人工智能神经网络技术范例6篇

前言:中文期刊网精心挑选了人工智能神经网络技术范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

人工智能神经网络技术

人工智能神经网络技术范文1

黑科技?神经网络是个什么鬼

说到神经网络,很多朋友都会认为这是一个高大上的概念。从生物学角度来说,人类复杂的神经系统是由数目繁多的神经元组合而成,它们互相联结形成神经网络,经过对信息的分析和综合,再通过运动神经发出控制信息,从而实现各种精密活动,如识别各种物体、学习各种知识、完成各种逻辑判断等。

随着人工智能技术的发展,科学家开发出人工神经网络,它的构成原理和功能特点等方面更加接近人脑。它不是按给定的程序一步一步地执行运算,而是能够自身适应环境、总结规律、完成某种运算、识别或过程控制。比如多伦多大学的Krizhevsky等人构造了一个超大型卷积神经网络,有9层,共65万个神经。第一层神经元只能识别颜色和简单纹理,但是第五层的一些神经元可以识别出花、圆形屋顶、键盘、乌、黑眼圈等更为抽象丰富的物体(图1)。因此神经网络实际上是基于人工智能技术而形成的一种和人类神经网络相似的网络系统。

媲美Photoshop 神经网络磨皮技术背后

如上所述,现在神经网络技术发展已经非常迅猛,而且运用在各个领域。神经网络磨皮则是指该技术在照片识别和美化方面的运用。那么它是怎样实现对照片的美化?在Photoshop中磨皮操作是用户先选中人脸区域,然后再使用Photoshop内置的方法实现磨皮。神经网络磨皮原理类似,只不过这些操作是自动完成的。

首先是对照片人脸识别。要实现对照片的美容就必须先精确识别人脸,由于人脸有五官这个显著特征,因此神经网络磨皮技术只要通过机器对一定数量的人脸照片进行识别、读取,然后就可以精确识别人脸。它的原理和常见的人脸识别技术类似(图2)。

其次则是美化。在完成人脸识别后就需要对美化操作进行机器学习,以磨皮为例。因为人脸的每个年龄阶段皮肤性质是不同的,为了达到更真实的磨皮效果,神经网络磨皮是实现用户“回到”幼年或者“穿越”到老年脸部皮肤的效果。研究人员将年龄段分类为0~18岁、19~29岁、30~39岁、40~49岁、50~59岁和60岁以上这几个阶段(图3)。

然后准备两个深度学习机器同时工作。两个机器一个用来生成人脸,一个用来鉴别人脸。而且两个机器会通过分析人脸图像,提前学习到各年龄段人脸大概是什么样子的。在每个年龄分组里,研究人员让机器学习超过5000张标记过年龄的人脸图像。通过大量的照片学习后,机器就可以学会每个年龄分组内的标签,它可以准确知道每个人不同年龄阶段的脸部特征。这样无论你是要磨皮为年轻时的皮肤光滑、圆润状态,还是要变为50岁以后皱褶、粗糙的皮肤,神经磨皮都可以轻松帮助你实现。

当然学习有个通病,就是在合成过程中,机器可能会丧失掉图片原有的识别资料(1D)。为了解决这个问题,上述介绍中的人脸鉴别机器就发挥功效了。它通过查看这个照片的识别资料是不是唯一的,如果不是的话照片则会被拒绝输出。研究人员让机器合成10000张从数据库中抽取出来的人像,这些照片之前从未用来训练机器。然后他们用开发的软件程序来检测训练前后的两张照片是否为同一个人,测试结果显示有80%经训练的照片都被认为和原照片是同一个人(而作为对比,用其他方法加工照片,平均测试结果只有50%)。举个简单例子,如果40岁的用户将自己磨皮为20岁的样子,如果软件程序来检测训练前后的两张照片为同一个人,那么就输出磨皮效果,从而让用户可以轻松磨皮到20岁的状态。这样经过训练的神经磨皮算法可以很真实地实现人脸的磨皮。

神经网络 不H仅是磨皮

人工智能神经网络技术范文2

当你用谷歌搜索东西、使用地图软件、在亚马逊上购物,或者对智能手机中的语音识别软件说话,其实都在使用人工智能。当你登录到Facebook,欣赏那些可爱的婴儿照片,人工智能都在塑造你的体验。

所有这些应用的背后都使用了算法,算法本质上是形成分析过程的一组规则,能够对变量输入做出响应。如今的算法,尤其是来自亚马逊和Facebook等巨头的算法,响应速度快,还不断学习。它们事先经过编程,可采集来自用户的更准确的响应;也就是说,结果是为控制算法的那些厂商服务的。

