前言:中文期刊网精心挑选了卷积神经网络概念范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
卷积神经网络概念范文1
中图分类号:TP18 文献标识码:A 文章编号:1009-3044(2016)33-0167-04
如今在机器学习领域中,深度学习方法已经占据了相当重要的地位,通过模仿人X学习方式构造模型,在图像、文本、语音处理方面取得了显著成果[1]。目前应用较为广泛的深度学习模型包含多层感知器模型(MLP)[2],卷积神经网络模型和限制性玻尔兹曼机模型等[4]。多层感知器[2]网络结构的神经节点一般分层排列,主要由输入层,输出层和一些隐层组成,同层之间的神经元节点无连接,相邻的两层神经元进行全连接,前一层的神经元的输出作为后一层神经元的输入,但本身此种算法存在着一些问题,那就是它的学习速度非常慢,其中一个原因就是由于层与层之间进行全连接,所以它所需要训练的参数的规模是非常大的,所以对其进行改进,产生了卷积神经网络模型。卷积神经网络模型在图像识别方面的应用十分广泛[5,8,9]。从它的结构上来看,层与层之间的神经元节点采用局部连接模式,而并非MLP的全连接模型,这样就降低了需要训练的参数的规模。而在它卷积层中,它的每一个滤波器作为卷积核重复作用于整个输入图像中,对其进行卷积,而得出的结果作为输入图像的特征图[6],这样就提取出了图像的局部特征。而由于每一个卷积滤波器共享相同的参数,这样也就大大降低了训练参数的时间成本。而本文,以卷积神经网络为研究对象,在其模型的基础上通过对其结构中卷积核也就是滤波器的大小进行调整并结合卷积核个数调整和gpu加速等已有的训练提速方法,达到降低训练时间并且对识别结果并无太大影响的目的。
1 卷积神经网络
卷积神经网络在MLP的基础上,已经对结构进行了优化,通过层与层之间的局部连接以及权值共享等方式对要训练的参数的进行了大幅减低。
1.1局部连接
BP神经网络中,神经元在本层中呈线性排列状态,层与层之间进行全连接,而在卷积神经网络中,为了减少每层之间的可训练参数数量,对连接方式进行了修改,相对于BP神经网络的全连接,卷积神经网络采取了局部连接的连接方式[7],也就是说按照某种关联因素,本层的神经元只会与上层的部分神经元进行连接。
2.2 权值共享
在CNN中,卷积层中的卷积核也就是滤波器,重复作用在输入图像上,对其进行卷积,最后的输出作为他的特征图,由于每个滤波器共享相同的参数,所以说他们的权重矩阵以及偏置项是相同的。
我们从上图看出,相同箭头连线的权值是共享的,这样在原有的局部连接的基础上我们又降低了每层需要训练的参数的数量。
2.3卷积过程
特征图是通过滤波器按照特定的步长,对输入图像进行滤波,也就是说我们用一个线性的卷积核对输入图像进行卷积然后附加一个偏置项,最后对神经元进行激活。如果我们设第k层的特征图记为[hk],权重矩阵记为[Wk],偏置项记为[bk],那么卷积过程的公式如下所示(双曲函数tanh作为神经元的激活函数):
2.4 最大池采样
通过了局部连接与权值共享等减少连接参数的方式卷积神经网络中还有另外一个重要的概念那就是最大池采样方法,它是一种非线性的采样方法。最大池采样法在对减少训练参数数量的作用体现在两个方面:
1 )它减小了来自m-1层的计算复杂度。
2 )池化的单元具有平移不变性,所以即使图像在滤波后有小的位移,经过池化的特征依然会保持不变。
3卷积神经网络整体构造以及减少训练时间的方法
3.1使用GPU加速
本次论文实验中,使用了theano库在python环境下实现卷积神经网络模型,在lenet手写数字识别模型上进行改进,由于theano库本身支持GPU加速,所以在训练速度上实现了大幅度的提高。
3.2 数据集的预处理
本次实验使用的两个数据集是mnist手写数字库以及cifar_10库
Mnist手写数字库具有60000张训练集以及10000张测试集,图片的像素都为28*28,而cifar_10库是一个用于普适物体识别的数据集,它由60000张32*32像素的RGB彩色图片构成,50000张图片组成训练集,10000张组成测试集。而对于cifar_10数据集来说,由于图片都是RGB的,所以我们在进行实验的时候,先把其转换为灰度图在进行存储。由于实验是在python环境下运行,theano函数库进行算法支持,所以我们把数据集进行处理,此处我们对使用的数据集进行了格式化。格式化的文件包括三个list,分别是训练数据,验证数据和测试数据。而list中每个元素都是由图像本身和它的相对应的标签组成的。以mnist数据集为例,我们包含train_set,valid_set,test_set三个list,每个list中包含两个元素,以训练集为例,第一个元素为一个784*60000的二维矩阵,第二个元素为一个包含60000个元素的列向量,第一个元素的每一行代表一张图片的每个像素,一共60000行,第二个元素就存储了对相应的标签。而我们取训练样本的10%作为验证样本,进行相同的格式化,而测试样本为没有经过训练的10000张图片。在以cifar_10数据集为实验对象时,把其进行灰度化后,进行相同的格式化处理方式。
3.3实验模型结构
本次实验是在python环境下基于theano函数库搭建好的lenet模型进行参数的调整,以达到在实验准确度可接受情况下减少训练时间的目的。
上图为实验中的基础模型举例说明实验过程,首先以mnist数据集为例,我们的输入图像为一个28*28像素的手写数字图像,在第一层中我们进行了卷积处理,四个滤波器在s1层中我们得到了四张特征图。在这里要特别的说明一下滤波器的大小问题,滤波器的大小可根据图像像素大小和卷积神经网络整体结构进行设置,举例说明,假如说我们的输入图像为28*28像素的图像,我们把第一层卷积层滤波器大小设置为5*5,也就是说我们用一个大小为5*5的局部滑动窗,以步长为一对整张图像进行滑动滤波,则滑动窗会有24个不同的位置,也就是说经过卷积处理后的C1层特征图的大小为24*24。此处的滤波器大小可进行调整,本论文希望通过对滤波器大小的调整,已达到减少训练时间的目的,并寻找调整的理论依据。C1层的特征图个数与卷积过程中滤波器数量相同。S1层是C1经过降采样处理后得到的,也就是说四点经过降采样后变为一个点,我们使用的是最大池方法,所以取这四个点的最大值,也就是说S1层图像大小为12*12像素,具有4张特征图。而同理S1层经过卷积处理得到C2层,此时我们滤波器的大小和个数也可以自行设置,得到的C2层有6张特征图,C2到S2层进行降采样处理,最后面的层由于节点个数较少,我们就用MLP方法进行全连接。
3.4实验参数改进分析
由此可见,我们对滤波器的大小以及个数的改变,可以直接影响到卷积训练参数的个数,从而达到减少训练时间的目的。
从另一种角度来看,增大滤波器的大小,实际效果应该相似于缩小输入图像的像素大小,所以这样我们可以预测增大滤波器的大小会减少样本的训练时间,但是这样也可能会降低训练后的分类的准确率,而滤波器的大小是如何影响训练时间以及分类准确率的,我们通过对两种图片库的实验来进行分析。
4 实验结果与分析
4.1以mnist手写数字数据集作为实验数据
我们知道卷积层可训练参数的数字与滤波器的大小和数字有关,所以我们通过对卷积层滤波器大小的变化来寻找较为普遍的可减少训练参数从而达到减少训练时间的目的。在实验记录中,我们表格纵列记录两层卷积层滤波器大小,横列分别为对已经过训练图像识别和对未经过训练的验证图像进行识别的错误率,最后记录每种滤波器大小搭配的使用时间。我们设定每次试验都进行100次重复训练,每次对权重矩阵进行优化。
此处我们记录两层滤波器大小之和作为横坐标,比较滤波器大小与实验之间的关系。两层滤波器大小相加后相同的元素我们把其对应时间做平均。
4.2以cifar_10数据集作为实验数据
同样是以100次循环训练进行测试,通过改变两层中滤波器的大小来寻找减少训练时间的设定。
此处以同样的方法,记录两层滤波器大小之和作为横坐标,比较滤波器大小与实验之间的关系。
4.3实验结果分析
从两组试验中,在不同的数据集下,我们得到了滤波器的大小与训练时间成反比的关系,而在减少了训练时间的同时确实增大了训练的错误率。
5 总结
通过实验结果分析表明,增大卷积层滤波器大小的方法,在此两种数据库的情况下,是有效减小训练时间的方式,而在不同的数据库对分类准确率的影响程度不同,mnist手写数字数据库中图像之间的相似度非常高,所以滤波器的增大对准确率产生的负面影响较小,而ifar_10数据集中图像之间的相似度较小,所以增大滤波器的大小对其分类结果的准确率的负面影响较大。
参考文献:
[1]LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
[2] Ruck D W, Rogers S K, Kabrisky M. Feature selection using a multilayer perceptron[J]. ]Journal of Neural Network Computing, 1990, 2(2): 40-48.
[3]LeCun Y, Bengio Y. Convolutional networks for images, speech, and time series[J]. The handbook of brain theory and neural networks, 1995, 3361(10): 1995.
[4] Larochelle H, Bengio Y. Classification using discriminative restricted Boltzmann machines[C]//Proceedings of the 25th international conference on Machine learning. ACM, 2008: 536-543.
[5]Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[C]//Advances in neural information processing systems. 2012: 1097-1105.
[6] Zeiler M D, Fergus R. Visualizing and understanding convolutional networks[C]//European Conference on Computer Vision. Springer International Publishing, 2014: 818-833.
[7] Jarrett K, Kavukcuoglu K, Lecun Y. What is the best multi-stage architecture for object recognition?[C]//2009 IEEE 12th International Conference on Computer Vision. IEEE, 2009: 2146-2153.
卷积神经网络概念范文2
(广东外语外贸大学 金融学院,广东 广州 510006)
摘 要:作为一个具有巨大应用前景研究方向,深度学习无论是在算法研究,还是在实际应用(如语音识别,自然语言处理、计算机视觉)中都表现出其强大的潜力和功能.本文主要介绍这种深度学习算法,并介绍其在金融领域的领用.
