前言:中文期刊网精心挑选了人工神经网络优势范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
人工神经网络优势范文1
随着计算机网络、信息技术、自动化技术的进步,极大的改变了我们的生活。人工神经网络技术是一种全新的控制技术,通过互联网进行动态模拟,从而建立一种新的控制互联网的系统。经过十几年的发展,人工神经网络技术研究取得了巨大的进步,已经广泛应用在社会各个领域,使现代计算机中的难题得到了解决。本文主要从人工神经网络技术的概念出发,探讨了它在现代社会领域的具体应用。
【关键词】人工神经网络 信息技术 发展趋势
人工神经网络技术在处理实际问题主要包括两个过程,一个是学习训练过程,另外一个是记忆联想过程。近年来随着人工网络技术的发展,人工神经网络技术在信号处理、图像处理、智能识别等领域已经取得了巨大的改变,为人们研究各类科学问题提供了一种新的方法和手段,使人们在交通运输、人工智能、军事、信息领域的工作更加便捷,近年来随着AI的l展,人工神经网络技术得到了快速的发展阶段。
1 人工神经网络技术
人工神经网络技术也称ANN,是随着上个世纪八十年代人工智能发展兴起的一个研究热点,它的主要工作原理对人脑神经网络进行抽象处理,并仿造人脑神经网络建立简单的模型,按照不同的连接方式组成一个完整的网络,因此学术界也直接将它成为神经网络。神经网络其实就是一种运算模型,它是通过大量的节点――神经元连接起来的,其中不同的节点所代表的输出函数也不同,也就是所谓的激励函数;当有两个节点连接起来时称之为通过该连接信号的加权值,也称为权重,这就相当人脑神经网络记忆。人工神经网络技术是采用并行分布式系统,这种工作机理与传统的信息处理技术和人工智能技术完全不同,是一种全新的技术,它克服了传统基于逻辑符号的人工智能处理非结构信息化和直觉方面的缺陷,具有实时学习、自适应性和自组织性等特点。
2 人工神经网络技术应用分析
随着人工神经网络技术的发展,它在模式识别、知识工程、信号处理、专家系统、机器人控制等方面的应用较广。
2.1 生物信号的检测分析
目前大部分医学检测设备都是通过连续波形得到相关数据,从而根据所得数据对病情进行诊断。人工神经网络技术就是应用了这样的方式将多个神经元组合起来构成,解决了生物医学信号检测方面的难题,其适应性和独立性强,分布贮藏功能多。在生物医学领域该技术主要应用于对心电信号、听觉诱发电位信号、医学图像、肌电荷胃肠等信号的处理、识别和分析。
2.2 医学专家系统
传统的医院专家系统是直接将专家的经验、学历、临床诊断方面取得的成绩等存储在计算机中,构建独立的医学知识库,通过逻辑推理进行诊断的一种方式。进入到二十一世纪,医院需要存储的医学知识越来越多,每天产生新的病况和知识,过去的一些专家系统显然已经无法适应医院的发展需求,因此医院的效率很低。而人工神经网络技术的出现为医院专家系统的构建提出了新的发展方向,通过人工神经网络技术,系统能够自主学习、自己组织、自行推理。因此在医学专家系统中该网络技术应用面较广。麻醉医学、重症医学中生理变量分析和评估较多,目前临床上一些还没有确切证据或者尚未发现的关系与现象,通过人工神经网络便能有效地解决。
2.3 市场价格预测
在经济活动中,传统统计方法受到一些因素的制约,无法对价格变动做出准确的预测,因此难免在预测的时候出现失误的现象。人工神经网络技术能够处理那些不完整的、规律不明显、模糊不确定的数据,并作出有效地预测,因此人工神经网络技术具有传统统计方法无法比拟的优势。例如人工神经网络技术可以通过分析居民人均收入、贷款利率和城市化发展水平,从而组建一个完整的预测模型,准确预测出商品的价格变动情况。
2.4 风险评价
在从事某一项特定的活动时,由于社会上一些不确定因素,可能造成当事人经济上或者其他方面的损失。因此在进行某一项活动时,对活动进行有效的预测和评估,避免风险。人工神经网络技术可以根据风险的实际来源,构筑一套信用风险模型结构和风险评估系数,从而提出有效地解决方案。通过信用风险模型分析弥补主观预测方面的不足,从而达到避免风险的目的。
3 人工神经网络技术未来发展
人工神经网络克服了传统人工智能对语言识别、模式、非结构化信息处理的缺陷,因此在模式识别、神经专家系统、智能控制、信息处理和天气预测等领域广泛应用。随着科学技术的进步,AI的快速发展,AI与遗传算法、模糊系统等方面结合,形成了计算智能,很多企业和国家开始大规模研发AI,人工神经网络正在模拟人类认知的方向发展,目前市场已经有很多不少人工智能产品面世。
4 结语
通过上述研究分析,人工神经网络技术已经取得了相应的发展,但还存在很多不足:应用范围狭窄、预测精度低、通用模型缺乏创新等,因此需要我们在此基础上不断寻找新的突破点,加强对生物神经元系统的研究和探索,进一步挖掘其潜在的价值,将人工神经网络技术应用在更多领域中,为社会创造更大的财富。
参考文献
[1]周文婷,孟琪.运动员赛前心理调控的新策略――基于人工神经网络技术的比赛场地声景预测(综述)[J].哈尔滨体育学院学报,2015,33(03):15-21.
