卷积神经网络识别方法范例6篇

前言:中文期刊网精心挑选了卷积神经网络识别方法范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

卷积神经网络识别方法

卷积神经网络识别方法范文1

关键词关键词:人脸识别;卷积神经网络;图像识别;深度学习;模式识别

DOIDOI:10.11907/rjdk.171043

中图分类号:TP317.4

文献标识码:A文章编号文章编号:16727800(2017)005018603

0引言

人脸识别是近年来模式识别、图像处理、机器视觉、神经网络及认知科学领域的研究热点[12]。所谓人脸识别,是指给定一个静态人脸图像或动态视频,利用存储有若干已知身份的人脸数据库验证单个或多个人的身份[1]。作为生物特征识别的一个重要方面,人脸识别有着广泛的应用场景,如:档案管理系统、公安系统的犯罪身份识别、银行和海关的监控、安全验证系统、信用卡验证等领域。在人脸识别巨大魅力的影响下,国内互联网公司也开始了人脸识别应用的探索,如百度推出的人脸考勤系统、阿里支付宝的刷脸登录等功能都是人脸识别的具体应用。目前,人脸识别的代表性方法主要有以下几种:Turk和Pentland[3]提出的特征脸(Eigenface)方法;基于线性区别分析,Belhumeur 等[4]提出了Fisherface方法;基于统计理论,剑桥大学的 Samaria和Fallside[5]提出了隐马尔科夫模型[5](HMM),Lawrence 等[6]提出的通过多级自组织映射神经网络(SOM)[6]与卷积神经网络相结合进行人脸识别。上述方法虽然获得了良好的识别正确率,但需要人工参与特征提取,然后将提取的特征送入分类器进行识别,过程较为复杂。

卷积神经网络[79]是近年发展起来,并引起广泛重视的一种高效深度学习识别算法,其已成为当前语音分析和图像处理领域的研究热点。相比传统的神经网络而言,卷积神经网络具有权值共享、局部感知的优点。局部感知的网络结构使其更接近于生物神经网络,权值共享大大减少了模型学习参数的个数,同时降低了神经网络结构的复杂性。在图像处理领域,卷积神经网络的优点体现得更为突出,多维的图像数据可以直接作为网络的输入,特征提取和分类均集成在网络中,避免了传统识别算法中复杂的特征提取和训练分类器过程。除此之外,卷积神经网络对图像中的位移、比例缩放、旋转、倾斜或其它形式的变形具有很好的鲁棒性。为了解决传统人脸识别算法特征提取和训练分类器困难的问题,本文借鉴Lenet-5[10]的结构,设计一个适合ORL数据集人脸识别任务的卷积神经网络结构。

1卷积神经网络

1.1用于ORL人脸识别的CNN

本文提出的7层卷积神经网络模型由输入层、2个卷积层、2个降采样层、一个全连接层和一个Sigmoid输出层组成。卷积核的大小均为5×5,降采样层Pooling区域的大小为2×2,采用Average Pooling(相邻小区域之间无重叠),激活函数均采用Sigmoid函数。每一个卷积层或降采样层由多个特征图组成,每个特征图有多个神经元,上层的输出作为下一层的输入。此外,本文实验学习率的取值为常数1.5,该卷积神经网络结构如图1所示。

1.2卷积层

卷积神经网络中的卷积层一般称C层[11](特征提取层)。卷积层的输入来源于输入层或者采样层。卷积层中的每一个特征图都对应一个大小相同的卷积核,卷积层的每一个特征图是不同的卷积核在前一层输入的特征图上作卷积,然后将对应元素累加后加一个偏置,最后通过激活函数得到。假设第l层榫砘层,则该层中第j个特征图的计算表达式如式(1)。

xlj=f(∑i∈Mjxl-1iklij+blj)(1)

这里的Mj表示选择的上一层输出特征图的集合。

1.3降采样层

降采样层是对上一层的特征图进行下采样处理,处理方式是在每一个特征图内部的相邻小区域进行聚合统计。常见的下采样方式有两种:Average Pooling和Max Pooling。其中,Average Pooling是取小区域内像素的平均值,而Max Pooling是取小区域内像素的最大值。降采样层只是对输入的特征图进行降维处理,不改变特征图的个数。假设down表示下采样操作,βlj表示乘性偏置,blj表示加性偏置,则降采样层中某个特征图的计算表达式如下:

xlj=f(βljdown(xl-1j)+blj)(2)