关键词 :深度学习;受限波兹曼机;堆栈自编码神经网络;稀疏编码;特征学习
中图分类号:TP181 文献标识码:A 文章编号:1673-260X(2015)01-0037-03
1 深度学习的研究意义
深度学习是一类新兴的多层神经网络学习算法,因其缓解了传统训练算法的局部最小性,引起机器学习领域的广泛关注.深度学习的特点是,通过一系列逻辑回归的堆栈作为运算单元,对低层数据特征进行无监督的再表示(该过程称为预学习),形成更加抽象的高层表示(属性类别或特征),以发现数据的分布式特征表示.深度学习的这种特性由于与脑神经科学理论相一致,因此被广泛应用于语音识别、自然语言处理和计算机视觉等领域.
生物学研究表明[1]:在生物神经元突触的输出变化与输入脉冲的持续时间有关,即依赖于持续一定时间的输入过程,输出信号既依赖于输入信号的空间效应和阈值作用,也依赖于时间总和效应.
传统的深度学习方法虽然较好地模拟了生物神经元的一个重要特性——空间总和效应上的深度,却忽视了生物神经元的另一个重要特性——时间总和效应上的宽度[2].因此,对于连续的时间变量问题(如语音识别),传统深度学习方法只能将连续的时间函数关系转化为空间关系,即离散化为时间序列进行处理.这样做有几个弊端:
(1)可能造成深度学习算法对时间采样频率的十分敏感,鲁棒性较差.这使得,不同时间尺度下,需要使用不同的数据和算法.这无疑是十分不方便的;
(2)导致深度网络规模过大,使得计算开销增大、学习效果变差、泛化性能降低;
(3)难以满足实际应用对算法的实时性的要求,更难以体现连续输入信息的累积效应,大大降低深度学习算法的实用性.
因此,对传统的深度学习算法进行改进,使其不但具有“深度”,亦能具有“宽度”,能够对连续时变数据进行更好的特征提取、提高算法效率和实用性,显得势在必行.基于这个切入点,本项目借鉴时频分析与小波分析中的方法,结合数学分析领域中的泛函分析技术,与堆栈自编码神经网络相结合,提出一种新的深度学习算法——深度泛函网络.为了验证算法的有效性及优越性,本项目将把新算法应用于金融时间序列的领域.
在目前国内外对于深度学习的研究中,几乎没有任何将深度学习技术运用于金融数据的研究.通过提出并运用得当的深度序列学习方法,我们期望从金融数据中抽取更高级的、具有经济学意义或预测性意义的高级特征(与人工设计的“技术指标”相对应),并开发相应的量化交易策略,并与其它传统算法进行对比,以说明所提算法的可行性和优越性.
2 国内外研究现状
人类感知系统具有的层次结构,能够提取高级感官特征来识别物体(声音),因而大大降低了视觉系统处理的数据量,并保留了物体有用的结构信息.对于要提取具有潜在复杂结构规则的自然图像、视频、语音和音乐等结构丰富数据,人脑独有的结构能够获取其本质特征[3].受大脑结构分层次启发,神经网络研究人员一直致力于多层神经网络的研究.训练多层网络的算法以BP算法为代表,其由于局部极值、权重衰减等问题,对于多于2个隐含层的网络的训练就已较为困难[4],这使得实际应用中多以使用单隐含层神经网络居多.
该问题由Hinton[5]所引入的逐层无监督训练方法所解决.具体地,该法对深度神经网络中的每一层贪婪地分别进行训练:当前一层被训练完毕后,下一层网络的权值通过对该层的输入(即前一层的输出)进行编码(Encoding,详见下文)而得到.当所有隐含层都训练完毕后,最后将使用有监督的方法对整个神经网络的权值再进行精确微调.在Hinton的原始论文中,逐层贪婪训练是通过受限波兹曼机(Restricted Boltzmann Machine,RBM)以及相对应的对比散度方法(Contrastive Divergence)完成的.与通常的神经元不同,RBM是一种概率生成模型,通常被设计为具有二元输入-输出(称为Bernoulli-Bernoulli RBM).通过对每一层的受限波兹曼机进行自底向上的堆栈(如图1),可以得到深度信念网(Deep Belief Network,DBN).
除了生成式的RBM,还有其他的深度学习结构被广泛使用和研究.如堆栈自编码神经网络(Stacked Auto-Encoder Network,SAEN)[6],以及深度卷积神经网络(Deep Convolutional Network)[7]等.前者的优势在于可以简单地采用通常的BP算法进行逐层预训练,并且引入随机化过程的抗噪声自编码网络(Denoising SAEN)泛化性能甚至超过DBN[8];而后者则通过权值共享结构减少了权值的数量,使图像可以直接作为输入,对平移、伸缩、倾斜等的变形具有高度不变性,因此在图像识别领域有着广泛应用.
近年来,稀疏编码(Sparse Encoding)和特征学习(Feature Learning)成为了深度学习领域较为热门的研究方向.B.A.Olshausen[9]等针对人脑的视觉感知特性,提出稀疏编码的概念.稀疏编码算法是一种无监督学习方法,它用来寻找一组“过完备”的基向量来更高效地表示输入数据的特征,更有效地挖掘隐含在输入数据内部的特征与模式.针对稀疏编码的求解问题,H.Lee等在2007年提出了一种高效的求解算法[10],该算法通过迭代地求解两个不同的凸规划问题以提高效率.同年,H.Lee等发现,当训练样本为图像时,对DBN的训练进行稀疏性的约束有利于算法学习到更高级的特征[11].例如,对手写识别数据集进行训练时,稀疏性约束下的DBN算法自主学习到了“笔画”的概念.
基于[10,11]的研究成果,R.Raina等[12]提出了“自导师学习(Self-Taught Learning)”的概念.与无监督学习(Unsupervised Learning)和半监督学习(Semi-supervised Learning)不同,自导师学习利用大量易获得的无标签数据(可以来自不同类别甚至是未知类别),通过稀疏编码算法来构建特征的高级结构,并通过支持向量机(Support Vector Machine,SVM)作为最终层分类器对少数有标签数据进行分类.这种更接近人类学习方式的模式极大提高了有标签数据的分类准确度.与之类似,H.Lee,R.Grosse等[13]提出了一种具有层次结构的特征学习算法.该算法将卷积神经网络与DBN结合,并通过稀疏正则化(Sparsity Regularization)的手段无监督地学习层次化的特征表征.图像识别实验表明,该算法能够自主学习得出“物体(Object Parts)”的概念,较好体现了人脑视觉感知的层次性和抽象性.
3 发展趋势
由于信号处理、语音识别、金融时间序列分析、视频分析等领域的实时应用需求,研究能够处理连续时变变量、自然体现时间联系结构的深度学习算法(即深度序列学习,Deep Sequence Learning)成为了新的研究热点.G.W.Taylor,G.E.Hinton等[14]提出时间受限波兹曼机(Temporal RBM,TRBM).该模型使用二值隐含元和实值可视元,并且其隐含元和可视元可以与过去一段历史的可视元之间可以有向地被相连.同时,该模型被用于人类动作识别,并展现出了优秀的性能.针对TRBM的一些不足,一些改进算法也不断涌现,如[15,16].然而,该类深度学习模型虽然考虑了动态的时间变量之间的联系,但依然只能处理离散时间问题,本质上还是属于转化为空间变量的化归法.同时,在自编码网络框架下,依然缺乏较好解决时间过程(序列)问题的方案.
4 金融时序数据中的应用
传统金融理论认为,金融市场中的证券价格满足伊藤过程,投资者无法通过对历史数据的分析获得超额利润.然而,大量实证研究却表明,中国股票价格波动具有长期记忆性,拒绝随机性假设,在各种时间尺度上都存在的可以预测的空间.因此,如何建立预测模型,对于揭示金融市场的内在规律,这无论是对于理论研究,还是对于国家的经济发展和广大投资者,都具有重要的意义.
股票市场是一个高度复杂的非线性系统,其变化既有内在的规律性,同时也受到市场,宏观经济环境,以及非经济原因等诸多因素的影响.目前国内外对证券价格进行预测的模型大致分为两类:一是以时间序列为代表的统计预测模型;该类方法具有坚实的统计学基础,但由于金融价格数据存在高噪声、波动大、高度非线性等特征,使得该类传统方法无法提供有效的工具.另一类是以神经网络、支持向量机等模型为代表的数据挖掘模型.该类模型能够处理高度非线性的数据,基本上从拟合的角度建模.虽然拟合精度较高,但拟合精度的微小误差往往和市场波动互相抵消,导致无法捕捉获利空间甚至导致损失,外推预测效果无法令人满意.因此,建立即能够处理非线性价格数据,又有良好泛化能力的预测模型势在必行.
——————————
参考文献:
〔1〕Zhang L I, Tao H W, Holt C E, et al. A critical window for cooperation and competition among developing retinotectal synapses[J]. Nature, 1998, 395(6697).
〔2〕37-44.欧阳楷,邹睿.基于生物的神经网络的理论框架——神经元模型[J].北京生物医学工程,1997,16(2):93-101.
〔3〕Rossi A F, Desimone R, Ungerleider L G. Contextual modulation in primary visual cortex of macaques[J]. the Journal of Neuroscience, 2001, 21(5): 1698-1709.
〔4〕Bengio Y. Learning deep architectures for AI[J]. Foundations and trends? in Machine Learning, 2009, 2(1):1-127.
〔5〕Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets[J]. Neural computation, 2006, 18(7): 1527-1554.
〔6〕Vincent P, Larochelle H, Bengio Y, et al. Extracting and composing robust features with denoising autoencoders[C]//Proceedings of the 25th international conference on Machine learning. ACM, 2008: 1096-1103.
〔7〕Lee H, Grosse R, Ranganath R, et al. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations[C]//Proceedings of the 26th Annual International Conference on Machine Learning. ACM, 2009: 609-616.
〔8〕Vincent P, Larochelle H, Lajoie I, et al. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion[J]. The Journal of Machine Learning Research, 2010, 9999: 3371-3408.
〔9〕Olshausen B A, Field D J. Sparse coding with an overcomplete basis set: A strategy employed by V1?[J]. Vision research, 1997, 37(23): 3311-3325.