[2]张红兰.人工神经网络技术的应用现状分析[J].中国新通信,2014(02):76-76.
[3]张广军.人工神经网络技术在光电检测中的应用[J].北京航空航天大学学报,2001,27(05):564-568.
人工神经网络优势范文2
【关键词】神经网络;塑性加工
1.引言
神经网络技术属于人工智能领域,最早在上世纪五十年代开始出现一些相关理论性的研究,由于受到当时软、硬件环境的约束,因此该技术的发展一直处于停滞状态,直到九十年代才得到足够的重视,并由于其在控制过程中独特的优势而受到广泛的关注和青睐,成为最热门的研究领域之一。人工神经网络的特点主要有大规模并行计算能力突出、数据存储的分布性好、超强的自学习和自适应能力等,甚至基于神经网络衍伸出的一些优化算法还可以具备相当程度的联想、识别和记忆功能,这大大强化了神经网络的适用范围。目前该技术已广泛的应用在生产控制、模式识别、网络控制、信号处理、医学工程以及其他需要智能优化处理服务的自动化控制场合。
2.人工神经网络概述
人工神经网络技术模拟人脑中由大量的神经元连接组成的复杂网络,在求解过程中充分的调动神经元之间的相互作用,从而实现对数据的感知、记忆和处理功能。虽然神经元个体相对简单且功能有限,但通过大量不同神经元的组合,便可使生成的网络系统具有多样化的功能。在人工神经网络中,神经元由三部分构成,分别是包含网络中每条连接权值的权集;用以存储某条组合连接中各个单位连接权值之和的求和单元;对加权和进行非线性映射并约束其强度的非线性激励函数。由这三部分组成的单个神经元可与其他多个神经元相连接,组成各种类型的神经网络。
神经网络的另一个优势在于其独特的分布式数据存储方式上,由于将采集到的大量数据分布存储在各个神经元之间的连接强度上,可大大增强数据的生存性和安全性,即使出现了局部数据的损毁,也不会对最终的计算结果造成太大的影响。从计算机技术方面分析,神经网络中的神经元实质上是一个非线性运算器,可同时接受多路输入数据参与运算,而计算结果则是唯一的单个输出。从数学建模的角度来看,通常使用三个函数来描述神经网络,分别是阶跃函数、分段线性函数和Sigmoid函数,如下所示:
在塑性加工领域,应用最多的是前馈型神经网络,在该类神经网络中,包括输入层、隐层和输出层三层结构。在这三层之间,内部节点相互独立,减少干扰,其实现的输入和输出之间的关联受到多种因素的影响,如节点数、层数、连接权值等等,若要实现该网络输出尽可能的逼近预设值,就必须采用误差函数来对各个连接强度进行动态调整,最常使用的是二乘误差,如下所示:
3.人工神经网络在塑性加工中的应用分析
3.1 工艺设计专家系统
工艺设计是塑性加工工序的开始,通过科学的工艺设计,可以将整个加工流程进行合理的安排,预设合适的参数组合,以使得生产出的产品合乎标准,在这一阶段,首先要完成的就是大量资料的收集,随后是数据提炼,计算量相当庞大。而利用人工神经网络来建立专家系统时可以实现大规模的数据并行处理,且不需要循序渐进的推理,直接通过大量的训练来得到最优的解集,这是其他智能算法所不具备的突出优势。而且在神经网络中,推理过程和计算过程是同步完成的,且相关信息分布存储在网络节点间的连接强度上,通过对样本不断的学习和更新来完成对存储知识的不断优化。
3.2 无损探伤及缺陷预测
在超声探伤、磁粉探伤等无损探伤中,由于得到的信息较为有限,因此传统的监测系统很难准确判断构件内部缺陷的具体情况,更谈不上精确定位了,且这种困难随着北侧物件体积的增大而直线上升。而神经网络所具有的非线性识别及映射能力则能很好的解决这一问题,通过反复的训练优化,最终定位出最有可能的缺陷位置和缺陷尺寸。若某平板内具有圆形缺陷,可先用有限元法模拟在一定载荷下圆孔的位置、尺寸变化对某些点的位移、应变的影响,将所得到的数据用来训练神经网络。一旦训练成功,就可以利用它确定同类试件内部的缺陷及其尺寸位置。