了解和响应

当你在亚马逊上购物时,算法在后台基于一个包含众多购买模式的庞大数据库,执行异常高级的运算,之后决定将什么产品展示在你面前。它实时响应你的点击轨迹。

你可能觉得,有一个活生生的私人购物助手是最好不过的选择;她了解潮流,对你本人很了解。可是人工智能技术厂商Ayasdi的首席营销官丹尼尔・德鲁克(Daniel Druker)表示,这样的私人购物助手与亚马逊没法比。亚马逊“利用人工智能,结合你之前的购买活动,从100万件商品中推测眼下哪些商品最能吸引你的眼球。没有哪个人能做到这一点。”

在Facebook上,出现在你个人动态(feed)中的朋友不多,那是因为Facebook的人工智能算法知道:你受不了个人动态内容太多的情况。于是,Facebook使用人工智能,对你关于私人关系圈的讯号做出敏感的反应,打造你的个人动态,建立起一种更有效的情感联系。要是你以为人工智能冷若冰霜、缺乏人情味,Facebook用它来窥视你的内心(以及Facebook另外12.3亿日常用户的内心)。它威力强大,说Facebook人工智能影响了美国总统大选毫不为过。

尽管人工智能目前具有巨大的影响力,但它仍被看作是太过遥远的一项神奇技术。人工智能技术厂商Sentient Technologies的创始人兼首席科学家巴巴克・霍加特 (Babak Hodjat)说:“算法或应用有多诱人、多新潮、多强大,并不重要。我常常出去介绍这些系统时,人们总是会说‘是的,那很智能、那很酷,但这不是人工智能。’”

人们之所以会有这种怀疑,是因为“普通公众而非从业人士常常误以为人工智能是包含情感智能、创造力、自主性等一系列能力的人类级一般智能。”霍加特说,因而,人工智能“总是被认为是我们会发明的下一大技术。我认为,今后10年至15年还会是这种情况。”

他表示,在许多当前的应用中,人工智能比人类更强大。“你只要说一个方面,我可以告诉你这个方面是如何实施的、如何比人类更强大。起码,人工智能运行起来更快,所以当下人工智能的决策和行动周期要比人类响应世界的速度快得多。”

人工智能在过去几年得到了突飞猛进的发展。百度硅谷人工智能实验室主任亚当・科茨(Adam Coates)说:“这在10年前是很难实现的。当然,未来几年,我们认为在人类非常擅长处理、但计算机向来不擅长的许多问题上,人工智能会取得巨大进展。比如说,识别图像中的实体,或者理解语音、对口语做出响应,那些是深度学习和人工智能技术在未来几年会持续改进的问题。”

推动与向前

什么功能在推动这些进展?人工智能必须获得什么样的功能才能向前发展?

皮特・阿贝尔(Pieter Abbeel)是加州大学伯克利分校的计算机科学系教授,也是人工智能教育初创公司Gradescope的联合创始人。他表示,首先,人工智能系统需要能够在没有人类干预的情况下自主学习。此外,它还在被告知诸如“你从这个角度堆方块,也许效果会更好”之类的信息时,应该有沟通和理解能力。“要是它无法领会这样的信息,我们不会认为它具有真正的智能。”

人类(至少理论上)能够利用过去的经验来推断和处理新环境,在这方面机器人则差的很远。为机器人编程、以便它在有限的环境下提供辅助要容易得多。人工智能科学家们想为机器人编程,以便处理相关的变化。

阿贝尔说:“它们需要运用过去获得的经验,推广到不一样但相类似的新场景,了解这种关联性。我对于机器人如何能真正从头开始学会做事很感兴趣。”从头开始学起是人类特有的能力;如果机器人能够真正做到填补其空白,它有望成为独立的个体。

但人工智能机器人的“学习能力”可能有许多不同的方式来定义,一些是很普通的“尝试和奖励”方式,类似于教狗学新花招。比如说,人工智能强化学习可编写机器人的软件,从试错过程中学习。加州大学伯克利分校的BRETT机器人基于行动后奖励的多少来使用强化学习技术。阿贝尔说:“奖励的变化让该机器人得以分辨什么是好的,什么是不好的,进而重点采用获得奖励多的策略。”

与之相仿,人工智能科学家使用监督式学习,为计算机馈送标记输入(这些是猫,这些是狗)的许多实例,并给出明确的目标输出(这是猫还是狗?)。非监督式学习给计算机馈送非标记数据(比如说许多动物的照片),计算机进行分类,或者以其他方式为该数据定义结构模型(这些动物身上的毛比其他这些动物多得多)。科茨表示,非监督式学习是“非常重要的研究热点,因为我们知道人类所做的在很大程度上是非监督式学习。”