〔10〕Lee H, Battle A, Raina R, et al. Efficient sparse coding algorithms[J]. Advances in neural information processing systems, 2007, 19: 801.
〔11〕Lee H, Ekanadham C, Ng A Y. Sparse deep belief net model for visual area V2[C]//NIPS. 2007, 7: 873-880.
〔12〕Raina R, Battle A, Lee H, et al. Self-taught learning: transfer learning from unlabeled data[C]//Proceedings of the 24th international conference on Machine learning. ACM, 2007: 759-766.
〔13〕Lee H, Grosse R, Ranganath R, et al. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations[C]//Proceedings of the 26th Annual International Conference on Machine Learning. ACM, 2009: 609-616.
〔14〕Taylor G W, Hinton G E, Roweis S T. Modeling human motion using binary latent variables[J]. Advances in neural information processing systems, 2007, 19: 1345.
卷积神经网络概念范文3
【关键词】人脸识别;人脸检测;方法
Abstract:Face recognition system is one of the most popular current scientific research,In this paper,the process and prospects of face recognition system to do a simple review.The application of the system to do a simple analysis and the main method of face recognition for the corresponding category.For the future development of face recognition systems were mainly discussed.
Key words:Face Recognition;Face Detection;Methods
一、引言
随着科学技术的突飞猛进,计算机及网络的高速发展,信息的安全性、隐蔽性越来越重要,如何有效、方便的进行身份验证和识别,已经成为人们日益关心的问题。生物认证的方法,即利用人类自身的特征来进行身份认证,具有传统方法没有的有点,也解决了身份认证技术所面临的一大难题。其具有方便、强化安全、不会丢失、遗忘或转让等优点。现在人体生物识别技术的研究主要针对人脸、指纹、虹膜、手型、声音等物理或行为特征来进行。本文主要对人脸识别技术的介绍。
人脸识别是指给定一个静止或动态图像,利用已有的人脸数据库来确认图像中的一个或多个人。如同人的指纹一样,人脸也具有唯一性,也可用来鉴别一个人的身份。现在己有实用的计算机自动指纹识别系统面世,并在安检等部门得到应用,但还没有通用成熟的人脸自动识别系统出现。人脸图像的自动识别系统较之指纹识别系统、DNA鉴定等更具方便性,因为它取样方便,可以不接触目标就进行识别,从而开发研究的实际意义更大。另一方面,人脸表情的多样性;以及外在的成像过程中的光照,图像尺寸,旋转,姿势变化等给识别带来很大难度。因此在各种干扰条件下实现人脸图像的识别,也就更具有挑战性。
二、人脸识别系统流程
(1)人脸图像的获取:图像的获取都是通过摄像头摄取,但摄取的图像可以是真人,也可以是人脸的图片或者为了相对简单,可以不考虑通过摄像头来摄取头像,而是直接给定要识别的图像。
(2)人脸的检测:人脸检测的任务是判断静态图像中是否存在人脸。若存在人脸,给出其在图像中的坐标位置、人脸区域大小等信息。而人脸跟踪则需要进一步输出所检测到的人脸位置、大小等状态随时间的连续变化情况。
图1 人脸识别框架
(3)特征提取:通过人脸特征点的检测与标定可以确定人脸图像中显著特征点的位置(如眼睛、眉毛、鼻子、嘴巴等器官),同时还可以得到这些器官及其面部轮廓的形状信息的描述。根据人脸特征点检测与标定的结果,通过某些运算得到人脸特征的描述(这些特征包括:全局特征和局部特征,显式特征和统计特征等)。
(4)基于人脸图像比对的身份识别:即人脸识别问题。通过将输入人脸图像与人脸数据库中的所有已知原型人脸图像计算相似度并对其排序来给出输入人脸的身份信息。
(5)基于人脸图像比对的身份验证:即人脸确认问题。系统在输入人脸图像的同时输入一个用户宣称的该人脸的身份信息,系统要对该输入人脸图像的身份与宣称的身份是否相符作出判断。
三、人脸识别技术现状及发展前景
自1995年以来,国外一些公司看准了人脸识别系统广阔的应用前景,动用了大量人力和物力,自己独立研发或与高校合作,开发了多个实用的人脸识别系统,例如:加拿大Imagis公司的ID-2000面部识别软件,美国Identix公司1的FaceIt人脸识别系统,德国Human Scan公司的BioID身份识别系统,德国Cognitec Systems公司的Face VACS人脸识别系统等;美国A4vision公司的3D人脸识别产品;等等。
国内相关领域较为出名的公司有上海银晨智能识别科技有限公司(IS'vision),他们与中科院计算所联合开发了会议代表身份认证/识别系统、嫌疑人面像比对系统、面像识别考勤/门禁系统、出人口黑名单监控系统等多种自动人脸识别应用系统。2008年,北京奥运会开幕式正式使用了中国自主知识产权的人脸识别比对系统;2010年4月1日起,国际民航组织(ICAO)已确定其118个成员国家和地区必须使用机读护照,人脸识别技术是首推识别模式,该规定已经成为国际标准;2011年,Face book初次引入人脸识别技术,登陆人员可以免信息验证而激活页面;2012年3月6日,江苏省公安厅与南京理工大学日前签约共建“社会公共安全重点实验室”,开展“人脸识别”技术相关领域项目攻关。
到目前为止,虽然有关自动人脸识别的研究已经取得了一些可喜的成果,但在实际应用环境下仍面临着许多难以解决的问题:人脸的非刚体,表情、姿态、发型和化妆的多样性以及环境光照的复杂性都给正确的人脸识别带来了很大的困难。即使在大量来自模式识别、计算机视觉、生理学、心理学、神经认知科学等领域的研究人员对自动人脸识别艰苦工作40余年之后,其中不少问题至今仍然困绕着研究人员,始终找不到完善的解决办法。
在人脸识别市场,特别是在中国的市场,正经历着迅速的发展,而且发展的脚步也将越来越快。主要有三大原因:
1.是科技界和社会各个领域都认识到人脸识别技术的重要性,国家政策对人脸识别技术研究给予了很大支持,使得我国人脸识别技术取得了很大进展。国际上,美国国家标准技术局(NIST)举办的Face Recognition Vendor Test 2006(FRVT2006)通过大规模的人脸数据测试表明,当今世界上人脸识别方法的识别精度比2002年的FRVT2002至少提高了一个数量级(10倍)。其中一些方法的识别精度已经超过人类的平均水平。而对于高清晰、高质量人脸图像识别,机器的识别精度几乎达到100%。
2.各种应用需求不断出现。人脸识别市场的快速发展一方面归功于生物识别需求的多元化,另一方面则是由于人脸识别技术的进步。从需求上来说,除了传统的公司考勤、门禁等应用外,视频监控环境下的身份识别正成为一种迫切的需求,即在一个较复杂的场景中,在较远的距离上识别出特定人的身份,这显然是指纹识别的方法不能满足的,而人脸识别却是一个极佳的选择。
3.人口基数因素。人脸识别系统的市场大小,很大程度上是和人口的数量大小相关的。而我国有13亿人口,这从本质上说明了我国是世界上规模最大的生物识别市场。
四、常用的人脸识别方法
人脸识别技术和方法可分为两大类:基于几何特征的方法和基于模板匹配的方法。基于几何特征方法的思想是首先检测出嘴巴,鼻子,眼睛,眉毛等脸部主要部分的位置和大小,然后利用这些部件的总体几何分布关系以及相互之间的参数比例来识别人脸。基于模板的方法是利用模板和整个人脸图像的像素值之间的自相关性进行识别,这种方法也叫做基于表象的方法。
本文主要分析了常用的人脸识别方法为:几何特征的方法、模型的方法、神经网络的方法和多分类器集成方法。
1.几何特征的方法
最早的人脸识别方法就是Bledsoe提出的基于几何特征的方法,这种方法以面部特征点之间的距离和比率作为特征通过最近邻方法来识别人脸。该方法建立的人脸识别系统是一个半自动系统,其面部特征点必须由人手工定位,也正是由于人工的参与,该系统对光照变化和姿态变化不敏感。
Kanade首先计算眼角、鼻孔、嘴巴、下巴等面部特征之间的距离和它们之间的角度以及其它几何关系然后通过这些几何关系进行人脸的识别工作在一个20人的数据库上识别率为45%一75%。
Brunelli和Poggio通过计算鼻子的宽度和长度、嘴巴位置和下巴形状等进行识别,在一个47人的人脸库上的识别率为90%.然而,简单模板匹配方法在同一人脸库上的识别率为100%。
基于几何特征的方法比较直观,识别速度快,内存要求较少,提取的特征在一定程度上对光照变化不太敏感。但是,当人脸具有一定的表情或者姿态变化时,特征提取不精确,而且由于忽略了整个图像的很多细节信息且识别率较低,所以近年来已经很少有新的发展。
2.模型的方法
隐马尔可夫模型,是一种常用的模型,原HMM的方法首先被用于声音识别等身份识别上,之后被Nefian和Hayrs引人到人脸识别领域。它是用于描述信号统计特性的一组统计模型。
在人脸识别过程中,首先抽取人脸特征,得到后观察向量,构建HMM人脸模型,然后用EM算法训练利用该模型就可以算出每个待识别人脸观察向量的概率,从而完成识别,HMM方法的鲁棒性较好,对表情、姿态变化不太敏感,识别率高。
3.神经网络的方法
神经网络在人脸识别领域有很长的应用历史,1994年就出现了神经网络用于人脸处理的综述性文章。
动态链接结构(DLA)是用于人脸识别系统中最有影响的神经网络方法。DLA试图解决传统的神经网络中一些概念性问题,其中最突出的是网络中语法关系的表达。DLA利用突触的可塑性将神经元集合划分成若干个结构,同时保留了神经网络的优点。
自组织映射神经网络(SOM)与卷积神经网络相结合的混合神经网络方法进行人脸识别。SOM实现对图像的采样向量降维,且对图像样本的小幅度变形不敏感。卷积网络用来实现相邻像素间的相关性知识,在一定程度对图象的平移、旋转、尺度和局部变形也都不敏感。
神经网络方法较其他人脸识别方法有着特有的优势,通过对神经网络的训练可以获得其他方法难以实现的关于人脸图像的规则和特征的隐性表示,避免了复杂的特征抽取工作,并有利于硬件的实现。缺点主要在于其方法的可解释性较弱,且要求多张人脸图像作为训练集,所以只适合于小型人脸库。
4.多分类器集成方法
人脸的表象会因为光照方向、姿态、表情变化而产生较大的变化,每种特定的识别器只对其中一部分变化比较敏感,因此,将可以整合互补信息的多个分类器集成能够提高整个系统的分类准确率。
Gutta等人提出将集成的RBF与决策树结合起来进行人脸识别。结合了全局的模板匹配和离散特征的优点,在一个350人的人脸库上测试,取得了较好的实验结果。
五、总结及展望
随着图像处理、模式识别、人工智能以及生物心理学的研究进展,人脸识别技术也将会获得更大的发展。面对这种高新技术,人脸识别技术有着不可代替的优点。近几年对三维模型的人脸识别研究以成为一个热点。从二维模型到三维模型是一个阶跃性的发展,中间必须克服三维模型的开销大,所占空间大等因素。因此如何增强这类系统的保密性将是人脸识别系统要考虑的问题,它将是这种识别系统投入使用后人们最关心的问题,同时也是人脸识别领域需要研究的新课题。我们期待在不久的将来,人们将告别钥匙,迎来人脸开门的新时代。
参考文献
[1]李武军,王崇骏,张炜,等.人脸识别研究综述[J].模拟识别与人工智能,2006,19(1):58-65.