3.3 预测材料性能及参数识别
在塑性加工理论研究中,材料塑性变形行为的表述能否准确反映材料在外载作用下的响应,直接影响到理论结果的准确性。在利用传统方法建立本构模型时要引入许多假定的前提条件,还要通过大量的实践经验和实验验证来选择合适的参数组合,通过在不同环境下的仿真实验,并对结果进行对比分析,不断修正乃至最终确定本构模型,这一过程显然占用了过多的时间和资源。而利用神经网络却可以实现应力―应变的直接映射,直接从实验数据“学习”应力―应变关系,从而避免了大量的数学推导过程和验证―修改的不断反复过程。网络实现对应力―应变关系模拟就是在“训练”过程中不断改变自身各神经元间的连接强度,训练完成后,网络将应力―应变关系(某种材料)“记忆”在其连接强度上即可。
4.结束语
虽然神经网络已经被广泛的应用到各种工业控制场合并表现出强大的学习和自适应能力,但其算法的收敛性和鲁棒性仍有待加强,相信人工智能领域的不断突破,人工神经网络比价发挥出更大的作用。
参考文献
[1]时慧焯.基于人工神经网络的注塑成型翘曲优化方法[D].大连:大连理工大学,2012
[2]付子义.基于BP神经网络优化的PID控制器研究[J].软件导刊,2015,(12):45-48
人工神经网络优势范文3
[关键词] BP神经网络;岩性识别;改进BP神经网络
[DOI] 10.13939/ki.zgsc.2015.24.063
1 主要研究内容
根据国内外研究现状,利用目前研究最透彻的人工神经网络技术-BP( Back Propagation)人工神经网络,以C#.NET为软件工具,通过合理地编写程序,针对低阻、高放射等非常规储层进行识别与判别。主要利用常规测井资料,以实际的岩心、岩屑观察、物性等分析测试资料、试油试产资料为测井参数约束的标准,针对储层的岩性进行预测、判断。从而得出BP人工神经网络方法在测井数据处理与解释中的优势所在,并指出其缺陷与不足之处。
2 BP神经网络
2.1 基本BP神经网络的设计
基本BP算法包括两个方面:信号的前向传播和误差的反向传播。即计算实际输出时按从输入到输出的方向进行,而权值和阈值的修正从输出到输入的方向进行。
2.2 BP神经网络算法步骤
(1) 初始化网络权值,阈值,及有关参数(如学习因子)。
3 BP神经网络在岩性识别上的应用
3.1 地层特征
在储层测井响应特征方面,本文研究油区的泥岩与砂质泥岩均以高自然伽马、正自然电位幅度、微电极无差异或差异幅度小为特征、并且有电阻率相对偏低和高声波时差值的特征,较纯的泥岩层往往还出现井径扩大现象。粉砂岩、泥质砂岩以中.高自然伽马和中一低负异常幅度自然电位及微电极差异幅度小或无差异为特征。视电阻率变化较大。细砂岩为主要储集层,以自然电位高负异常幅度低自然伽马值及微电极差异幅度大为特征。部分储油砂层的自然伽马值偏高。细砂岩含油后一般电阻率较高。
3.2 基本BP网络的构建与实现
3.2.1 测井数据的处理
由于各种测井数据量纲不一致,进入网络之前,无论是学习样本或预测数据,都需先进行归一化处理,将它们置于统一的数值量纲范围内,如在[0,1]之间。对于具有近似线性特征的信息,可以采用线性归一化公式:处理。
3.2.2 岩性参数的设置
由于在做岩性识别时,我们设置了相应的参数。其中有聚类参数、自然加码、井的深度等。其中聚类设置表示,自然加码的设置是判断输入数据的合法性,井的深度和间隔有利于模仿底层结构。
3.3 改进的BP网络(动量-自适应)的实现