1.4输出层

卷积神经网络的输出层一般为分类器层,常用的有径向基(RBF)函数输出单元、Sigmoid输出单元和Softmax回归分类器。在ORL人脸识别任务中,采用Sigmoid函数输出单元,输出层的编码采用非分布编码“one-of-c”的方式。由于采用Sigmoid函数,每一个单元输出值是0-1范围内的一个正数,代表该样本属于该单元对应类别的概率。数值最大的那个单元即为样本的预测类别。假设x为全连接层的输出,则输出层输出结果的计算表达式如下:

y=f(wTx+b)(3)

其中,f表示激活函数,这里采用Sigmoid函数,Sigmoid函数表达式如下:

f(x)=11+e-x(4)

2实验结果与分析

实验在Windows7 64位下的Matlab 2014a中进行,采用Matlab深度学习工具箱DeepLearnToolbox。PC的内存8G,CPU主频为3.2GHZ。

ORL人脸数据集是在1992年至1994年之间由AT &T Cambridge实验室拍摄的人脸图像所构成。数据集中包含40个不同人物的脸部图像,每个人物包含10张图像,总共400张。每个类别中的脸部图像在不同的时间拍摄得到,存在如下差异:①光线;②面部表情,如眼睛的闭合和睁开状态,面部是否带有微笑的表情等;③一些面部细节上的差异,如是否佩戴眼镜等。该数据集中所有人脸图像均为灰度图像,且图像中人物面部朝向基本一致,都朝向正前方。

图2为ORL数据集中部分人脸图像。数据集中每个原始图像大小为92*112像素,本文实验中对这些图像进行预处理,使每一幅图像的尺寸调整为28*28,并对每一副图像进行归一化处理,这里采用简单的除255的方式。随机选取每一个类别的8张图像作为训练样本,剩下的2张作为测试样本。因此,训练集有320个样本,测试集有80个样本。

2.1改变C3层卷积核个数对网络的影响

卷积神经网络性能的好坏与卷积层卷积核的个数密切相关,但每一个卷积层应该设置多少个卷积滤波器,目前并没有数学理论指导。为了研究卷积核个数对网络最终识别准确率的影响,本文保持C1层卷积核个数不变,通过改变C3层卷积核的个数,形成新的网络结构,用训练集训练网络,训练迭代次数均为60次,然后用测试集对每一种网络结构的性能进行测试。实验结果如表1所示。

从表1可以看出,当C3层有10个卷积核时,网络模型对测试集的识别正确率最高。卷积核的个数与识别准确率并不成正比关系,当卷积核个数过多时,网络的识别准确率会下降,这是因为在卷积核个数增加的同时,需要学习的参数也随之增加,而数据集中训练样本的规模较小,已不能满足学习的要求。

2.2改变C1层卷积核个数对网络的影响

由上述实验结果可知,C3层卷积核个数为10时,网络识别效果最好。因此,为了研究卷积层C1层卷积核个数对识别准确率的影响, C3层保留10个卷积核,改变C1层卷积核的个数构造新的网络结构,用测试集针对不同网络结构就测试集和训练集的识别准确率进行测试。实验结果如表2所示。

从表2的实验结果可以得到相同结论:卷积层卷积核的个数并非越多越好,卷积核个数过多,网络需要学习的参数也随之增加,当训练集中样本个数无法满足学习需要时,网络识别准确率就会下降。

2.3与其它算法比较

为进一步说明本文所提卷积神经网络结构的有效性和优越性,将该结构(C1层6个卷积核,C3层10个卷积核,学习率1.5)的实验结果与其它识别方法在ORL数据集上的实验结果进行对比,结果如表3所示。可以看出,本文所提方法比Eigface、ICA的识别效果好,与2DPCA方法的识别准确率一样,比FisherFace方法的识别准确率只低了0.20%,这进一步证实了本文所提网络结构的有效性。

3结语

本文在理解Lenet-5结构的基础上,提出一种适用于ORL人脸数据集的卷积神经网络结构。实验结果表明,本文提出的卷积神经网络结构,不仅避免了复杂的显式特征提取过程,在ORL数据集上获得98.30%的识别正确率,而且比大多数传统人脸识别算法的效果都好。此外,本文还通过大量验就每个卷积层卷积核个数对网络识别准确率的影响进行了详细研究与分析,这对设计CNN网络结构具有一定的参考意义。

参考文献参考文献:

[1]李武军,王崇骏,张炜,等.人脸识别研究综述[J].模式识别与人工智能,2006,19(1):5866.