[2]李子青.人脸识别技术应用及市场分析[J].中国安防,2007,8:42-46.
[3]柴秀娟,山世光,卿来云,等.基于3D人脸重建的光照、姿态不变人脸识别[J] .软件学报,2006,17(3):525-534.
卷积神经网络概念范文4
独立分量分析(independentcomponentanalysis,ICA)是基于信号高阶统计量的信号处理方法,其基本含义是将多道观测信号按照统计独立的原则通过优化算法分解为若干独立成分,前提是各源信号为彼此统计独立的非高斯信号。与主分量分析(prin-cipalcomponentanalysis,PCA)相比,ICA不仅实现了信号的去相关,而且要求各高阶统计量独立。1994年,Comon[1]系统地分析了瞬时混迭信号盲源分离问题,提出了ICA的概念与基本假设条件,并基于累积量直接构造了目标函数,进而指出ICA是PCA的扩展和推广。20世纪90年代中期,Bell和Sejnowski[2]提出随机梯度下降学习算法,即最大熵ICA算法(Infomax-ICA)。近年ICA在众多领域得到广泛应用,主要得益于Lee等提出的扩展ICA算法[3]、Hyvarinen的定点ICA算法[4]与Cardoso的JADE算法[5]。
2ICA模型
设有m个未知的源信号si(t),i=1~m,构成一个列向量s(t)=[s1(t),s2(t),…,sm(t)]T,设A是一个n×m维矩阵,一般称为混合矩阵(mixingmatrix)。设x(t)=[x1(t),x2(t),…,xn(t)]T是由n个观测信号xi(t),i=1~n构成的列向量,n(t)为n维附加噪声,其瞬时线性混合模型(图1)表示为下式:x(t)=As(t)+n(t),n≥m(1)一般情况下,噪声可以忽略不计。则ICA模型可以简化为:x(t)=As(t),n≥m(2)ICA的命题是:对任何t,根据已知的x(t)在A生物医学工程研究JournalofBiomedicalEngineeringResearch未知的条件下求解未知的s(t)。这就构成一个无噪声的盲分离问题。ICA的思路是设置一个解混矩阵W(W∈Rm×n),使得x经过W变换后得到n维输出列向量y(t),即y(t)=Wx(t)=WAs(t)(3)如果通过学习实现了WA=I(I为单位阵),则y(t)=s(t),从而达到分离源信号的目的。根据概率论中心极限定理,两个独立随机变量和的高斯性通常比原来任何一个的高斯性都要强。信号分离的过程,就是神经网络输出的各分量非高斯性(即独立性)增强的过程。由于没有任何参照目标,学习只能是自组织的。学习过程的第一步是建立以W为变量的目标函数L(W),如果某个W能使L(W)达到极值,该W即为所需的解;第二步是用一种有效的算法求解W。按照L(W)定义的不同和求W的算法不同,可以构成各种ICA算法。目标函数的定义可以分为基于高阶统计和基于信息论的方法。
3ICA判据与算法
用ICA解决BSS问题,一般基于以下假设:①各源信号si(t)统计独立;②观测信号数n≥源信号数m;③各源信号si(t)中至多允许有一个高斯分布的信号源;④各传感器引入的噪声很小。ICA理论及分离算法的关键在于如何度量分离结果的独立性。
3.1基于非高斯最大化的ICA
直观的说,非高斯性是ICA模型估计的关键。采用峭度(kurtosis)和负熵(negentropy)可以度量非高斯性的大小。
3.1.1基于峭度高阶统计量的判据随机变量y(t)没有归一化的峭度,也称作四阶累积量,定义为:kurt(y)=E{y4}-3(E{y2})2=C4[y4](4)对高斯信号变量来说,它的kurtosis等于零;但对大多数非高斯随机变量而言,它们的kurtosis有正也有负。声音信号等具有正kurtosis值的信号称为超高斯信号,生物医学信号、图像信号、通信信号等具有负kurtosis值的信号称作亚高斯信号。由于该度量方法在理论和计算上都非常简单,因此广泛用于ICA和相关领域。
3.1.2基于负熵的ICA目标函数由信息论理论可知,在所有具有等方差的随机变量中,高斯分布的随机变量的信息熵最大,非高斯性越强,其信息熵越小。这表明熵能用于非高斯性的测量。负熵定义如下:J(y)∝H(ygauss)-H(y)(5)其中,H(y)=∫f(y)logf(y)dy,ygauss是一与y具有相同协方差的高斯随机变量。负熵总是非负的,并只有当y是高斯分布时为零。实际应用中为简化计算,通常要对负熵加以近似[6]:J(y)∝[E{G(y)}-E{G(ν)}]2(6)其中,ν为零均值单位方差的高斯向量,y的均值为零,且是单位方差;G(•)可取为G1(u)=1a1log-cosha1u(1≤a1≤2)或G2(u)=-exp(-u2/2)等非二次函数。这种近似得到的负熵,给出了古典的kurto-sis和负熵在非高斯性测量上的一种很好的折衷,其近似概念简单,计算快速,具有较好的鲁棒性。
3.2基于信息论的ICA
3.2.1基于极大似然(ML)估计的ICA在ICA模型中可以直接定义似然函数(对数形式)如下:logL=∑Tt=1∑ni=1logfi(wWix(t))+Tlog|detW|(7)其中,fi为独立分量si的密度函数(假设pdf已知),x(t)(t=1,2,…,T)是x的实现,该式也可表示为:1TlogL=E{∑ni=1logfi(wTix)}+log|detW|(8)在实际的ML估计中,独立分量的pdf也不必精确的估计出来。事实上,只要能够确定独立分量的超高斯或亚高斯性即可。但是,对独立分量先验知识的错误认知,会导致完全错误的结果。
3.2.2基于信息最大化的ICAInfomax算法充分利用神经网络的知识,其原理是最大化一个具有非线性输出神经网络的输出熵(或信息流)。假设x是一个输出形式为Φi(wiTx)的神经网络输入,这里Φi是一些非线性标量函数,wi是神经网络的权向量,得到最大化输出的熵为:H(Φ1,…,Φn)=H(x)+E{log│detF/W(x)│}(9)式中F(x)=(Φ1(w1Tx),…,Φn(wnTx))。57第4期赵浩等•独立分量分析在生物医学信号处理中的应用E{log│detF/W(x)│}=∑Ni=1E{logΦ′i(wiTx)}+log│detW│(10)比较式(8)与式(10),可以看出输出熵同似然函数的期望值有相同的形式。在此处,独立分量的pdf被函数Φ′i代替。如果此处的非线性函数Φ′i采用相应于累计的分布函数,比如说Φ′I(•)=fi(•),那么输出熵则等于似然值。所以Infomax和MLE是等价的。
3.2.3基于最小互信息(MMI)的ICA根据信息论中互信息的定义,考虑到线性关系y(t)=Wx(t),可得基于最小互信息的目标函数I(y1,y2,…yn)=∑iH(yi)-H(x)-log|detW|(11)最小化该式即可得到分离矩阵W,使yi(t)趋于相互独立。
3.3ICA的学习算法
ICA的学习算法可分为两类,一类是求取相关目标函数的极值,另一类是基于随机梯度方法的自适应算法。一种好的学习算法应保证解的正确性,并且算法简单,收敛速度快。近年Lee等提出了扩展ICA算法[3],该算法在迭代过程中不需要计算信号的高阶统计量,收敛速度快,可实现亚高斯和超高斯信号的同步分离。FastICA算法是一种基于负熵或极大似然估计等独立性判决准则的分离算法[4],该算法是基于定点递推算法得到的。FastICA收敛速度快,不需要选择步长,独立成分可以逐个估计,并具有很多神经算法的优点,如计算简单,需求的内存小,是并行的。基于负熵的一维FastICA算法能估计其中的一个独立分量,或者说是一个投影,其步骤如下:(1)中心化观测数据,使其均值为零;并对观测数据进行白化预处理,初始权值向量W;(2)利用定点准则计算下一个ICA基本向量的估计:W(k)=E{xg(W(k-1)Tx)}-E{g′(WT(k-1)x)}W(12)式中g(•)为g1(u)=tanh(a1u)(1<a1<2,经常置a1=1)或g2(u)=uexp(-u2/2);(3)将W(k)标准化,即W(k)除以它的范数,W(k)=W(k)/W(k);(4)如果不收敛,则返回第2步。
4ICA在生物医学信号处理中的应用
生物医学信号的采集设备一般由各类传感器、运算放大器、滤波器、AD/DA转换、预处理等模块构成,生物医学信号比较微弱,一般处在微伏级,暴露于大量的背景噪声和传感器噪声中,并且电路可能存在不同的内部时钟和传输转换时延,各通道间存在串扰和迭加,干扰信号的幅度可能比有用信号的幅度还要强,具有较强的非平稳性和随机性等普遍特征。如何在保证信号特征基本不变的前提下,对其进行去噪提纯,继而进行信号的特征提取和压缩,改善其存储、检索及模式自动识别等问题,是医疗自动化和信息化的重要课题。由于ICA是根据观测信号和源信号的概率分布来估计各源信号,考虑信号的高阶统计特性,因而能有效的提升信号的信噪比,是一种非常有效的处理方法。众多的科技工作者已经把ICA用于生物医学信号的研究。其中,Lee等把扩展ICA用于EEG和fM-RI数据的处理[3];Common提出的基于高阶累计量的算法也被用于分离胎儿和母体的ECG[7];FastICA固定点算法也被用于EEG和MEG数据———脑的电子和电磁活动行为[8],等等。但是,各算法的最优结果和各算法的鲁棒性还有待进一步确定,这也正是我们当前的研究方向。