3.3.1 增加动量项
附加动量法使网络在修正其权值时,不仅考虑误差在梯度上的作用,且考虑在误差曲面上变化趋势的影响。在没有附加动量的作用下,网络可能陷入浅的局部极小值,利用附加动量的作用有可能滑过这些极小值。
带有附加动量因子的权值和阈值调节公式为:
根据附加动量法的设计原则,当修正的权值在误差中导致太大的增长结果时,新的权值应被取消而不被采用,并使动量作用停止下来,以使网络不进入较大误差曲面;当新的误差变化率超过一个事先设定的最大误差变化率时,也得取消所计算的权值变化。其最大误差变化率可以是任何大于或等于1的值。典型的取值取1.04。所以,在进行附加动量法的训练程序设计时,必须加进条件判断以正确使用其权值修正公式。
训练程序设计中采用动量法的判断条件为:
3.3.2 自适应调节学习率
对于一个特定的问题,要选择适当的学习速率不是一件容易的事情。通常是凭经验或实验获取,但即使这样,对训练开始初期功效较好的学习速率,不见得对后来的训练合适。为了解决这个问题,人们自然想到在训练过程中,自动调节学习速率。通常调节学习速率的准则是:检查权值是否真正降低了误差函数,如果确实如此,则说明所选学习速率小了,可以适当增加一个量;若不是这样,那么就应该减少学习速率的值。下式给出了一个白适应学习速率的调整公式:
3.3.3 引入陡度因子
误差曲面上存在平坦区域,权值调整进入平坦区的原因是神经元输出进入了变换函数的饱和区,如果调整进入平坦区没法压缩神经元的净输入,就使其输出退出变换函数的饱和。
3.3.4 动量-自适应学习速率调整算法
当采用前述的动量法时,BP算法可以找到全局最优解,而当采用自适应学习速率时,BP算法可以缩短训练时间,采用这两种方法也可以用来训练神经网络,该方法称为动量-自适应学习速率调整算法。
人工神经网络优势范文4
摘要:随着电力工业的发展,人工神经元网络(ANN)在电力系统中获得了广泛的应用。本文概述了人工神经元网络的特点、基本结构以及发展过程,并对ANN在电力系统中的具体应用做了详细的话述。最后,对人工神经元网络的发展趋势和在电力系统中的应用前景进行了展望。
关键词:人工神经元网络(ANN) 电力系统 应用前景 展望
人工神经网络,是一种模范动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。人工神经网络具有自学习和自适应的能力,可以通过预先提供的一批相互对应的输入一输出数据,分析掌握两者之间潜在的规律,最终根据这些规律,用新的输入数据来推算输出结果。人工神经网络具有四个基本特征:非线性、非局限性、非定性、非凸性。人工神经网络理论,作为人工智能的一个最活跃的分支,其模拟人脑的工作方式,为解决复杂的非线性、不确定性、不确知性系统的问题开创了一个崭新的途径,因而在电力系统应用研究中受到了广泛的关注。
1.ANN发展过程
1943年,心理学家W.S.McCulloch和数理逻辑学家W.Pitts建立了神经网络和数学模型,称为MP模型。他们通过MP模型提出了神经元的形式化数学描述和网络结构方法,证明了单个神经元能执行逻辑功能,从而开创了人工神经网络研究的时代。60年代,人工神经网络得到了进一步发展,更完善的神经网络模型被提出,其中包括感知器和自适应线性元件等。1982年,美国加州工学院物理学家J.J.Hopfield提出了Hopfield神经网格模型,引入了“计算能量”概念,给出了网络稳定性判断。1984年,他又提出了连续时间Hopfield神经网络模型,为神经计算机的研究做了开拓性的工作,开创了神经网络用于联想记忆和优化计算的新途径,有力地推动了神经网络的研究。人工神经网络的研究受到了各个发达国家的重视,美国国会通过决议将1990年1月5日开始的十年定为“脑的十年”,国际研究组织号召它的成员国将“脑的十年”变为全球行为。