人工智能“学习”的核心是神经网络,它类似人类大脑。跟大脑一样,面对更多的输入,神经网络会自我调整。阿贝尔说:“你展示足够多的那些实例,神经网络就会自我调整,说‘针对那个输入,我需要那个输出’;所以,要做到这一点,唯一的途径是,我需要调整联系的部分强度,那样我才能搞好那种对应。所以,在某种意义上,你在训练神经网络时,是让计算机学习它的计算机程序,而不是将计算程序编入到里面。”

科茨解释,不过打造神经网络并非易事。“一大挑战在于,我们不是非常清楚如何仅凭一些非标记、非结构化的数据来训练神经网络。我们不知道如何量化神经网络在处理这些种类的任务中的好坏。等到我们在这方面有了发现,那将是一大进步。但我们还没有到那一步。所以,这离人类智能相差甚远。”

人工智能神经网络技术范文3

关键词:神经网络控制系统;故障诊断;技术分析

现代经济的发展和科技的进步促进了计算机技术的应用和进步,信息技术和网络控制系统为工业生产和科学研究带来巨大便利。现阶段,神经网络控制系统应用趋向于规模化、集中化和专业化,网络控制技术进步的同时,生产应用率提高,超负荷工作下,容易出现系统故障或瘫痪,造成企业经济损失,因而需要积极制定有效策略、运用先进技术和手段对神经网络控制系统故障问题予以集中解决。[1]

1 神经网络控制系统故障诊断技术发展

1.1 智能化

神经网络控制系统出现故障,一般需要专业工程师对系统的故障信号进行检测、搜集和分析,在了解系统故障的发生位置后即可分析研究故障原因。现代网络信息技术和智能技术的广泛应用提高了神经网络控制系统故障的诊断速率。神经网络控制系统在工业生产等领域应用广泛,关于系统故障的诊断技术也不断提高,逐步向智能化和数字化发展。神经网络控制系统在不同行业应用,但是产生的故障原因不同,采用的诊断方法也不同。一般系统在产生故障时会自动发出警报声,可第一时间确定系统的故障位置,这种属于系统故障智能定位。系统控制工作复杂,从应用企业的应用成本考虑,需要使用合理的神经网络控制系统,同时增加对神经网络控制系统故障研究成本的投入。

1.2 灵活性

神经网络控制系统产生故障大多是人工应用不当导致的,因而在故障诊断中由于人的主观意识,导致系统故障诊断过于单一,且人工判别技术有限,具有较大随机性和盲目性,对系统故障位置及成因分析判断的准确度不够,影响神经网络控制系统故障修理。然而采取智能技术对神经网络控制系统故障进行排查和定位具有较强灵活性,可以在假设的基础上建立数学模型,以数据分析的形式对系统故障部分予以诊断。神经网络控制系统研发和应用的复杂度不断提高,不同类型控制系统产生的故障原因也越来越复杂,采用数学建模的方法获取、分析故障系统数据,能够增强神经网络控制系统故障诊断的灵活性和针对性。[2]

2 神经网络控制系统故障诊断技术应用的内容和要点

2.1 数据建模,隔离故障源

神经网络控制系统出现故障后无法正常运行,系统某些功能也无法实现,最终导致系统瘫痪、影响工作。针对这种情况需要充分利用人工智能手段诊断系统故障原因,可以利用软硬件监控系统,在确定故障点后予以隔离,通过数据了解系统产生故障的人工原因和机能原因。技术人员一般需要根据系统工作参数输出,利用数据建模,以数学表示形式将系统故障信息进行验证和输出,作为故障诊断评价的理论依据。对于神经网络控制系统故障原因诊断后还要进行原因分类,检测系统变量是否存在异常,若异常则启动报警装置,以此排除不合理故障原因。神经网络控制系统故障发生需要在判断出原因后根据信息源位置隔离故障部分,对于神经网络控制系统不同的故障原因和故障程度均要进行量化评估,并采取有效措施解决故障问题。

2.2 BP神经网络和遗传算法

神经网络控制系统主要部分是执行器和传感器,执行器和传感器在运行中主要容易出现恒偏差、卡死和恒增益等不同类型的故障。因而在故障诊断中需要利用仿真建模的办法,将仿真人设定为故障类型,并以此获得系统变化信息。在神经网络控制系y故障中一般会应用BP算法,但这种算法单独使用效率不高,可结合遗传算法,利用遗传算法优化BP神经网络的权值阈值,最后在系统故障归一化处理后用作训练数据。遗传算法的主要特点是全局搜索能力强且运行高效、便捷。传统的BP算法在受到遗传算法数据优化后,能够提高神经网络控制系统故障诊断的有效率,诊断数据误差比对后可提高运算速率。[3]