[2]张翠平,苏光大.人脸识别技术综述[J].中国图象图形学报,2000,5(11):885894.

[3]YANG M H.Face recognition using kernel methods[J].Nips,2002(2):14571464.

[4]祝秀萍,吴学毅,刘文峰.人脸识别综述与展望[J].计算机与信息技术,2008(4):5356.

[5]SAMARIA F,YOUNG S.HMMbased architecture for face identification[J].Image and Vision Computing,1994,12(8):537543.

[6]LAWRENCE S,GILES C L,TSOI A C.Convolutional neural networks for face recognition[C].Proceedings CVPR'96,1996 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,1996:217222.

[7]陈耀丹,王连明.基于卷积神经网络的人脸识别方法[J].东北师范大学学报:自然科学版,2016,48(2):7076.

[8]卢官明,何嘉利,闫静杰,等.一种用于人脸表情识别的卷积神经网络[J].南京邮电大学学报:自然科学版,2016,36(1):1622.

[9]李彦冬,郝宗波,雷航.卷积神经网络研究综述[J].计算机应用,2016,36(9):25082515.

[10]LCUN Y,BOTTOU L,BENGIO Y,et al.Gradientbased learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):22782324.

卷积神经网络识别方法范文2

关键词 人脸识别;Gabor小波;小波网络;神经网络;特征抽取

中图分类号TP39 文献标识码A 文章编号 1674-6708(2012)58-0183-02

0 引言

随着信息技术的发展,人脸识别因在公安、身份验证、安全验证系统、医学、考勤系统等各方面的巨大应用前景而成为当前人工智能和模式识别领域的研究热点。人脸识别是指利用摄像头捕捉人的面部图片,利用计算机分析比较人脸的生物特征来进行身份识别。虽然人类能够轻易识别出人脸和表情,但是人脸机器识别却是一个难度极大的课题[1]。

基于Gabor小波弹性图匹配算法作为一种有效的人脸识别方法,虽然方法简单,但是实现复杂、计算量大、耗时多,本文提出了一种改进的基于局部特征Gabor小波的BP神经网络方法,此方法避免了弹性如匹配算法的高计算量,神经网络由于学习和记忆能力,提高了算法容错性。本文采用Gabor小波特征空间作为神经网络输入空间,然后使用神经网络作为分类器。

1 基于局部特征的Gabor小波

1.1 Gabor滤波器数组

二维图像的离散Gabor 变换的定义见文献[4],对特征点图像模板进行离散Gabor 变换的Gabor核函数如下:

式中参数描述三角函数的波长,参数描述小波的方向性。依David S. Bolme 的取值对人脸图像的处理间隔4 个像素,即分别取{4 , ,8, , 16};对的取值从0到π的区间分别取{0 ,π/ 8 ,2π/ 8 ,3π/ 8 ,4π/ 8 ,5π/ 8 ,6π/ 8 ,7π/ 8}共8个方向,π到2π区间的方向性由于小波的奇偶对称性而省去。参数描述三角函数的相角,取∈{ 0 , π/2} ;参数描述高斯半径,取=;参数描述高斯的方向角,选取=1 ;这样通过选取一系列的5个不同的和8个方向的,就可以得到40个二维的复数离散Gabor滤波器组。

1.2 Gabor小波特征值

GaborJet是根据特征点的位置坐标(xn,yn),对特征点作Gabor变换得到的。具体方法是对每一个特征点,以(xn,yn)为中心提取该特征点周围的正方形图像区域的图像灰度信息,然后通过该图像区域与特定波长、方向的2D Gabor滤波器卷积,从而得到该特征点的频率信息等。

2 改进的BP神经网络

1988年,Rumelhart、Hinion和Williams提出了用于前向神经网络学习训练的误差反向传播算法(Error Back Propagation,EBP,简称BP),成功地解决了多层网络中隐含层神经连接权值的学习问题[2]。

BP神经网络训练过程即学习过程:神经网络在外界输入样本的刺激下不断改变网络的连接权值,以使网络的输出不断地接近期望的输出。学习的本质是对各连接权值的动态调整,令输出结果达到预期目标。学习规则是在学习过程中网络中各神经元的连接权变化所依据的一定的调整规则。图1为改进BP神经网络的模型图。