2.ANN的特点与结构
人工神经网络的研究与发展及神经生理科学、数理科学、信息科和计算机科学等众多领域,是一种新的信息处理理论。它所特有的信息处理机制,与传统的数字计算机有着本质的不同。ANN网络由大量模拟人脑的神经元互连组成,无独立的用于存储的信息空间,更没有单一执行指令的CPU,每个神经元的结构都十分简单,信息处理与存储合二为一,通过调整连接权值,由整体状态来给出响应信息。ANN是一种非线性映射系统,具有强大的模式识别能力,可以对任意复杂状态或过程进行分类和识别。
3.ANN在电力系统中的应用
目前,ANN已用于负荷预测,警报处理,控制等方面,它已经从研究阶段转为实际应用。
3.1智能控制
在电力系统中利用ANN实现智能控制,就是利用其估计和联想的能力,实现系统状态与参数的识别和控制,这已在多种控制结构中如自校正控制、模型跟踪控制、预测控制等控制中得到应用。Y M Park等采用2个BP网络构成电力系统稳定器(PSS)的模型,其中1个在系统功率摆动中估计发电机的输出功率。另一个用于判断并给出控制决策。范澍等应用4层BP网络对发电机运行方式和系统干扰进行精确在线识别,并以此为基础设计了一种最优励磁调节器模型,计算与仿真结果表明,这种调节器比固定点线性励磁方式具有更强的稳定性能和动态品质,在系统运行方式较大的变化范围内都能提供很好的控制性能,在大小扰动下均表现出很好的阻尼特性和良好的电压性能。袁宇春等提出了用ANN进行电力系统的实时切负荷控制,选用的是多输入单输出的单层前向神经网络,选取185个样例进行网络训练后,在西北电网模拟某线路故障显示了较好的控制特性。
3.2优化计算
由于ANN能够建立任意非线性的模型,并适于解决时间序列预报问题,尤其是随机平稳过程的预报,因此电力系统短期负荷预报是其应用研究的一个重要方面,欧建平等以3个ANN构成负荷与天气变化量的周、日、时3个预报分析系统,气象参数和预测周、日、时前某段历史负荷参数作为网络的训练输入参数,各自产生独立的预报,再综合产生最终的预报。姜齐荣等则用ANN建立发电机、励磁系统和调速系统的详细模型,把这三部分的模型连接起来并与电力系统网络接口,形成一个ANN模型与电力系统网络混联的系统,这种混联系统的暂态稳定计算结果与用常规机理模型的计算结果几乎相同。为实现ANN并行、快速、在线处理电力系统实时计算提供新途径。
3.3故障诊断
要保证电力系统的安全运行和实现电力设备由定期检修转变为状态检修,如何准确地进行电力设备的故障诊断,一直是受关注的焦点之一。而这类故障的征兆错综复杂,往往呈现出非线性和不确定性,很难用某一确定的逻辑或算法进行识别。而这种识别恰好是ANN所擅长的。ANN在电机状态监测与诊断上也获得了成功的应用。何雨傧等提出一种联想记忆神经网络,取零序电流、定子不对称电流及其变化率等电测参数为故障征兆,通过网络的联想能力快速准确地进行电机早期故障的双向诊断,能有效地处理各种模式并存的故障诊断问题。并且容错性好,能有效抑制现场噪声干扰,使诊断系统具有良好的鲁棒性。电网故障诊断中,用全局逼近的BP算法完成故障的快速定位,便于控制人员及时处理故障。
3.4继电保护