2.3 残差序列和模型解析

神经网络控制系统动态模型建立能够有效提高系统故障诊断与检修准确率,一般是利用滤波器或观测器重构控制系统的参数或状态,并形成残差序列,对于残差序列中所包含的故障信息可以采取必要手段进行信息增强,对模型中的非故障信息需要抑制,正常情况下统计分析残差序列可直接检测出系统故障发生的位置和原因。系统故障正常值与估计值的偏差分析是研究系统故障程度的关键,在参数估计中相对简单实用的是最小二乘法,鲁棒性较强,因而是参数估计的首选方法。系统运行状态可由被控过程状态反映,被控过程状态在重构中形成残差数列,数列中也包含了不同的故障信息,利用模型统计检验出故障,最后用尔曼滤波器进行状态估计。关于模型等价空间的诊断一般使用无阀值的方法,这种方法是在1984年由willsky和Chow提出,主要是对测量信息进行分类,得到一致的冗余数据子集后,估计系统状态,并对不同的冗余数据进行识别,完成模型解析。

3 结束语

神经网络控制系统的应用广泛,属于人工智能研究领域的重要部分,要提高系统运行的安全性和稳定性,就要在系统出现故障后采用科学的诊断方法,以建立数学模型的形式对系统故障数据进行检测和分析。神经网络控制系统的故障诊断技术研究需要不断深入,根据系统不同的故障类型采取针对性的解决办法分析故障原因、定位故障源,并进行隔离排障。[4]

参考文献

[1]徐岩,秦波.LM-BP神经网络的叉车液压系统故障诊断技术研究[J].内蒙古科技与经济,2016(22):90-91+93.

[2]祁涛,张彦斌,姚人前.神经网络技术在智能BIT故障诊断系统中的应用[J].火力与指挥控制,2016(06):125-128.

[3]黄志强.基于BP神经网络技术开发港口设备故障诊断专家系统[J].软件导刊,2012(02):77-79.

[4]樊立萍,石月,高士宏.基于模糊神经网络的感应电机控制系统的故障诊断[J].信息系统工程,2010(01):26-28.

人工智能神经网络技术范文4

关键字:电气自动化;自动化控制;人工智能技术

中图分类号:TP18文献标识码:A

1 人工智能技术探究及运用实际状况

最近几年,不少的科研组织及相关院校对于人工智能技术的革新及探究以及电器设备控制的运用问题上都进行了深入的探究,促使人工智能技术在电气设备系统结构设计、故障诊断、预警、监控及自动保护上都达到了一定的层次。

从电气设备结构设计中人工智能技术运用方面来分析:由于电气设备系统结构设计是非常复杂的,关乎到很多方面的知识比如电磁、电路及电机电器运用等,这就对有关工作人员的专业技能及相关知识掌握有着很高的要求。当下,数字化信息技术得到了前所未有的发展,推动了电气产品及控制体系设计逐渐转入了CAD,这就造成一些新产品、新系统的创建时间缩短了很多,在这个大环境下,人工智能技术系统设计质量及速度将获得全方位的提高。

除此之外,人工智能技术对于电气设备故障掌控及预警有着独特的优势。通常,如果电气控制系统有故障的形成那么会在故障形成早期呈现出非线性,为此,人工智能技术独特的模糊逻辑及神经网络等方面优势就可以完全展现出来。

而电气自动化中人工智能技术的运用通常有以下几种技术方式:神经网络、专家系统及模糊控制。而模糊控制技术非常便捷,具有超强的可运用性。通常电气自动化控制系统中人工智能技术是以AI控制器为中心的,可以把它当做一个非线性函数近似器。跟平常的函数估计设备进行对比,AI控制系统在进行设计的时候其目标并不是完全要求是具体的模型,这种方式就可以完全预防了在设计的过程中需兼顾到模型自身参数不确定性的问题。除此之外,人工智能技术有着非常广阔的发展空间,并且非常容易调节,有较强的一直性能,针对全新信息数据有着很好的适应性。进行配置的时候所需耗费的成本低、方便便捷、对外界的抗干扰性能强。

2 电气自动化控制系统中人工智能技术的具体运用

电气自动化控制系统中人工智能技术通常有两种方式的运用:直流传动控制系统和效流传动控制系统。

直流传动控制系统当中,推理机是模糊控制设备的重心,它承载着人脑智能化决策逐渐向模糊控制命令推理。此外,还有模糊化部分、知识库部分以及反模糊化部分,模糊化部分是经过很多种形式的函数对变量值进行的测量,同时把它逐渐模糊化、量化;知识库部分是由数据规则及语言控制库共同组成的知识库,知识库设计的过程中需运用相关专家的成功经验以及专业知识对电气设备进行有效的控制。