原始BP算法的主要缺点[3]为:收敛速度慢和可能陷入局部极值。本文对BP算法进行了改进,改进方法如下:

1)Sigmoid函数的改进:在实验过程中将产生较大的误差时,S型函数的标准形式用来生成输出的分类,并可能会出现不收敛。因此为了解决这个问题的办法是采取 改进的S型函数如式2.1所示。k的值越大越容易收敛,但收敛速度较慢;k较小可以使得S型函数较稳定,其收敛速度快,但容易产生不稳定。经多次不同值的实验,最终选定 k=3. 5。

2)学习速率自调整模型:学习速率自调整的BP算法缩短了学习时间。神经网络学习过程,即连接下层节点和上层节点之间的权重拒阵Wij的设定和误差修正过程。BP网络自学习方式:需要设定期望值和输入样本。自学习模型为:

h 是学习因子;是输出节点i的计算误差;Oj是输出节点j的计算输出;a是动量因子。

3 人脸识别实验与结果分析

采用ORL人脸数据库,每个人脸有10幅不同细节的图片。识别率检测数据库A:选择30个人作为测试对象。取每个人的前4幅图片共120幅图片作为人脸数据库。然后使用另外的180幅图片进行测试。

由于定位特征点位置会有一些误差,所以在试验阶段人脸数据库中的人脸特征点位置手工标注,这样可以从初始阶段减少误差。人工标注图像的各个特征点的实例如图2所示:

对每个特征点特区Gabor特征,存入数组作为BP神经网络输入。然后使用样本进行训练得到神经网络分类器。当训练完成后,采用测试图片进行识别统计识别效率和识别时间。

其中一组训练和识别样本实验结果如表1所示。

其中前5列是该人的训练样本,后5列是该人的识别样本。由于本系统神经网络输出数目与数据库中人物数一样,所以每个人有8个输出,每行表示测试图片与数据库中一个人相似度。训练时输出为,其中0.9表示输出目标,训练误差为0.01。输出为0.9附近就是识别目标。

采用不同的方法系统识别率不同,或者相同方法采用不同人脸图像库系统识别率也会不同。根据上面实验,表2统计了不同人脸识别算法的识别率。

分别在PC平台上进行测试,EBGM大约需要1s时间,而本算法只需要0.01s,大大提高了算法效率。

4 结论

基于EBGM与本文人脸识别算法比较,本文算法有效的解决了传统弹性图匹配算法计算复杂的问题,无需进行弹性图粗匹配和精确匹配,只需要训练,在识别时保留了Gabor小波生物特性基础上大大提高了传统算法实时性。在识别能力上,神经网络具有学习分类作用,比传统弹性图匹配具有更高的识别率。

参考文献

[1]焦峰,山世光,崔国勤,等.基于局部特征分析的人脸识别方法[J].计算机辅助设计与图形学学报,2003,15(1).

[2]M Riedmiiler and H Braum.A direct adaptive method for faster baek Propagation learning:The RPOP algorlthm. Proceedings of the IEEE International Coference on Neural Networks(ICNN).San Fraueisco, 1993:586-591.

[3]Phillips P J, Moon H, Rizvi S A, et al.The FERET Evaluation Methodology for Face recongition Algorithms. IEEE Transaction on Pattern Analysis and Machine Intelligence,2000, 22(10):1090-1104.

卷积神经网络识别方法范文3

关键词:车牌识别系统; 智能交通; 技术

中图分类号: TP391.4文献标识码:A文章编号:1009-3044(2008)18-20ppp-0c

Research on Licence Plate Recognition System

YI Lian-jie

(Loudi Vocational and Technical College Loudi Huanan417000)

Abstract: The licence plate recognition system has an importantrole of morden intelligent traffic system. This paper narrated the key technology ofthe licence plate recognition system and discussed the existing problems and development of the licence plate recognition system.