继电保护是电力系统安全运行的重要保障之一,随着电力系统的发展,常规的继电保护技术已经不能完全适应需要。党德玉提到一种基于小波变换和ANN的保护模型,其输入特征量经过小波变换,也选用了3个三层的BP网络用于判断故障种类,故障性质和故障定位。故障种类和故障性质的判断正确率可达100%,对线性短路故障的位置判断正确率为94%,非线性故障(如经非线性过渡电阻接地)的判断正确率为96%。张海峰等使用3层前向网络构成变压器保护模型,取变压器2端的电流和其他故障特征量进行综合判断。经大量样本训练后,可准确判断变压器的励磁涌流和各种故障。张津春等介绍了ANN构成的自适应自动重合闸模型,能较好地判别各种情况下瞬时性故障与永久性故障。
为了解决用电路方法进行巨量神经元连接无法实现的问题,采用光电集成技术制作的光神经元、光互连器件、光神经芯片也已出现,并成功地应用于模式识别、联想记忆等方面。此外,ANN在输电容量限制条件下经济调度、基于同步相量测量的电压安全监控、电厂控制、HVDC的电流控制器等方面也得到了研究与应用。
4.ANN在电力系统中的发展趋势
ANN在电力系统中应用已做了大量的研究,一但是总体上来说仍停留在理论分析和仿真实验上,因此必须加强理论研究与实际工程应用的结合,例如可在状态检修、在线监测等电力系统有较迫切需求的领域中,寻找实际应用的突破口。近几年兴起的小波变换方法,由于其克服了傅里叶变换不能对信号进行局部化分析的缺点。同时具有很强的特征值提取功能,特别适用于故障信号的分析,经小波变换处理后的信号作为神经网络的输入,可使网络大大提高抗干扰性并加速收敛。所以小波分析与ANN的结合将在电力系统控制、保护、故障诊断等方而发挥更大的作用。ANN与专家系统和模糊控制的综合对电力系统这样一个复杂的动态大系统来说,应用潜力更大。ANN的形象思维能力,专家系统的逻辑思维能力和模糊逻辑这三者的结合,可体现出各自的优势,互相弥补各自的不足。
人工神经网络特有的非线性适应性信息处理能力,克服了传统人工智能方法对于直觉,如模式、语音识别、非结构化信息处理方面的缺陷,使之在神经专家系统、模式识别、智能控制、组合优化、预测等领域得到成功应用。人工神经网络与其它传统方法相结合,将推动人丁智能和信息处理技术不断发展。近年来,人工神经网络正向模拟人类认知的道路上更加深入发展,与模糊系统、遗传算法、进化机制等结合,形成计算智能,成为人工智能的一个重要方向,将在实际应用中得到发展。将信息几何应用于人工神经网络的研究,为人工神经网络的理论研究开辟了新的途径。神经计算机的研究发展很快,已有产品进入市场。光电结合的神经计算机为人工神经网络的发展提供了良好条件。
人工神经网络优势范文5
张雨浓:目前来说,人工神经网络、冗余度机器人学和科学计算与优化是我们科研攻关的三个主要方向,最早当始于导师毛宗源教授主持负责的“仿人脑信息处理与控制的人工系统的研究”,随后开展了近年来承担的国家自然科学基金委支持的课题“机器手臂的基于二次规划的冗余度解析方案”“冗余机器人实时运动规划的统一理论”等项目。就人工神经网络、人工智能等相关领域的研究情况而言,我国很多学术前辈、同事甚至是后学不同程度地做出了不少创新性的成果,有些甚至达到世界领先的水准,这一点还是值得我们欣喜的。
以人工神经网络为例来说,其理论在国内外都已经取得了许多令人瞩目的成果,国内也有许多学者相继提出了不同的人工神经网络模型,并取得了较为广泛的应用,且应用范围在不断扩展,渗透到了多个领域,如信号处理,智能控制、模式识别、机器视觉、非线性优化、图像处理等等。我团队近期拓展的神经网络模型的连接权值直接确定一项可避开传统BP(误差回传)神经网络的内在弱点,如冗长的权值迭代计算、局部极小点问题、网络参数及隐神经元数的选取困难等等,并将递归神经网络应用于冗余度机械臂的运动规划与控制中,展现出了良好的成果。
笔者:早在2001年,您率先提出变矩阵/向量/优化问题的神经网络新解法,能否借此机会有针对性地讲述几点其与传统解析与架构上的不同?