人工神经网络控制技术是人工智能技术的另外一种形式,该技术通常使用在不同模式的判别及对多种信息的处理,能够在电气传动控制当中展现出很好的作用。人工神经网络控制技术以并行结构为主,可以在很大范围内所运用,能够在很大程度上提高条件监控、诊断系统的精准性;这种控制技术通常是运用在学习策略差别较小的反向传播当中,这就是说在网络状况非常充裕的隐藏层、结点及适合的激励函数影响下,多层人工神经网络唯有运用反向传播句能够推算出与之相对应的非线性函数的近似参数,这将在很大的程度上提升运行速度。

当进行交流传动控制的过程当中,人工智能技术的采用通常也包括模糊逻辑及神经网络两方面的具体方式。

针对模糊逻辑来讲,截止到现在,大都用模糊控制器将之前的普通速度控制设备完全代替,但在国外一所大学中探究出一种高性能的具备多个模糊控制器的全数字化传动控制系统,这种系统具有的模糊控制器能够完全的代替之前的普通速度控制设备,同时能够很好的完全控制任务。

从人工神经网络控制技术来讲,在现实的探究工作上以对交流电气设备及所驱动的客观环境参数的监测及诊断为最终标准。当人工神经网络对电动机进行控制的时候,可以选用反向转拨的计算方式,经过相关实验数据的运用,通过电机负载转矩以及电机的最初速度来最后确定智能监控体系能够检测的在最大速度的前提下所产生的增加数值。此设计方案的运用,要求神经网络具备辨别三维图形映射的功能,以此才可以促使其以梯形控制计算模式具备超强的控制功效。在这种模式中,人工神经网络控制技术能够很好的缩小电气自动化系统定位工作所花费的时间,同时增强对负载转矩及非初始速度变化范围的控制。人工神经网络的结构通常是以多层前馈型常见,通常将其划分为两个系统:一种是在分辨电气动态参数的前提下针对经过定子的电流开展自行调节与掌控;一种是在分辨机电体系运行参数前提下对于转子速度开展自行调节及掌控。

电气自动化控制系统的设计

(1) 集中监控方式

集中监控方式的最大特点是维护非常便捷,针对控制站,防护级别不用特别高,其设计的完成是非常简单的。但由于是集中式监控,它的工作原理是将所有性能有效的结合在同一个处理器,以顺利的完成处理工作。为此,针对处理器来讲其所承受着很大的工作压力,这主要是由于电气设备大多是在监控下开展的工作,假设监控对象时常显现出来,必然会造成主机冗余减少,然而电缆所产生的改变就会浪费很多的成本,距离比较长的电缆,若形成干扰的状况就会造成该系统出现不稳定的情况。同时,隔离刀闸的操作闭锁和断路器的联锁运用硬接线,由于在分隔刀闸接点的方位有缺陷的存在,就会造成设备正常运行起来非常艰难,以此不能够顺利的进行二次接线。由于线与线之间的连接非常复杂,设备操作起来非常困难,这就会给维护工作造成更大的难度。

(2) 现场总线监控方式

当下,以太网(Ethernet)、现场总线等计算机网络技术逐渐运用在变电站综合自动化系统当中,同时具备了较为丰富的动作指令,而智能电器设备目前也已经得到了迅速的发展,所有的这些有利情况的出现促使了网络监控及发电厂相互间的联系更为紧密。总线监控令设计标准更为鲜明,就间隔的不同,在性能上会展现出很大的不同,为此,我们能够作为间隔进行有关设计。运用此监控方法,包括了目前所有远程监控方法的独特优点,同时可以很好的减少隔离设备的总数量,也包含了隔离设备、端子柜、I/0卡件、模拟量变送器等。针对智能设备一定要及时的进行有关装配,假如运用通信线及监控系统相互间进行连接,那么就可以节省很多的控制电缆,节约投资。除此之外,装置相互间的性能是不会相干扰的,装置相互间是由网络联系在一起形成的,因网络组织较为轻松,为此就促使系统更加稳定坚固。如果其中一个装置有问题出现,那么其他的配件也会受到牵连,但却不会造成系统整体停止。为此,现场总线监控可以当做今后发电厂网络监控的一种有效的使用方法。