Keywords: the licence plate recognition system; intelligent traffic system; technology

车牌识别系统是智能交通系统的关键部分,可广泛应用于交通管理、监控和电子收费等场合。车牌识别系统就是以车牌作为车辆的唯一标识,采用计算机视觉和模式识别技术对汽车车牌的自动识别。

1 车牌识别系统的组成

典型的车牌识别系统由车辆检测、图像采集、车牌识别等部分组成(图1)。车辆检测就是使用车辆传感器或红外线检测等来判断车辆是否通过某一位置。当车辆驶过探测部位时,CCD摄像机拍摄车辆图像,由图像采集卡采集图像并输入计算机。车牌识别部分由计算机和识别软件组成,从由CCD摄像机采集的图像中自动寻找车牌,然后对找到的车牌进行字符切分和识别,最后获得车牌号码,并将识别结果送至监控中心等场合。

图1车牌识别系统的组成

在整个识别系统中,以车牌识别最为关键。识别过程有两个步骤,首先从图像中找出确切的车牌位置,即车牌定位,然后对找出的车牌进行字符切分和识别。车牌识别过程包含两大关键技术:1.车牌区域定位技术;2.车牌字符切分和识别技术。

2 车牌定位技术

图像输入计算机后,系统要自动找出车牌的准确位置。车牌区域定位是车牌字符切分和识别的基础,是提高系统识别率的关键。车牌定位过程包括三个步骤:图像预处理、车牌搜索和车牌纠偏。

2.1 图像预处理

图像预处理的作用:平滑去噪和车牌特征增强。

平滑去噪就是消除图像上由于光照、车牌污损等产生的噪声干扰。平滑方法主要有平均滤波、中值滤波和指数函数滤波等方法。中值滤波和指数滤波平滑效果好且能较好保持牌照和字符边缘,但在平滑效果和处理速度方面不如平均滤波。

通常的车牌定位算法是依据车牌特征从图像中找出车牌,因此必须使车牌区域显示出与非车牌区域不同的独有的特征,车牌特征增强使图像中车牌区域明显突出。通常有下述增强方法:边缘检测法、二值化法、量化法、数学形态学法。

具有不同灰度的相邻区域之间存在边缘,在车牌区域存在车牌边框边缘和车牌字符边缘。边缘检测法就是要检测出这些边缘。有关边缘检测的算法很多,考虑实时性要求,采用简单的微分算子,如一阶微分算等。这些算子采用小区域模板与图像卷积实现边缘检测。文献[1]提出一种牌照字符边缘特征增强的方法,该方法使用线性滤波器函数将每一行中多个连续的水平方向梯度值相加,使得字符的垂直边缘增强。微分算子对噪声较为敏感,因此在使用之前需要平滑去噪。LOG算子是高斯指数平滑法与Laplacian算子相结合的边缘检测方法,既能消除噪声又能很好的突出车牌字符的边缘。

二值化增强法先确定一个阈值,然后将图像中各个像素的灰度值都与这个阈值比较,根据比较结果将整个图像的像素点分为两类,车牌区域归为一类,便于车牌搜索。为了满足实时性要求,采用简单、快速的二值化法,如平均阈值法,反积分自适应阈值法等。

文献[3]使用神经网络来对彩色图像量化,使得车牌区域的字符为一种特定的颜色,然后进行颜色过滤或线扫描,借此提取车牌。该方法首先必须选取车牌样本图像,并且要把RGB颜色模式转换为HSI模式,以HSI各分量值作为输入对神经网络进行训练,再以训练好的神经网络对图像的各像素点量化分类,该方法抗干扰能力强,量化前可不要求平滑,

数学形态学表示以形态为基础对图像进行分析的数学工具,它的基本思想使用具有一定形态的结构元素去量度和提取图像中的对应形状以达到对图像分析和识别的目的。数学形态学有四种基本的运算:膨胀,腐蚀,开启和闭合。出于以下两个意图而使用形态学方法:1.将开启和闭合结合起来,消除二值化后的车牌区域中存在的细小空洞;2.采用水平线段的结构元素膨胀,使二值化后的车牌区域成为一连通区域。

需要说明的是,上述方法往往不是单独使用,如二值化法是对边缘检测后的图像进行,而形态学方法是在二值化图上实现。不能简单的评价图像预处理方法的优劣,因为这与所对应的车牌搜索方法紧密相关。

2.2 车牌搜索

车牌搜索就是根据车牌区域特征在图像中寻找车牌的过程。根据搜索的方式可把车牌搜索方法分为以下几种:投影统计法、线扫描法、模板匹配法和反Hough变换法等。车牌搜索法要与相应的车牌增强法配合使用(见表2)。