4.1分离生物医学信号中干扰或噪声
医学信号中常用的脑电信号是利用放置在头皮不同位置的导联纪录的一组数据,极易受一些干扰成分的影响,如眼球运动伪迹、眨眼、心电伪迹和工频干扰,这些干扰成分会对脑电信号的分析处理产生很多不良的影响。作为研究和临床使用的EEG信号,如何在有非自然信号污染的EEG信号中提取神经元基本特征是研究人员面临的问题[9,10]。文献[11]将小波分析和ICA相结合,用小波软门限法提高脑电的信噪比,再利用ICA分离出源信号,有效地去除了脑电中的噪声和心电干扰。应用ICA分离这些信号和噪声的根据是:脑活动与其他信号(如眼电、心电等)是不同的生理过程,即它们相互之间是统计独立的,符合ICA模型的假设条件。在噪声干扰确定并可人为生成(如脑电中的工频干扰)时[12],或干扰具有明确生理意义时,即干扰信号和有用生理信号可被看作是由相对独立的不同的源产生的情况下,可将噪声或干扰分离成独立的源信号。我们利用MATLAB进行如下试验:图3为3路同步测量的脑电和眼动信号,从原信号及其功率谱可见,脑电信号中含有眼动干扰和60Hz的工频干扰。由于脑电数据库没有提供同步测量的工频信号,我们构造两个60Hz工频干扰源P1=sin(2*pi*60*t);P2=cos(2*pi*60*t),与3路源信号构成5路信号,然后采用FastICA算法分离这5路信号。将分离后的眼电、工频干扰信号置零后,再重构源信号。图4为不含眼动和工频干扰的脑电信号,从重构结果及其频谱可见,脑电信号在100点和700点附近的眼动干扰明显消除,60Hz的工频干扰也得到了很好的抑制,试验取得了良好效果。
4.2特征提取
在生物医学信号和图像处理中,常需要提取信号的状态特征,作为诊断和识别的依据,通常提取特征都是基于信号的低阶统计特性,而ICA充分利用了信号的高阶相关性,能有效的提取信号在生理意义上的本质特征,分离出与待分析信号相对稳定的独立分量模式,进而可以用作信号的特征提取或分类[13,6]。郭晓静,等[13]分析处理不同心理作业的思维脑电信号,初步发现了与心理作业相对应的脑电独立分量的特征,并用于心理作业的分类,为脑机接口技术提供了新的方法。
卷积神经网络概念范文5
独立分量分析(ICA)是统计信号处理近年来的一项发展。顾名思义,这是一种分解技术,其特点是把信号分解成若干相互独立的成分。主分量分析(PCA)和奇异值分解(SVD)是人们较熟悉的分解信号的线性代数方法,ICA与它们的主要不同之处表现在:
(1)后者只要求分解出来的各分量互相正交(不相关),但并不要求它们互相独立。用统计信号处理的语言来表达,即:后者只考虑二阶统计特性,而前者则要更全面考虑其概率密度函数的统计独立性。
(2)后者按能量大小排序来考虑被分解分量的重要性。这样的分解虽然在数据压缩和去除弱噪声方面有其优点,但分解结果往往缺乏明确的生理意义。前者虽然分解出的分量其能量大小存在不确定性,但当测量值确实是由若干独立信源混合而成时,分解结果往往具有更好的生理解释。由于测得的生理信号往往是若干独立成分的加权迭加(例如,诱发脑电总是被自发脑电所淹没,而且常伴随有心电、眼动、头皮肌电等干扰),此ICA是一项值得注意的分解方法。
此外,神经生理研究认为,人类对认知、感知信息的前期处理有“去冗余”的特点。ICA在这方面也表现出类似特性,因为互相独立的分量之间互信息是最少的。ICA是伴随着盲信号处理,特别是盲信源分离发展起来。其研究热潮方兴未艾,也正在引起生物医学工程界的注意,IEEETransBME正在组织出版以它为重点的专辑。就国际范围看,以下几个研究单位目前工作比较领先:(1)美国加州大学生物系计算神经生物学实验室,(2)日本Riken脑科学研究所脑信息研究室,(3)芬兰赫尔辛基工业大学计算机及信息科学实验室,目前发表有关文献较多的刊物有IEEETrans的SP和NN以及NeuralComputation等。本文目的是对ICA的原理、算法及应用作一简述,以引起国内同行对它的关注。将侧重于概念说明,而不追求数学上的严谨性。
2原理
2.1问题的提法,s-(n)是一组互相独立的信源,A是混合矩阵,x-(n)是观察记录,即x-(n)=As-(n)。问题的任务是:在A阵未知且对s-(n)除独立性外无其它先验知识的情况下,求解混矩阵B,使得处理结果y-(n)=Bx-(n)中各分量尽可能互相独立,且逼近s(n)。容易理解,解答不是唯一的,它至少受以下条件的限制:(1)比例不定性:s-(n)中某一分量大K倍时,只要使相应的A阵系数减小K倍,x-(n)便保持不变。
因此,求解时往往把s-(n)假设成具有单位协方差阵,即s-中各分量均值为零,方差为1,且互相独立。(2)排序不定性:y-与s-中各分量排序可以不同。因为只要对调B阵中任意两行,y-中相应元素的位置也便对调。(3)s-(n)中至多只能有一个高斯型信源:这是因为高斯信源的线性组合仍是高斯型的,因此混合后便无法再区别。(4)信源数目N只能小于或等于观测通道数M。N>M情况目前尚未解决。以下讨论设M=N。因此,y-(n)只是在上述条件下对s-(n)的逼近。换名话说,任务的实质是优化问题,它包括两个主要方面:优化判据(目标函数)和寻优算法。
2.2目标函数
这一领域的研究者已经从不同角度提出了多种判据。其中以互信息极小判据(MinimizationofMutualInformation,简记MMI)和信息或熵极大判据(Informax或MaximizationofEntropy,简记ME)应用最广。由于最基本的独立性判据应由概率密度函数(probabilitydensityfunction,简记pdf)引出,而工作时pdf一般是未知的,估计它又比较困难,因此通常采用一些途径绕过这一困难。
常用的方法有两类:①把pdf作级数展开,从而把对pdf的估计转化为对高阶统计量的估计;②在图1的输出端引入非线性环节来建立优化判据。后一作法实际上隐含地引入了高阶统计量。(1)互信息极小判据:统计独立性的最基本判据如下:令p(y-)是y-的联合概率密度函数,pi(yi)是y-中各分量的边际概率密度函数。当且仅当y-中各分量独立时有:p(y-)=∏Ni=1pi(yi)因此用p(y-)与∏i=1pi(yi)间的Kullback-Leibler散度作为独立程度的定量度量:I(y-)=KL[p(y-),∏Ni=1pi(yi)]=∫p(y-)log[p(y-)∏Ni=1pi(yi)]dy-(1)显然,I(y-)0,当且仅当各分量独立时I(y-)=0。因此,互信息极小判据的直接形式是:在y-=Bx-条件下寻找B,使(1)式的I(y-)极小为了使判据实际可用,需要把I(y-)中有关的pdf展成级数。
由于在协方差相等的概率分布中高斯分布的熵值最大,因此展开时常用同协方差的高斯分布作为参考标准。例如,采用Gram-Charlier展开时有:P(yi)PG(yi)=1+13!k2yih3(y-i)+14!k4yih4(yi)+…式中PG(yi)是与P(yi)具有同样方差(σ2=1)和均值(μ=0)的高斯分布。k3yi、k4yi是yi的三、四阶累计量(cumulant),hn(yi)是n阶Hermit多项式。此外还有许多其他展开办法,如Edgeworth展开,利用负熵(Negentropy)等。不论采用何种展开方式,经推导后总可把式(1)近似改成k3、k4的函数:I(y)=F(k3y-,k4y-,B)(1)’F(·)的具体形式多种多样,视推导时的假设而异。
这样就得到互信息判据的实用近似形式:在y-=Bx-条件下寻找B,使式(1)的I(y-)极小(2)Infomax判据:这一判据的特点是在输出端逐分量地引入一个合适的非线性环节把yi转成ri(如图2)。可以证明,如果gi(·)取为对应信源的累积分布函数cdf(它也就是概率密度函数的积分),则使r-=(r1…rN)T的熵极大等效于使I(y-)极小,因此也可达使y-中各分量独立的要求。从而得到Infomax判据:在选定适当gi(·)后,寻找B使熵H(r-)极大需要指出的是,虽然理论上gi(·)应取为各信源的cdf,但实践证明此要求并不很严格,有些取值在0~1之间的单调升函数也可以被采用,如sigmoid函数、tanh(·)等。估计H(r-)固然也涉及pdf,但由于其作用已通过gi(·)引入,所以可以不必再作级数展开而直接用自适应选代寻优步骤求解。文献中还提出了一些其他判据,如极大似然、非线性PCA等,但它们本质上都可统一在信息论的框架下,所以不再一一列举[1]。
3处理算法优化算法
可大致分为两类,即批处理与自适应处理。
3.1批处理批处理比较成熟的方法有两类。较早提出的是成对旋转法[2],其特点是把优化过程分解成两步。先把x-(n)经W阵加以“球化”得z-(n),使z-(n)T=IN,即:各分量不相关且方差为1,然后再寻找合适的正交归一阵U达到使y-各分量独立的目的。前一步类似于PCA,后一步则可利用Givens旋转,根据目标函数,将z-中各分量两两成对反复旋转直到收敛。这种方法计算量较大。1999年,Gadoso提出几种方法对它作了进一步改进[3],其中包括:Maxkurt法、JADE法、SHIBBS法等,限于篇幅,本文不再叙述。近年来,提出的另一类方法是所谓“固定点”法(FixedPointMethod)[4,5],其思路虽来源于自适应处理,但最终算法属于批处理。