3 电气自动化控制系统的未来发展

OPC(OLE for Process Control)技术的涌现,IEC61131的颁布及Microsoft的Windows平台的范围运用,很好的为计算机带来了一个全新的运用方向,因电气技术具有优越的融合性能,为此有着很大的发展空间。目前在步入国际化时代下,多种控制系统开始得到非常广泛的运用,这被越来越多的商家所注重以及运用起来。Pc 客户机/服务器体系结构、以太网和Internet技术推动了电气自动化的每一场新的革命。在日益变化的市场需求下,自动化与IT平台的融和,电子商务的广泛使用推动其不断的发展。Internet/Intranet技术和多媒体技术也在自动化上有着非常宽阔的发展空间,企业管理人员采用平常的浏览器就能够顺利的将有关储存及提取信息的工作很好的完成,同样可以把当下企业的生产流程当做监控目标,可以获取较为精准、全面的各方面信息。随着虚拟技术与视频技术的巧妙运用,对人机界面及维修体系带来了非常显著的影响,运用对应功能强的软件,将会对通讯成果及组合氛围的准求更加显著,软件性能增强,从某一种设备开始向集成的方向转变。

总体上来讲,电气自动化控制系统为今后的发展创造了很大的空间,为了能够很好的面对未来更为复杂化的各方面需求,我们一定要兼顾电气自动化的发展特点,适时为企业选择专业化的高技术人才来推动企业的进步与发展,为此,与之有关联的企业将有了更为宽广的就业前景。但需要特别关注的是,这种行业要求必须要具备超强的专业技术,在进行装置配合工作中,需要将自动化与智能化看作工作的首要工作,逐渐促使有关设备与国外发达国家水平相接轨,独创行业的领头团队。

4 结束语

电气自动化控制系统是提升电气设备的生产性能、流通交换速度的关键性方面,在完全‘放弃’人工操作控制的前提下,最大程度的实现了智能化操控。不单单能够为企业节约人力、物力及企业成本,并且有助于提升企业生产效率。人工智能技术是探究人类智能模拟的学科,其最大的特点就是自动化。这就是说电气自动化控制系统中,人工智能技术的运用前景是异常宽广的,在数字控制理念的科学指导之下,之前所运用的控制器设计技术必然会慢慢的被具有良好控制成果的人工智能软件设计所代替。为此,相关企业及单位一定要加强在电气自动化控制上的人工智能技术的探究,以便于为企业未来的健康、快速发展提供足够的技术支持。

参考文献

人工智能神经网络技术范文5

关键词:制造规模 关键技术 发展趋势

一、自动化机械制造规模

按规模大小FMS可分为如下4类

(一)自动化制造单元

FMC:的问世并在生产中使用约比FMS晚6~8年,它是由1~2台加工中心、工业机器人、数控机床及物料运送存贮设备构成,具有设置应加工多品种产品的灵活性。FMC可视为一个规模最小的FMS,是FMS向廉价化及小型化方向发展和一种产物,其特点是实{目单机自动化化及自动化,迄今已进入普及应用阶段。

(二)自动化制造系统

通常包括4台或更多台全自动数控机床及人工中心与车削中心等),由集中的控制系统及物料搬运系统连接起来,可在不停机的情况下实现多品种、中小批量的加工及管理。

(三)自动化制造线

它是处于单一或少品种大批量非自动化自动线与中小批量多品种f:MS之间的生产线。其加工设备可以是通用的加工中心、CNC机床,亦可采用专用机床或NC专用机床,对物料搬运系统自动化的要求低于FMS,但生产率更高。

(四)自动化制造工厂

FMt是将多条FMS连接起来,配以自动化立体仓库,用计算机系统进行联系,采用从订货、设计、加工、装配、检验、运送至发货的完整FMS。它包括了CAD/CAM,并使计算机集成制造系统(C1MS)投入实际,实现生产系统自动化化及自动化,进而实现全厂范围的生产管理、产品加工及物料贮运进程的全盘化。FMF是自动化生产的最高水平,反映出世界上最先进的自动化应用技术。它是将制造、产品开发及经营管理的自动化连成一个整体,以信息流控制物质流的智能制造系统IMS)为代表,其特点是实现工厂自动化化及自动化。

二、自动化关键技术

(一)计算机辅助设计

未来CAD技术发展将会引入专家系统,使之具有智能化,可处理各种复杂的问题。当前设计技术最新的一个突破是光敏立体成形技术,该项新技术是直接利用CAD数据,通过计算机控制的激光扫描系统,将三维数字模型分成若干层二维片状图形,并按二维片状图形对池内的光敏树脂液面进行光学扫描,被扫描到的液面则变成固化塑料,如此循环操作,逐层扫描成形,并自动地将分层成形的各片状固化塑料粘合在一起,仅需确定数据,数小时内便可制出精确的原型。它有助于加快开发新产品和研制新结构的速度。