张雨浓:其与传统梯度方法的不同之处可归纳为如下数点:首先,新型神经网络解法是基于矩阵/向量形式的误差函数而设计的,令其每个误差元素不断递减至零而成。与此相对,基于梯度法的传统神经网络解法是基于非负或至少下有界的标量形式的能量函数而设计的;值得指出的是,在基于梯度法的神经网络解法中涉及的参数矩阵等多是探讨定常的情况。
其次,新型神经网络在处理时变问题时,系统地采用变矩阵,向量的时间导数信息,这也是新型神经网络能够全局指数收敛到时变问题的准确理论解的原因之一。与此相对,基于梯度法的传统神经网络解法因没有使用如此重要的时间导数信息而难以有效地求解时变矩阵/向量/优化问题。
另外,新型神经网络通常是用更为普适的隐动力学方程描述的;而基于梯度法的传统神经网络则多是采用显动力学方程描述的。
笔者:在您的科研范围内,冗余机器人是您科学研究的主项,它显然代表着高端的科技发展方向,我们想请张教授谈一下冗余机器人今天的发展状况及其特性、优势,其在未来科技领域内的应用情况,给人类社会所带来的利好。
张雨浓:就冗余机器人而言,现主要研究的是冗余机械臂,其可广泛地应用于工业生产之中,包括焊接、油漆,组装、绘图、挖掘,送料和其他智能活动等等。冗余机械臂是指末端执行器在执行给定的任务时有比其所必需自由度之上更多的自由度和灵活度的机械臂。在冗余机器人的运动学研究中,正运动学和逆运动学都是研究的核心部分。正运动学指给定关节变量,通过已知的手臂函数映射关系,能够唯一地确定末端执行器的位姿,而逆运动学是指给定末端执行器的笛卡尔变量,如何来实时求解机械臂的关节变量。两者刚好相对,但逆运动学的求解却不容易。后者直接关系到运动分析,离线编程、轨迹规划等等,是将工作空间内机器人末端的位姿转化成关节量值的前提。由于机械臂逆运动学问题的复杂性,我们将机械臂逆运动学逆动力学问题都统一地转化为最优化问题,具体为时变二次规划问题,这种做法能减少大量矩阵求逆,矩阵相乘等运算,减少计算时间,也更灵活、更加智能化。
这些科研结果能为装备制造,加工作业乃至空间机器人等领域的运动控制和新型机械臂的研发,制造以及技术提升提供一个更为科学更加有力的理论与实践基础。该冗余度解析理论将会在重工制造装备等方面展露,并带来广阔的应用前景和较大的社会经济效益,如用以改造和提升喷浆机器人、焊接和绘图机器人、车载机器臂系统等机械设备的运动解析与控制技术、操作模式及其安全性稳定性等。
笔者:2007年您所提出的BP神经网络权值直接确定理论研究,克服了传统BP神经网络所固有的迭代时间长、迭代次数多,易陷入局部极小点和学习精度不高等诸多缺陷。您一直站在科技前沿,在未来您的研究方向还将力求冲破哪些方面的障碍?
张雨浓:我们的一个科研工作重心就是人工神经网络的权值直接确定法以及外延的新方法新理论,比如在权值直接确定基础上的隐层神经元数目自适应确定研究等等。就未来在该方面继续做工作而言,首先我们仍将继续寻找,挖掘、探讨和考察不同的激励函数、网络模型,以求从不同的角度更加丰富地证实权值直接确定法的可行性,有效性、普适性以及优异的学习能力等等;其次,我们将(也已经在)探讨多输入多输出人工神经网络的权值直接确定法,并同时探研拓扑结构自适应确定算法于其中;另外,也如同我们向中科院某所提交的一个开放课题申请书中所言,应用神经网络权值与结构直接确定理论处理海量数据同样值得尝试与探讨,我们以往曾开发出基于Toeplitz矩阵的时间序列高斯过程回归技术处理了六万维矩阵求逆和两万四千维数据,这一结果或可以借鉴用以开发神经网络超万维数据处理技术。
人工神经网络优势范文6
关键词:BP神经网络; 小波变换; 目标识别; 数据融合
中图分类号:TN91934 文献标识码:A 文章编号:1004373X(2012)10010003