简单地说,通过随机梯度法调节B阵来达到优化目标时,有:B(k+1)=B(k)+ΔB(k)ΔB(k)=-μεkB(k)式中k是选代序号,εk是瞬时目标函数。当到达稳态时必有[E是总集均值算子]:E[ΔB(k)]=0(2)如果ΔB(k)与B(k)有关,就可由(2)式解出B的稳态值。不过由于(2)式总是非线性方程,因此求解时仍需要采用数值方法(如牛顿法、共轭梯度法等)迭代求解。实践证明,不论是收敛速度还是计算量,此法均优于前一种方法,而且它还可以根据需要逐次提取最关心的yi,因此是一类值得注意的方法。
3.2结合神经网络的自适应处理结合神经网络的自适应处理算法的框图。1994年Cichocki提出的调节算法是:B(k+1)=B(k)+ΔB(k)ΔB(k)=μk[I-Ψ(y-k)ΦT(y-k)]B(k)式中Ψ、Φ都是N维矢量,其各元素都是单调升的非线性函数:Ψ(yk)=sgnyk·y2k,ΦTy-k=3tanh(10yk)所得结果虽令人鼓舞,但是方法是经验性的。其后学者们从理论上沿着这一方向作了更深入的讨论,并发展出多种算法。概括地说,主要发展有以下几点:
(1)引入自然梯度(或相对梯度)。按照最陡下降的随机梯度法推导出的系数调节公式往往具有如下一般形式:ΔB(k)=μk[B-T(k)-Ψ(y-k)x-Tk]式中的Ψ(y-k)视具体算法而异。Infomax法中Ψ(·)由所选用的g(·)决定;MMI法中则与yk的三、四阶矩有关。B-T(k)是矩阵求逆再转置,它的计算量很大。Amari[7]在1998年提出将最陡下降梯度改为“自然梯度”,两者间关系是:[自然梯度]=[最陡下降梯度]·BT(k)B(k)于是有:ΔB(k)=μk[B-T(k)-Ψ(y-k)x-Tk]BT(k)B(k)=μk[I-Ψ(y-k)y-Tk]B(k)由于此式避免了矩阵求逆,因此计算量明显降低且收敛加快。目前,这一作法已被普遍接受。
(2)引入自然梯度后,采用不同的优化判据得出的调节公式虽各有千秋,但大致都可表示为如下的“串行更新”形式:B(k+1)=B(k)+ΔB(k)=[I+H(y-k)]B(k)只是H(y-k)的具体形式各不相同。串行矩阵更新的算法还具有一些理论上值得注意的性质,如均匀特性(uniformproperty)和等变性(equivariant)等[8,9]。
(3)四阶累计量k4>0的超高斯信号和k4<0的欠高斯信号,其处理过程应当予以区别。采用同一算法效果往往不好。目前的办法多是在调节公式中引入一个开关。根据估计得k4的符号来切换不同算法,如扩展的Infomax法就是一例[10]。此法的系数调节公式是:ΔB(k)=μk[I-Ktanh(y-k)·y-Tk-y-ky-Tk]B(k)其中K是对角阵,其对角元素之值为+1或-1,视该信号分量k4>0或<0而定。为了实时应用,估计K4也可采用递归算法。总之,自适应算法是目前采用较广的方法。
4应用举例
4.1仿真计算为检验经ICA算法分解信源的能力,左图是一组源信号,它们对系统来说是未知的。这一组信号经混合后的观察信号作为(中图所示)ICA算法的输入,分解后的结果如右图所示。可以看到,除了波形的次序、极性和波幅发生变化之外,源信号的波形被很好地分解出来。一般情况下,临床脑电信号中既有超高斯成分(如诱发电位),也有亚高斯成分(如肌电和工频干扰)。为了检验扩展Infomax算法处理这类情况的能力,我们又用此法进行了如图6所示仿真实验。左图第一行是一段自发脑电信号,第二行是仿真的视觉诱发电位,第三行是肌电干扰。混合后的信号(图中第二列所示)经ICA分解得到如右图所示的结果。这一结果表明扩展ICA算法在同时存在超高斯和亚高斯信号的情况下,仍然能够很好地实现盲分解。但应指出:这一仿真结果并不说明通过ICA分解就能直接得到视觉诱发电位,因为还没有涉及头皮上的多导数据。
4.2实验VEP分析(1)多导脑电观察中VEP的增强:需要强调,把多导脑电作ICA分解后直接取出其中与VEP有关的成分,得到的并不是头皮电极处的VEP分量,因为它们只是分解出来的信源,而这些信源的位置并不在头皮上,为了得到电极处测量值中的VEP成分,需按下述步骤处理:用训练得的W阵直接对头皮上取得的多导脑电数据进行ICA分解,得到各独立分量组成的矩耻y=Bx(见图7a);再根据各分量的波形特征及产生时段,选择与VEP有关的一部分分量(例如在前300ms中具有较大幅度的分量),并将其余分量置0,得到新的独立分量矩阵y’;再反变换回头皮各电极处得x’=B-1-y’。这样才能得到去除噪声和干扰后各电极处的VEP。
采用这样的方法可显著地减少提取VEP所需要的累加次数。左图是经3次累加所得VEP,中图是经50次累加所得结果,右图则是用左图经图7中ICA处理后提取的VEP。比较中、右两图,两者波形趋势基本相同,但后者比前者其主要峰、谷显然更清楚,而累加次数由50减到3。(2)ICA分量的空间模式:把某一个ICA分量的瞬时值经B-1逆推回头皮各电极处得x-’后,就可以按断层图的插补方法得到该时该分量在头皮上的空间分布模式。这个空间分布模式也可以用更简单办法得到:只要把逆矩阵B-1中相应于某ICA分量的列中各元素的值赋与头皮各电极处,再作断层图插值,就可以表现该ICA分量在任意时刻的空间分布模式。也就是:x’i(t)=b’ijy’j(t),i=1~N式中b’ij是B-1的第i行第j列元素。
可见ICA分量y’j(t)在头皮各电极处的对应值等于用逆阵B-1第j列各元素来对y’j(t)加权。因此,列矢量b’j=[b’1,…,b’Nj]可以用来统一地表现任意时刻y’j的空间模式。
5总结与展望
本文粗略介绍了ICA的原理、算法和应用,可以看到ICA确是一个值得注意的研究方向,但其理论体系尚未完整,实际采用的处理方法多少还带有经验性。例如为什么对非线性特性gi的要求不甚严格就没有明确解释;又如算法的稳定性、收敛性在实践中是经常遇到的问题。从应用方面看也还有许多待开发的领域,例如如何应用于生理信号的模式识别与系统建模等。从生物医学信号分析的角度看,还有一些亟待深入的问题。例如:
(1)在以上分析中混合阵A被假设为恒定。这对静态的图像分析或固定信源是合理的;但在生理实际中,等效信源一般在空间并不固定,因而混合阵A应视为时变的,而且传导过程中还会引入容积导体的卷积及迟作用。这可能是实际生理信号分解结果不够理想的原因之一。
(2)一般公认,生理信号的非平稳性较强,而以上分析并没有考虑信号的非平稳性。
卷积神经网络概念范文6
【关键词】电力行业;热工自动化;发展前景
1. 当前电力行业热工自动化技术的发展
随着世界高科技的飞速发展和我国机组容量的快速提高,电厂热工自动化技术不断地从相关学科中吸取最新成果而迅速发展和完善,近几年更是日新月异,一方面作为机组主要控制系统的DCS,已在控制结构和控制范围上发生了巨大的变化;另一方面随着厂级监控和管理信息系统(SIS)、现场总线技术和基于现代控制理论的控制技术的应用,给热工自动化系统注入了新的活力。
1.1DCS的应用与发展。
火电厂热工自动化系统的发展变化,在二十世纪给人耳目一新的是DCS的应用,而当今则是DCS的应用范围和功能的迅速扩展。
1.1.1DCS应用范围的迅速扩展。
20世纪末,DCS在国内燃煤机组上应用时,其监控功能覆盖范围还仅限DAS、MCS、FSSS和SCS四项。即使在2004年的Q/DG1-K401-2004《火力发电厂分散控制系统(DCS)技术规范书》中,DCS应用的主要功能子系统仍然还是以上四项,但实际上近几年DCS的应用范围迅速扩展,除了一大批高参数、大容量、不同控制结构的燃煤火电机组的各个控制子系统全面应用外,脱硫系统、脱硝系统、空冷系统、大型循环流化床(CFB)锅炉等新工艺上都成功应用。可以说只要工艺上能够实现的系统,DCS都能实现对其进行可靠控制。
1.1.2单元机组控制系统一体化的崛起。
(1)随着一些电厂将电气发变组和厂用电系统的控制(ECS)功能纳入DCS的SCS控制功能范围,ETS控制功能改由DCS模件构成,DEH与DCS的软硬件合二为一,以及一些机组的烟气湿法脱硫控制直接进入单元机组DCS控制的成功运行,标志着控制系统一体化,在DCS技术的发展推动下而走向成熟。
(2)由于一体化减少了信号间的连接接口以及因接口及线路异常带来的传递过程故障,减少了备品备件的品种和数量,降低了维护的工作量及费用,所以近几年一体化控制系统在不同容量的新建机组中逐渐得到应用。
(3)控制系统一体化的实现,是电力行业DCS应用功能快速发展的体现。排除人为因素外,控制系统一体化将为越来越多的电厂所采用。
1.1.3DCS结构变化,应用技术得到快速发展。