(二)模糊控制技术

模糊数学的实际应用是模糊控制器。最近开发出的高性能模糊控制器具有自学习功能,可在控制过程中不断获取新的信息并自动地对控制量作调整,使系统性能大为改善,其中尤其以基于人工神经网络的自学方法更起人们极大的关注。

(三)工智能、专家系统及智能传感器技术

迄今,FMS中所采用的人工智能大多指基于规则的专家系统。专家系统利用专家知识和推理规则进行推理,求解各类问题(如解释、预测、诊断、查找故障、设计、计划、监视、修复、命令及控制等)。由于专家系统能简便地将各种事实及经验证过的理论与通过经验获得的知识相结合,因而专家系统为FMS的诸方面工作增强了自动化。展望未来,以知识密集为特征,以知识处理为手段的人工智能(包括专家系统)技术必将在FMS(尤其智能型)中关键性的作用。人工智能在未来FMS中将发挥日趋重要的作用。目前用于FMS中的各种技术,预计最有发展前途的仍是人工智能。预计到21世纪初,人工智能在FMS中的应用规模将要比目前大4倍。智能制造技术fIMT旨在将人工智能融入制造过程的各个环节,借助模拟专家的智能活动,取代或延伸制造环境中人的部分脑力劳动。在制造过程,系统能自动监测其运行状态,在受到外界或内部激励时能自动调节其参数,以达到最佳工作状态,具备自组织能力。

(四)人工神经网络技术

人工神经网络fANN)是模拟智能生物的神经网络对信息进行并行处理的一种方法。故人工神经网络也就是一种人工智能工具。在自动控制领域,神经网络不久将并列于专家系统和模糊控制系统,成为现代自支化系统中的一个组成部分。

三、启动控制技术发展趋势

自二战结束以来,世界各发达国家逐渐重视设计理论和设计方法的研究,先后产生了许多新概念、新思想、新理论和新技术。从设计方法来看,国内外先后提出了并行设计、虚拟设计、协同设计,相似性设计、智能设计等新概念;从设计准则来看,出现了优化设计、可靠性设计、有限元等概念,从设计的手段来看,出现了计算机辅助设计,不仅普及了二维设计 CAD 软件,而且功能全面的三维造型软件也进入了实用阶段。

(一)FMC将成为发展和应用的热门技术

这是因为FMC的投资比FMS少得多而经济效益相接近,更适用于财力有限的中小型企业。目前国外众多厂家将FMC列为发展之重。近年来,计算机网络技术、 Web 技术和数据库技术的出现和飞速发展,给现代机械设计注入了新的生机和活力,机械设计逐渐向数字化、网络化方向发展。基于 Web 的远程设计正是在这种条件下产生的。它的出现,使得各制造企业可以充分利用 Internet 和 Web 的国际互联性和资源共享性,组建企业间的动态联盟或虚拟设计小组,通过组合分散在各个地域企业的技术优势,发挥各个企业的局部特长,同时不同专业的技术人员可以不受地域的限制,在一个统一且易于访问的平台下进行异地的合作与设计,实现信息的交流和共享,进而快速开发出所需产品,提高产品设计的一次成功率。

(二)朝多功能方向发展

人工智能神经网络技术范文6

机械自动化 模糊控制 人工智能

【中图分类号】P415.1+3文献标识码:B文章编号:1673-8005(2013)02-0012-01

机械自动化,主要指在机械制造业中应用自动化技术,实现加工对象的连续自动生产,实现优化有效的自动生产过程,加快生产投入物的加工变换和流动速度。机械自动化技术的应用与发展,是机械制造业技术改造、技术进步的主要手段和技术发展的主要方向。机械自动化的技术水准,不仅影响整个机械制造业的发展,而且对国民经济各部门的技术进步有很大的直接影响。如何发展我国的机械自动化技术,应实事求是,一切从我国的具体国情出发,做好各项基础工作,走中国的机械自动化技术发展之路。

1我国机械自动化的现状

机械自动化技术从上世纪20年代开始发展应用以来,在各行各业都得到了迅速发展和广泛的应用,特别是近年来计算机的高度集成化,开始采用计算机集成制造系统,大大加快了机械自动化的发展,但我国让处于初级操作阶段的自动化。

近年来,我国的制造业不断采用先进制造技术,但与工业发达国家相比,仍然存在一个阶段性的整体上的差距。

1.1管理方面

工业发达国家广泛采用计算机管理,重视组织和管理体制、生产模式的更新发展,推出了准时生产(JIT)、敏捷制造(AM)、精益生产(LP)、并行工程(CE)等新的管理思想和技术。我国只有少数大型企业拒不采用了计算机辅助管理,多数小型企业仍处于经验管理阶段。