战场目标识别一直是重要的研究课题,只用正确的识别目标,才能有效地采用克敌制胜的方法。多年以来,科学家为研究识别目标的方法,投入了大量的精力。最主要的方法是通过目标的外形进行识别,然而这很容易受到目标各种外形特征的影响,而且通过伪装和遮蔽,大大增加了通过图像识别目标的难度。另外也可以通过采集目标运动产生的地震动信号对目标进行识别。不同类型地面目标行进产生的地震动信号具有不同的频率和能量特征[1]。通过数据采集得到这些信号,然后利用小波分析,得到地震动信号的特征向量,利用神经网络分类器完成目标识别[2]。由于所有的检测信号都来源于目标本身,不会由于发射侦测信号被目标识别,属于被动目标识别方法,大大增加了隐蔽性。通过应用最新的信号分析处理方法和识别技术,能极大地提高识别效果和识别准确率。
1 数据采集和信号处理
1.1 测试系统组成
整个测试系统包括震动传感器、电荷放大器、PXI数据采集仪。采集系统构成如图1所示。为了提高信号质量,在采集之前增加了滤波电路。
所有的数据采集都是由PXI数据采集仪完成的。它来自地震动传感器的信号(频率较高)和频率为24.8 MHz的RF信号混合调制。为了减小杂波噪声,在量化的时候,通过一个低通滤波器将高于2 MHz的信号去除。PXI数据采集仪的内部包含数据采集卡,数据采集卡的采样频率为1 MHz,设定采样2 s的数据。采样得到的数据为WAV格式,能够通过外部音响播放出来。采样数据转换成MAT格式后,使用Matlab完成离线信号处理,包括解调和频谱计算。
图1 测试系统构成1.2 信号消噪
通过数据采集得到的信号通常包含各种噪声,必须将信号中的噪声信号去除。在实际工程中,有用信号通常表现为平稳信号,包含在低频部分,而噪声信号通常包含在高频部分。为此采用小波降噪的方法,将高频部分滤除。小波降噪的原理是首先对信号进行小波分解,分解后噪声包含在高频分量中,通过门限阈值等形式对小波系数进行处理,然后对信号进行重构,即达到了小波降噪的目的[3]。小波降噪一般分为3个步骤:
(1) 信号的小波分解。选择一个小波并确定分解的层次,然后进行分解运算。
(2) 小波分解高频系数阈值量化。对各个分解尺度的高频系数选择一个阈值进行阈值量化处理。
(3) 一维小波重构。根据小波分解的底层低频系数和各层高频系数进行一维小波重构。
这三个步骤中,最重要的步骤是如何选取阈值和如何进行阈值量化,这直接关系到信号消噪的质量[4]。本文采用的是sym8小波进行了6层分解,并用Heursure软阈值进行小波系数阈值量化。
通过对比原始信号(见图2)和滤波后信号(见图3)可以看出,滤波后的信号中包含的噪声信号明显减少了。这样就是减少了数据量,使后续的处理更方便,速度更快,结果更准确,从而达到最佳的识别效果。
图2 原始信号
图3 滤波信号2 人工神经网络
2.1 人工神经网络
人工神经网络(Artificial Neural Network,ANN),也称为神经网络,是由大量的神经元(Neurons)广泛连接组成的网络,是对人脑的抽象和模拟,实现人脑的基本功能。人工神经网络通过输入/输出数据调节参数、算法和结构模型,其自诞生至今,由于人工神经网络具有自学习能力和并行处理大量数据等特点,已经在智能控制和模式识别等领域得到越来越广泛的应用。尤其是基于误差信号反向传播(Error Back Propagation)的多层前馈网络(Multiplelayer Feedback Network),简称BP神经网络,因其可以以任意精度逼近任意连续函数而广泛应用于函数逼近、模式识别等领域。
BP神经网络一般有一个输入层,一个隐含层(有时有2个或者更多)和一个输出层[5]。输入层和输出层的神经元个数分别是输入层和输出层输入数据的维数,隐含层的层数和隐含层节点的个数要根据具体情况而定。BP神经网络模型如图4所示。
图4 BP神经网络神经网络模型有n输入和m输出。假设k代表采样序列,则数学上神经网络模型代表输入Xk=(xk1,xk2,…,xkn)T和输出Yk=(yk1,yk2,…,ykm)T之间的非线性映射,有以下等式:Yk=g(W,Xk)式中:W={wij,i=1,2,…,Ni,j=1,2,…,Nj}是一个权重矩阵反映层之间的连接;Ni和Nj分别代表i层和j层神经元数目。对神经网络模型的训练实际上就是利用训练样本计算权重矩阵W。训练完成的神经网络计算速度会很快,无论问题的复杂程度如何[6]。
2.2 信号特征分量提取