3.2.4 扩展Kalman 滤波

优点:1)计算速度快,存储量低,在工程应用方面有明显的优势;2)在高斯白噪声且非线性强度低的环境中,算法稳定、收敛速度较快、估计精度较高;

缺点:1)需要计算雅可比矩阵,而且在非线性强度大的环境中,线性化容易增大,估计精度会明显下降,甚至发散;2)当初始状态相对误差较大时,扩展Kalman滤波很不稳定、收敛速度慢、估计精度较高;3)在复杂的非高斯环境中,扩展Kalman滤波算法也不适用。

3.2.5 Unscented 滤波

优点:1)对于非线性系统,与扩展Kalman滤波比较起来,Unscented 滤波不需要计算矩阵的雅可比式,计算简单且更容易实现;2)对高斯型密度函数可以精确估计到三阶,对非高斯型密度函数可以精确估计到二阶,因此其估计精度比一阶扩展 Kalman滤波更高,和二阶扩展 Kalman滤波相同。

缺点:滤波稳定性有待提高。

3.2.6 Dempster-Shafer证据推理

优点:可以不需要先验概率和条件概率密度,对于不确定性问题能够很好地表示及处理。

缺点:组合爆炸问题;有限辨识框架及证据体独立性问题;高冲突证据组合问题[1]。

3.2.7 模糊逻辑

优点: 不需要建立精确的数学模型;具有较强的鲁棒性;控制器成本低且容易操作。

缺点: 获取和建立模糊规则,模糊建模不容易得到有效解决;对于模糊控制器的参数和结构,也不容易依据系统综合指标来设计。

3.2.8 产生式规则

优点:自然性,模块性,有效性与清晰性。

缺点:规则之间的相互限制有可能使效率降低;结构性知识不能表达出来;不提供实际解释。

3.2.9 小波变换

优点:1)满足能量守恒方程的线形运算,2)小波变换相当于一个具有放大、缩小和平移等功能的数学显微镜,通过检查不同放大倍数下信号的变化来研究其动态特性;3)小波变换是稳定的,是一个信号的冗余表示。具有统一性和相似性,其正反变换具有完美的对称性。小波变换具有基于卷积和QMF的塔形快速算法。

缺点:在不同尺度上得到的逼近信号特征之间存在差异,小波变换时采用以个基函数导出的小波函数难以在不同尺度上准确地逼近局部信号特征,因此降噪预处理时的重构信号会丢失原有的时域特征[2]。

3.2.10 人工神经网络方法

优点:泛化能力强,稳定性高,容错性好,快速有效[1]。

4 信息融合技术的研究结果

加权平均法在单传感器系统中应用更具有优越性;Kalman滤波,Unscented滤波能够有效解决图像融合以及图像与非图像信息融合等技术研究上的热点;小波变换对于提高融合精度具有可实现性;模糊逻辑,人工神经网络可以很好地提高Kalman滤波算法的鲁棒性; Dempster- Shafer有效解决 Bayes方法的多种弊端,可以看成是 Bayes方法的改进与延伸,多种方法的分工合作与相互补充能很好的提高机器人系统的性能,因此,实现多种方法间优势的结合能让机器人定位技术取得理想的效果。

5 信息融合研究的难点问题

信息可否融合的准则及降低二义性的方法有待于解决;因主动辐射增多,系统总体易暴露; 获取基本概率赋值和系统的建立与管理是信息融合系统的设计难点;等等。

6 发展趋势

由于并行体结构是传感器结构的发展方向,因此,多传感器信息融合技术的发展趋势之一是并行计算能力的软、硬件的开发及应用。 由于多传感器信息融合算法大多集中于平稳随机过程,而且是线性分布的,因此,提高系统性能,研究并改进算法,以便于实现非平稳、非线性分布的信息融合算法。目前,基于多传感器信息融合的移动机器人主要实现了室内环境的定位与导航。关于传感器的布置,系统的建立与管理,行驶路线的规划以及机器人的自定位等方面仍需要更进一步的研究,尤其是移动机器人在非室内环境中的定位技术更是今后的研究方向。

参考文献:

卷积神经网络的定义范文6

关键词:数字高程模型;流域模拟;三维景观

中图分类号:TP319文献标识码:A文章编号:1009-3044(2009)32-9054-02

DEM-based Three-dimensional Landscape in the Basin Simulation

LU He1, WANG Zhi-hua1, LU Ru-cheng2, XU Xiu-hong1

(1.Resources and Environment Institute, Northeastern University of Agriculture, Harbin 150030, China; 2.Geography and Marine Science Institute, Nanjing University, Nanjing 210093, China)

Abstract: The selection of basin's simulated experimental area is conditioned by many factors,such as geography complexity and difficulty of data acquisition .The traditional method of exploring can not satisfy the selection of large scale basin area. In this paper, three-dimensional surface model was built by the means of 3d landscape based on digital elevation model and the remote sensing image, and the division of whole and sub basin were observed from different perspectives, those all provide an objective and scientific basis for fixing the experimental area.