(1)随着电子技术的发展,近年来DCS系统在结构上发生变化。过去强调的是控制功能尽可能分散,由此带来的是使用过多的控制器和接口间连接。但过多的控制器和接口间连接,不一定能提高系统运行可靠性,相反到有可能导致故障停机的概率增加。何况单元机组各个控制系统间的信号联系千丝万缕,互相牵连,一对控制器故障就可能导致机组停机,即使没有直接导致停机,也会影响其它控制器因失去正确的信号而不能正常工作。因此随着控制器功能与容量的成倍增加、更多安全措施(包括采用安全性控制器)、冗余技术的采用(有的DCS的核心部件CPU,采用2×2冗余方式)以及速度与可靠性的提高,目前DCS正在转向适度集中,将相互联系密切的多个控制系统和非常复杂的控制功能集中在一对控制器中,以及上述所说的单元机组采用一体化控制系统,正成为DCS应用技术发展的新方向,这不但减少了故障环节,还因内部信息交换方便和信息传递途径的减少而提高了可靠性。
(2)此外,随着近几年DCS应用技术的发展,如采用通用化的硬件平台,独立的应用软件体系,标准化的通讯协议,PLC控制器的融入,FCS功能的实现,一键启动技术的成功应用等,都为DCS增添了新的活力,功能进一步提高,应用范围更加宽广。
1.2全厂辅控系统走向集中监控。
(1)一个火电厂有10多个辅助车间,国内过去通常都是由PLC和上位机构成各自的网络,在各车间控制室内单独控制,因此得配备大量的运行人员。为了提高设备控制水平和劳动生产率,达到减员增效的目的,随着DCS技术和网络通讯功能的提高,目前各个辅助车间的控制已趋向适度集中,整合成一个辅控网(简称BOP 即Balance Of Plant的缩写)方向发展,即将相互独立的各个辅助系统,利用计算机及网络技术进行集成,在全厂IT系统上进行运行状况监控,实现控制少人值班或无人值班。
(2)近几年新建工程迅速向这个方向发展。如国华浙能宁海电厂一期工程(4×600MW)燃煤机组BOP覆盖了水、煤、灰等共13个辅助车间子系统的监控,下设水、煤、灰三个监控点,集中监控点设在四机一控室里,打破了传统的全厂辅助车间运行管理模式,不但比常规减员30%,还提升了全厂运行管理水平。整个辅控网的硬件和软件的统一,减少了库存备品备件及日常管理维护费用[1]。由于取消了多个就地控制室,使得基建费用和今后的维护费用都减少。一些老厂的辅助车间也在进行BOP改造。
1.3变频技术的普及应用与发展。
(1)变频器作为控制系统的一个重要功率变换部件,以提供高性能变压变频可控的交流电源的特点,前些年在火电厂小型电机(如给粉机、凝泵)等控制上的应用,得到了迅猛的发展。由于变频调速不但在调速范围和精度,动态响应速度,低速转动力矩,工作效率,方便使用方面表现出优越性,更重要的是节能效果在经济及社会效益上产生的显著效应,因此继一些中小型电机上普遍应用后,近年来交流变频调速技术,扩展到一些高压电机的控制上试用,如送、引风机和给水泵电机转速的控制等。
(2)因为蕴藏着巨大的节能潜力,可以预见随着高压变频器可靠性的提高、一次性投资降低和对电网的谐波干扰减少,更多机组的风机、水泵上的大电机会走向变频调速控制,在一段时间内,变频技术将继续在火电厂节能工作中,扮演重要角色。
1.4局部系统应用现场总线。
(1)自动化技术的发展,带来新型自动化仪表的涌现,现场总线系统(FCS)是其中一种,它和DCS紧密结合,是提高控制信号传输的准确性、实时性、快速性和机组运行的安全可靠性,解决现场设备的现代化管理,以及降低工程投资等的一项先进的和有效的组合。目前在西方发达国家,现场总线已应用到各个行业,其中电力行业最典型的是德国尼德豪森电厂2×950MW机组的控制系统,采用的就是PROFIBUS现场总线。
(2)我国政府从“九五”起,开始投资支持现场总线的开发,取得阶段性成果,HART仪表、FF仪表开始生产。但电厂控制由于其高可靠性的要求,目前缺乏大型示范工程,缺乏现场总线对电厂的设计、安装、调试、生产和管理等方面影响的研究,因此现场总线在电厂的应用仍处于探讨摸索阶段,近二年我国有十多个工程应用了现场总线,但都是在局部系统上,其中: 某电厂,在单元机组的开、闭式水系统中的电动门控制采用Profibus DP总线技术,电动执行机构采用原装进口德国欧玛公司的一体化智能型产品Puma Matic,带有双通道Profibus-DP冗余总线接口作为DP从站挂在总线上。为了提高安全性可靠性,总线光纤、作为总线上的第一类DP主站的AP和相应的光电转换装置都采用了冗余结构,这是国内首家在过程控制中采用现场总线技术的火力发电厂。
(3)某电厂的补给水处理系统和废水系统[2],采用了二层通讯网络结构的现场总线控制系统,其链路设备和主站级网络采用冗余配置。控制系统人机终端与主控制器之间采用工业以太网通讯,以太网交换机采用ITP形式接口,四台交换机构成光纤高速路网。现场设备层之间采用Profibus-DP现场总线通讯。主环网采用光缆,分支现场总线通讯选用总线电缆。配置二套冗余的主控制器,分别用于锅炉补给水系统和废水系统,且各自有两条由光电耦合器组成的现场总线环形光缆网构成冗余配置,所有现场仪表和气动阀门定位器(均采用带PA总线接口),通过DP/PA耦合器连接到现场总线上。中低压电器设备(MCC)采用具有现场总线通信接口功能的智能电机控制器。加药泵的电动机采用带总线的变频器。锅炉补给水的阴阳离子床气动隔膜阀的电磁控制阀,采用具有总线接口的阀岛来控制,阀岛与现场总线连接。这是国内在局部过程控制中全面采用现场总线技术的首个火电厂,其应用实践表明,辅控网全面采用现场总线技术已成熟。
1.5热工控制优化技术的应用发展。
(1)随着过程生产领域对控制系统要求的不断提高,传统控制方法越来越难以满足火电厂热力流程对系统稳定性和性能最优化方面的要求,汽温超标已经成为制约机组负荷变化响应能力和安全稳定运行的主要障碍之一(燃烧优化主要是锅炉专业在进行,本文不作讨论)。由此基于现代控制理论的一些现代控制系统逐步在火电厂过程控制领域中得到应用。如基于过程模型并在线动态求解优化问题的模型预测控制(简称MPC)法、让自动装置模拟人工操作的经验和规律来实现复杂被控对象自动控制的模糊控制法、利用熟练操作员手动成功操作的经验数据,在常规的串级PID调节系统的基础上建立基于神经网络技术的前馈控制作用等,在提高热工控制系统(尤其是汽温控制系统)品质过程中取得较好效果。
(2)如某电厂使用的西门子公司PROFI系统,充分使用了基于模型的现代控制理论,其中汽温控制原理示意图如图1所示。
(3) 图1中,用基于状态空间算法的状态观测器解决汽温这种大滞后对象的延迟造成的控制滞后,焓值变增益控制器解决蒸汽压力的变化对温度控制的影响,基于模型的Smith预估器对导前温度的变化进行提前控制;通过自学习功能块实时补偿减温水阀门特性的变化;而对再热汽温控制,尽量以烟道挡板作为调节手段,不采用或少采用减温水作为控制手段,以提高机组效率;在机组协调控制模块中,采用非最小化形式描述的离散卷积和模型,提高系统的鲁棒性;根据控制品质的二次型性能指标连续对预测输出进行优化计算,实时对模型失配、时变和干扰等引起的不确定性因素进行补偿,提高系统的控制效果;PROFI投入后,AGC状态下以2% Pe /min负荷率变化时的响应时间为57秒,压力最大偏差0.208MPa,汽包水位变化最高和最低之差为-38.86mm,炉膛负压变化曲线最高值和最低值差-145Pa,主蒸汽温度偏差稳态基本控制在2℃以内,动态基本控制在5℃以内。
1.6SIS系统的应用发展。
(1)SIS系统是实现电厂管理信息系统与各种分散控制系统之间数据交换、实时信息共享的桥梁,其功能包括厂级实时数据采集与监视,厂级性能计算与分析。在电网明确调度方式有非直调方式且应用软件成熟的前提下,可以设置负荷调度分配功能。设备故障诊断功能、寿命管理功能、系统优化功能以及其它功能(根据电厂实际情况确定是否设置)[3]。自从国家电力公司电力规划总院在2000年提出这一概念和规划后,至今估计有200家多电厂建立了SIS系统,可谓发展相当迅速。
(2)但是自从SIS系统投运以来,其所起的作用只是数据的采集、存储、显示和可打印各类生产报表,能够真正把SIS的应用功能尽情发挥出来的很少,其面向统计/生产管理的数据分析工具,基于热经济性分析的运行优化,以品质经济性为目标的控制优化,以提高可靠性为目的的设备故障诊断等功能基本多数都未能付绪实施。其原因主要有设计不够完善,多数SIS厂家并没有完全吃透专业性极强的后台程序及算法,使其在生产实际中未能发挥作用,加上与现场生产脱节,因此SIS商所能做的只是利用网络技术,边搭建一个基本的SIS 架构边进行摸索。此外SIS应涵盖哪些内容没有统一的标准也缓慢了其功能的应用。
(3)但从大的方向上看,SIS系统的建设符合技术发展的需要和中国电力市场发展的趋势,将给发电厂特别是大型的现代化发电厂带来良好的经济效益。
2. 电力行业热工自动化系统的未来发展动向及前景
随着国家法律对环保日益严格的要求和计算机网络技术的进步,未来热工系统将围绕 “节能增效,可持续发展”的主题,向智能化、网络化、透明化,保护、控制、测量和数据通信一体化发展,新的测量控制原理和方法不断得以应用,将使机组的运行操作和故障处理,象操作普通计算机一样方便。
2.1单元机组监控智能化是热工自动化系统发展方向。
(1)单元机组DCS的普及应用,使得机组的监控面貌焕然一新,但是它的监控智能化程度在电力行业却没有多大提高。虽然许多智能化的监视、控制软件在国内化工、冶金行业中都有较好的应用并取得效益,可在我国电力行业直到近几年才开始有所起步。随着技术的进步,火电厂单元机组自动化系统的智能化将是一种趋势,因此未来数年里,实现信息智能化的仪表与软件将会在火电厂得到发展与应用。