1.2设计方面

工业发达国家不断更新设计数据和准则,采用新的设计方法,广泛采用计算机辅助设计技术(CAD),大型企业开始无图纸的设计和生产。我国采用CAD技术的比例比较低。

1.3制造工艺方面

工业发达国家较广泛的采用高精密加工、精细加工、微细加工、微型机械和微米、纳米技术、激光加工技术、电磁加工技术、超塑加工技术以及复合加工技术等新型加工方法。我国普及率不高,尚在开发、掌握之中。

1.4自动化技术方面

工业发达国家普遍采用数控机床、加工中心及柔性制造单元(FMC)、柔性制造系统(FMS)、计算机集成制造系统(CIMS)等。我国尚处在单机自动化、刚性自动化阶段,柔性制造单元和系统仅在少数企业可见。

2机械自动化关键技术

自动化制造系统(FMS)系指具有自动化程度高的制造系统。目前所谈及的FMS通常是指在批量切削加工中以先进的自动化和高水平的自动化为目标的制造系统。随着社会对产品多样化、低制造成本及短制造周期等需求日趋迫切,FMS发展颇为迅速,并且由于微电子技术、计算机技术、通信技术、机械与控制设备的发展。

2.1计算机辅助设计

未来CAD技术发展将会引入专家系统,使之具有智能化,可处理各种复杂的问题。当前设计技术的一个突破是光敏立体成形技术,该项新技术是直接利用CAD数据,通过计算机控制的激光扫描系统,将三维数字模型分成若干层二维片状图形,并按二维片状图形对池内的光敏树脂液面进行光学扫描,被扫描到的液面则变成固化塑料,如此循环操作,逐层扫描成形,并自动地将分层成形的各片状固化塑料粘合在一起,仅需确定数据,数小时内便可制出精确的原型。它有助于加快开发新产品和研制新结构的速度。

2.2模糊控制技术

模糊数学的实际应用是模糊控制器。最近开发出的高性能模糊控制器具有自学习功能,可在控制过程中不断获取新的信息并自动地对控制量作调整,使系统性能大为改善,其中尤其以基于人工神经网络的自学方法更起人们极大的关注。

2.3人工智能、专家系统及智能传感器技术

迄今,FMS中所采用的人工智能大多指基于规则的专家系统。专家系统利用专家知识和推理规则进行推理,求解各类问题(如解释、预测、诊断、查找故障、设计、计划、监视、修复、命令及控制等)。由于专家系统能简便地将各种事实及经验证过的理论与通过经验获得的知识相结合,因而专家系统为FMS的诸方面工作增强了自动化。展望未来,以知识密集为特征,以知识处理为手段的人工智能(包括专家系统)技术必将在FMS(尤其智能型)中关键性的作用。人工智能在未来FMS中将发挥日趋重要的作用。目前用于FMS中的各种技术,预计最有发展前途的仍是人工智能。预计到21世纪中期,人工智能在FMS中的应用规模将要比目前大4倍。智能制造技术fIMT旨在将人工智能融入制造过程的各个环节,借助模拟专家的智能活动,取代或延伸制造环境中人的部分脑力劳动。在制造过程,系统能自动监测其运行状态,在受到外界或内部激励时能自动调节其参数,以达到最佳工作状态,具备自组织能力。

2.4人工神经网络技术

人工神经网络fANN是模拟智能生物的神经网络对信息进行并行处理的一种方法。故人工神经网络也就是一种人工智能工具。在自动控制领域,神经网络不久将并列于专家系统和模糊控制系统,成为现代自支化系统中的一个组成部分。

3现代机械技术的发展方向

现代机械制造技术的发展主要表现在两个方向上:一是精密工程技术,以超精密加工的前沿部分、微细加工、纳米技术为代表,将进入微型机械电子技术和微型机器人的时代;二是机械制造的高度自动化,以CIMS和敏捷制造等的进一步发展为代表。

3.1精密成形技术成形制造技术包括铸造、焊接、塑性加工等。精密成形技术包括:精密铸造(湿膜精密成形铸造、刚型精密成形铸造、高精度造芯)、精密锻压(冷湿精密成形、精密冲裁)、精密热塑性成形、精密焊接与切割等。

3.2无切削液加工无切削液加工的主要应用领域是机械加工行业,无切削液加工简化了工艺、减少了成本并消除了冷却液带来的一系列问题,如废液排放和回收等等。

3.3快速成形技术快速原型零件制造技术(RPM),其设计突破了传统加工技术所采用的材料去除的原则,而采用添加、累积的原理。其代表性技术有分层实体制造(LOM),熔化沉积制造(FDM)等等。