Key words: DEM; model of basin; three-dimensional landscape

流域尺度的地理过程定量化研究一般是在计算机、GIS(地理信息系统)、RS(遥感)等技术支持下模拟多种地理过程[1]。因时间的差异性和空间分布的异质性,使得流域内的降水、蒸散发、入渗、径流等地理过程异常复杂。此外,流域模拟需要大量的、长时间尺度的基础数据作为支持。地理过程的复杂性和基础数据的难于获取使流域模拟的试验研究工作受到一定程度的制约,所以选择合理的试验区无疑是至关重要的。流域模拟的研究尺度通常较大,实地踏勘划定试验范围、确定水文观测站点存在不小困难。利用DEM(数字高程模型)、遥感影像,以及基于DEM生成的流域河网,在GIS平台下生成三维景观图,模拟真实流域地物地貌,最终确定流域模拟试验区域和水文观测站点的位置。

1 基础数据和软件平台说明

江苏省宜兴市位于31°07'-31°37'N,119°31-120°03'E,地处太湖水网平原与宜溧山地之间,境内河网密布、湖泊众多,水系发达,是作为流域模拟试验的理想地区。为保证现势性和逼真度,数字高程模型选用SRTM(航天飞机雷达地形测量计划)的DEM,分辨率为90m,获取时间是2000年。遥感数据采用美国陆地卫星Landsat-7的ETM+影像,分辨率为30m,时相是2006年5月21日。本文数据均自glcfapp.umiacs.umd.edu:8080/esdi/index.jsp下载得到。

数据格式转换选择了Global Mapper v10.02版,GIS软件采用ESRI公司的ArcGIS Desktop 9.2的ArcInfo版。RS软件使用美国RSI公司的ENVI(Environment for Visualizing Images)4.3版。运用美国农业研究部研究所开发的SWAT模型体系进行流域模拟中子流域的划分,软件版本是运行在ArcGIS 9.2平台下的ArcSWAT。

2 技术路线和分析

2.1 数据处理

下载得到的ETM+影像各波段后缀为.TIF.gz,不具有头文件,ENVI和ArcGIS均不能正常读取,借助Globe Mapper将可以合成真彩色的1、2、3波段分别转换成GeoTIFF文件格式,后缀为.tif(如图1)。将格式转换后的三个波段,在ENVI中叠加成包含三个波段的一幅遥感影像,为保证叠加后效果,重采样方法可选用三次卷积(如图2)。把叠加后的结果图保持为.tif格式,以便ArcGIS正确读取。

在Global Mapper中将获取的数据转换成美国地质调查局USGS-DEM,实现在ArcGIS中对DEM数据的读取。SRTM-DEM在水域、高山以及峡谷地区的数据质量较差,常常有数据空白区。其原因主要是因为在数据获取时,雷达信号受到干扰或者发生镜面反射、雷达阴影及回报滞后等情形,致使部分地区的数据无法获得[2]。数据空白区的存在影像了SRTM-DEM数据的使用,在使用数据之前,需要对空白区域进行填充。填充方法有利用对应的其它高分辨率DEM数据填充融合、利用已有等高线内插镶嵌、利用周围数据直接内插、提取等高线后内插以及利用SRTM填充工具等方法[3],此外梁科(2008)提出基于神经网络的SRTM数据空值区域填充的方法[3],并验证了其可行性。考虑基于内插的方法对DEM空白区域的填充效果较好,本文采用Global Mapper内插工具进行填充,在格式转换时一并完成。

三维景观图的生成依赖于DEM和遥感影像的套和,实现套和的前提是具有相同的空间参照。下载得到的SRTM-DEM和ETM+的空间参照均为WGS_84_UTM_Zone_51,可以直接进行二者的套和。

原始的DEM和ETM+图幅范围大,处理较不便,根据预计试验区大致范围在ArcGIS中建立掩模,切割DEM和ETM+数据。掩模建立时,为其指定与DEM、ETM+相同的空间参照。

2.2 流域河网的生成

在ArcGIS中加载SWAT模型,利用DEM进行子流域的划分。