(2)如:仪表智能管理软件,将对现场智能传感器进行在线远程组态和参数设置、对因安装位置和高静压造成的零位飘移进行远程修正,精度自动进行标定,计算各类误差, 并生成标定曲线和报告;自动跟踪并记录仪表运行过程中综合的状态变化,如掉电、高低限报警、取压管路是否有堵或零位是否有飘移等。
(3)阀门智能管理软件将对智能化阀门进行在线组态、调试、自动标定和开度阶跃测试,判断阀门阀杆是否卡涩, 阀芯是否有磨损等,通过阀门性能状况的全面评估,为实现预测性维护提供决策。
(4)重要转动设备的状态智能管理软件将对重要转动设备的状态如送风机,引风机,给水泵等,综合采用基于可靠性的状态监测多种技术,通过振动、油的分析以及电机诊断,快速分析(是否存在平衡不好,基础松动, 冲击负荷,轴承磨损)等现象和识别故障隐患, 在隐患尚未扩展之前发出报警,为停机检修提供指导和帮助。
(5)智能化报警软件将对报警信号进行汇类统计、分析和预测,对机组运行趋势和状态作出分析、判断,用以指导运行人员的操作;故障预测、故障诊断以及状态维修等专用软件,将在提高机组运行的安全性,最大限度地挖掘机组潜力中发挥作用。单元机组监控智能化将带来机组检修方式的转变,以往定期的、被动式维护将向预测性、主动式为主的维护方式过渡,检修计划将根据机组实际状况安排。
2.2过程控制优化软件将得到进一步应用。
(1)进一步提高模拟量控制系统的调节范围和品质指标,是火电厂热工自动化控制技术研究的一个方向。虽然目前有关自适应、状态预测、模糊控制及人工神经网络等技术,在电厂控制系统优化应用的报道有不少,但据笔者了解真正运行效果好的不多。随着电力行业竞争的加剧,安全、经济效益方面取得明显效果、通用性强、安装调试方便的优化控制专用软件(尤其是燃烧和蒸汽温度优化、性能分析软件、)将会在电厂得到亲睐、进一步发展与应用。
(2)目前机组的AGC均为单机方式(由调度直接把负荷指令发给投入AGC的机组)。由于电网负荷变化频繁,使投入AGC的机组始终处于相应的变负荷状态,锅炉的蒸汽压力和温度波动幅度大,辅机、阀门、挡板等设备动作频繁,这种方式对机组和设备的寿命都会产生一定的负面影响。随着发电成本的提高,发电企业需从各个角度考虑如何切实降低电厂运行成本,延长机组的使用寿命。因此配置全厂负荷分配系统(即电网调度向电厂发一个全厂负荷指令,由电厂的全厂负荷分配系统,以机组的煤耗成本特性为基础,在机组允许的变化范围内,经济合理地选择安排机组的负荷或变负荷任务,使全厂发电的煤耗成本最低,降低电厂的发电成本)将是发电企业必然的要求,相信不久的将来,单机AGC方式将会向全厂负荷分配方式转变。
(3)SIS系统将结合生产实际进行二次开发,促进自身应用技术走向成熟,在确保火电厂安全、环保、高效益及深化信息化技术应用中发挥作用。
2.3现场总线与DCS相互依存发展。
未来一段时间里,现场总线将与DCS、PLC相互依存发展,现场总线借助于DCS和PLC平台发展自身的应用空间,DCS和PLC则借助于现场总线完善自身的功能。
2.3.1现场总线与DCS的关系。
现场总线作为一个完整的现场总线控制系统,目前还难以迅速应用到整个电厂中,而DCS虽然是电厂目前在线运行机组的主流控制系统,但由于其检测和执行等现场仪表信号仍采用模拟量信号,无法满足工程师站上对现场仪表进行诊断、维护和管理的要求,限制了控制过程视野,因此DCS通过容入通信协议国际标准化的现场总线和适合现场总线连接的智能化仪表、阀门,并将自身的输出驱动功能分离移到现场或由现场智能驱动器代替,功能简单且相对集中的控制系统下放到采用FCS控制和处理功能的现场智能仪表中,然后由少量的几根同轴电缆(或光缆)和紧急停炉停机控制用电缆,通过全数字化通信与控制室连接。将有助于降低电厂造价,提高自身的可靠性,拓宽各自的功能,推动各自的发展。除新建电厂将会更多的采用现场总线的智能设备外,也会成为运行多年的机组下一步的改造计划。
2.3.2现场总线与PLC的关系。
(1)现场总线在电厂的应用将借助于PLC,这不但因为PLC已广泛应用于电厂辅助设备的控制,将现场总线技术和产品溶合到PLC系统中,成为PLC系统中的一部分或者成为PLC系统的延伸部分,在辅助设备的控制中将直接明显地体现其经济效益。还因为现场总线和PLC的制造商间关系密切,如、ProfiBus等本身就是由PLC的主要生产供货商支持开发。
(2)由于电厂现场的环境恶劣,温度高、灰尘多、湿度变化大,因此现场总线在电厂应用,首先要解决的是自身质量。
2.4辅助车间(系统)集控将得到全面推广。
随着发电厂对减员增效的要求和运行人员整体素质的提高,辅助车间(系统)通过辅控网集控将会得到进一步全面推广。但在实施过程中,目前要解决好以下问题:
(1)辅控系统I/O点数量大,各辅助车间物理位置分散,存在远距离通信、信号衰减和网络干扰问题,因此监控系统主干通信网宜采用多模光缆以确保通信信号的可靠性。
(2)各辅助控制系统采用不同的控制设备,控制系统的通信接口协议不同,甚至不同的物理接口,因此须解决网络通信协议的转换问题,选型时应事先规定好各系统间的接口连接协议。
(3)各个辅助车间的控制系统为不同的厂商供货,由于使用的软件不同,其操作员站的人机界面很有可能不一致。因此选型时应注意上位机软件,设计统一的人机界面,采用统一的风格及操作方式,以便方便各系统画面接入BOP网络。
辅助车间集控系统能否实现设计目标,除了自身的技术以外,很大程度上取决于辅助系统本身的自动投入情况。因此高可靠性的执行机构、动作灵活可靠的限位开关、智能化的变送器将会得到应用。
2.5单元机组监控系统的物理配置趋向集中布置。
过去一个集控室的概念,通常为一台单元机组独用或为二台机组合用,电子室分成若干个小型的电子设备间,分别布置在锅炉、汽轮机房或其它主设备附近。其优点是节省了电缆。但随着机组容量的提高、计算机技术的发展和管理水平的深化,近几年集控室的概念扩大,出现了全厂单元机组集中于一个控制室,单元机组的电子设备间集中,现场一般的监视信号大量采用远程I/O柜的配置方式趋势。
2.6APS技术应用。
(1)APS是机组级顺序控制系统的代名词。在机组启动中,仅需按下一个启动控制键,整个机组就将按照设计的先后顺序、规定的时间和各控制子系统的工作情况,自动启停过程中的相关设备,协调机炉电各系统的控制,在少量人工干预甚至完全不用人工干预的情况下,自动地完成整台机组的启停。但由于设备自身的可控性和可用率不满足自动化要求,加上一些工艺和技术上还存在问题,需要深入地分析研究和改进,所以目前燃煤机组实施APS系统的还不多见。
(2)由于APS系统的实质是电厂运行规程的程序化,其优势在于可以大大减轻运行人员的工作强度,避免人为操作中的各种不稳定因素,缩短机组启停时间。作为提高生产效率和机组整体自动化水平,增强在电力企业的市场竞争能力行之有效的方法,将会成为未来机组控制发展的方向之一,引导设计、控制系统厂商和电厂人员更多地去深入研究,设计和完善功能,并付绪实施。
2.7无线测量技术应用。
无线测量技术能监视和控制运行过程中发生的更多情况,获得关键的工艺信息,整合进入DCS。除节省大量安装成本以外,还将推动基本过程和自动化技术的改善。如供热、供油和煤计量,酸碱、污水区域测量等,都可能通过无线测量技术实现远程监控。
2.8提高热工自动化系统可靠性研究将深入。
由于热控系统硬软件的性能与质量、控制逻辑的完善性和合理性、保护信号的取信方式和配置、保护连锁信号的定值和延迟时间设置,以及热控人员的检修和维护水平方面,都还存在一些不足之处,由此使得热控保护系统误动作引起机组跳闸事件还时有发生。在电力生产企业面临安全考核风险增加和市场竞争加剧的环境下,本着电力生产“安全第一,预防为主”的方针,以及效益优先原则,从提高热工自动化系统的可靠性着手,深入开展技术研究,是热工自动化系统近期的一项急需进行的工作。提高热工自动化系统的可靠性技术研究工作,包括控制软硬件的合理配置,采集信号的可靠性、干扰信号的抑制,控制逻辑的优化、控制系统故障应急预案的完善等。随着机组控制可靠性要求的提高,重要控制子系统的硬件配置中,将会采用安全型控制器、安全型PLC系统或者它们的整合,保护采集信号将会更多的采用三选二判断逻辑。独立的测量装置需要设计干扰信号抑制功能。此外基建机组一味以最低价中标的招标模式也应得到扭转(最低价中标,迫使厂商通过减少配置来降低投标价,导致控制系统可靠性下降)。
2.9火电厂机组检修运行维护方式将改变。
(1)随着电力市场的竞争,发电企业将趋向集约化经营和管理结构扁平化,为提高经济效益,发电企业在多发电,以提高机组利用小时的同时,将会通过减少生产人员的配备,密切与外包检修企业之间的联系,让专业检修队伍取替本厂检修队伍的方式来提高劳动生产率。因此检修维修工作社会化将是一种趋势。此外DCS的一体化及其向各功能领域渗透,提高电厂整体协调和信息化、自动化水平的同时,也将会使电厂原专业间及专业内的分工重新调整,比如热工与电气二次回路的专业划分打通。为了降低成本,电厂不再保持大批的检修维修人员,因此检修维护方式也将因此而改变,比如让生产厂家和公司承担DCS和相关设备的检修工作。