表2车牌增强法用于不同搜索法的情况

投影统计法对边缘化或二值化图像进行水平和垂直累加投影,根据投影直方图呈现的连续峰、谷、峰的分布的特征来提取车牌,或对由形态学膨胀运算后的图像水平和垂直投影,在投影图上寻找波峰和波谷而确定车牌位置。文献[24]提出的采用高斯指数函数对投影图平滑,能有效消除投影图的毛刺,使车牌位置为明显的波峰,提高车牌定位的精度。

线扫描搜索法则是对边缘化或二值化后的图像逐行水平扫描,穿过车牌区域的扫描线因为字符边缘的存在,灰度呈现起伏的峰、谷、峰的变化,或频繁交替出现亮基元、暗基元的特征,以提取车牌。文献[3]用神经网络对彩色图像量化之后,再逐行水平扫描,分别获取颜色向量和长度向量,能与标准车牌区域的颜色向量和长度向量匹配的为车牌区域。

模板匹配搜索法是以特定的模板在图像区域滑动,以与模板匹配的局部区域为车牌。使用的模板有线模板、倒”L”角模板、矩形框模板。线模板以水平线段或垂直线段为模板,来检测车牌的边框角点;倒“L”模板以倒“L”结构为模板来寻找车牌边框的左上角;矩形框模板以一个与车牌长宽比例相当的矩形框作为模板,在整个图像区域滑动,以符合某一判别函数值的区域作为车牌区域。

反Hough变换搜索法是基于车牌形状特征的方法,先对图像进行Hough变换,然后在Hough参数空间寻找车牌的四个端点。

上述搜索法可以结合使用,如文献[25]提出的自适应边界搜索法,先用倒”L”模板寻找车牌边框的左上角,然后用水平线扫描和垂直线扫描找出下边框和右边框。投影统计搜索法和线扫描搜索法处理速度快,能对大小不同的车牌识别,但定位精度不高和出现虚假车牌的情况,需要提高定位精度和去除虚假车牌的后续工作。模板匹配搜索法能比较准确的找到车牌位置,但难以满足实时性要求,可以采用神经网络或遗传算法来加快搜索进程。反Hough变换搜索法除了能准确找到车牌位置,还能确定车牌的倾斜角度,对噪声、轮廓线中断不敏感,但在有直线干扰下可能实效,文献[28]提出的快速Hough变换的策略能满足实时性要求。

2.3 车牌纠偏

由于车辆运行轨迹不定、摄像机位置偏斜等原因,使得图像中车牌扭曲,为了后续正确的车牌字符切分和识别,就须对车牌纠偏,使车牌达到规范的位置和大小。采用的纠偏方法通常先是用Hough变换确定水平边框倾斜角度和垂直边框倾斜角度,然后纠偏。文献[22]提出使用Rodan 变换可用来确定倾斜角度。

3 车牌字符识别技术

车牌定位之后就要对车牌字符识别。这一过程包含下列几个步骤(见图2):车牌二值化,字符切分,字符特征提取和字符识别。这里只讨论后三个步骤。

图2 车牌字符识别步骤

3.1 字符切分

字符切分把车牌上的字符分开,得到一个个的字符图像。常用的字符切分方法有投影法、模板匹配法、区域生长法、聚类分析法等。

投影法把车牌图像垂直累加投影,形成峰谷交替的投影直方图,找到投影图的各个谷就能把字符分开。模板匹配法以字符大小的矩形作为模板,根据字符的宽度初步确定每个字符的起始位置,然后以此模板在初定位置附近滑动,找到最佳匹配位置而切分字符。区域生长法对每个需要分割的字符找一个像素作为生长起点的种子,将种子像素周围邻域中与之相同或相近性质的像素合并到种子像素所在的区域,然后将这些新像素当作新的种子继续进行上述过程,直到再没有满足条件的像素可被包含进来。基于聚类分析的方法对车牌图像从上到下逐行扫描,如属于字符类的两像素间距离小于阈值,可认为两像素为同一字符,由此而得字符像素的聚类。

3.2 字符特征提取和车牌字符识别

目前使用的车牌字符特征提取的方法可归纳为下述三种:1.基于字符统计特征。计算字符图像的多阶原点矩,多阶中心矩以及中心惯性矩,以中心矩与中心惯性矩的比值作为字符特征向量,这样提取的特征量具有平移,旋转和尺度不变性,但运算量大;也有把字符在多个方向上的投影(如水平方向,垂直方向,右斜方向,左斜方向)和二阶中心矩的比值作为特征向量。2.基于结构特征。轮廓特征,粗网格特征,层次轮廓特征以及字符特征点.这类特征提取计算量较少,但对噪声和位置变化比较敏感,需要去噪和对字符归一化。3.基于变换。对原始特征(像素点矩阵)进行傅里叶变换、K-L变换或小波变换等,提取的特征向量反映字符的结构特征和统计特征,相似字符的特征矢量距离较大,效果较好。实际应用中往往是多种特征的提取,多种特征提取方法的使用。

对车牌字符特征提取之后,就把相应的特征值输入分类器识别,目前对于车牌字符的分类识别方法归纳为下列几种。(1)模板匹配。该方法首先对待识字符进行二值化并将其缩放为字符数据库中模板大小,然后与所有的字符模板比较匹配,计算相似度,以最大相似度者为识别结果。(2)PCA子空间分类器。子空间分类器由训练样本相关矩阵的特征向量构成,单个模式的子空间建立彼此独立,相互之间没有联系,以待识别字符的特征向量与所对应的子空间距离最小作为结果。(3)基于人工神经网络。人工神经网络有抗噪声、容错、自适应、自学习能力强的特点。多隐含层的BP神经网络,BAM(Bidirectional association memories)神经网络方法,自谐振ART神经网络识别等是此方法的典范。(4)基于逻辑规则推理的识别方法。文献[18]提出基于归纳推理的字符识别,该方法在训练时自动生成识别规则。(5)基于随机场图像模拟的识别方法。该方法识别率高,并且可对灰度图像直接提取字符特征,抗干扰性强。另外使用感知器的识别,通常感知器只用于相似字符对的识别,作为其他识别方法的补充。

4 总结与展望

从已有车牌识别系统的性能分析来看,正确识别率和识别速度两者难以同时兼顾。其中原因包括目前的车牌识别技术还不够成熟,又受到摄像设备、计算机性能的影响。

现代交通飞速发展,LPR系统的应用范围不断扩宽,对车牌识别系统的性能要求将更高。对现有的算法优化或寻找识别精度高、处理速度快、应用于多种场合的算法将是研究的主要任务。

参考文献:

[1] 廖金周,宣国荣.车辆牌照的自动分割[J].微型电脑应用,1999(7):32-34.

[2] 刘智勇.车牌识别中的图像提取及分割[J].中文信息文报,2000(3):29-34.

[3] Wu Wei,Mingjun Wang.An Automatic Method of Location for Number_Plate Using Color Features IEEE 2001.

[4] 郭捷,施鹏飞.基于颜色和纹理分析的车牌定位方法[J].中国图像图形学报,2002,7(5):473-476.

[5] 章毓晋.图像工程(上)――图像处理与分析[M].清华大学出版社.

卷积神经网络识别方法范文4

关键词:载荷反求;正则化;虚拟减缩;迭代方法

中图分类号:TP391.9 文献标志码:A

Load Identification of Virtual Iteration Based

on Tikhonov Regularization and Model Reduction

ZHANG Bangji,ZHOU Shouyu, XIE Qingxi,ZHANG Nong

(State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body,Hunan University, Changsha 410082, China)

Abstract: The model reduction technique was applied to solve the dynamic response. In order to make the system show the actual responses of the expected signals, the iteration procedure was then used to modify the load signals based on Tikhonov regularization load identification. Furthermore, the accuracy of the load signals was identified. The comparison of the proposed method with the traditional Tikhonov method shows that the proposed method can retain a good anti-noise characteristic, and improve the precision of load identification. The accuracy of the load identification by the proposed method is much higher than that of the traditional method.

Key words:load identification; regularization; virtual reduction; iterative methods

工程振动问题备受关注,结构动态载荷的精确获取可为工程结构的振动分析、疲劳分析等提供基础,然而因经济性或技术条件的限制,许多情况下载荷难以通过直接测量的方式获取,如汽车车身所受的激振力、轮船行驶时受到的波浪式冲击载荷等.因此利用载荷反求方法间接获取激振载荷具有重要意义.

载荷反求是通过系统响应和振动特性来反求结构所受载荷,是动力学第二类反问题[1].国内外学者针对动态载荷反求的理论和技术研究做了很多工作[2-4].传统的反求方法有时域法与频域法两大类[5],随着计算机技术的发展,遗传算法[6]、神经网络[7]等新方法被应用于载荷反求领域.Kim等人[8]利用结构动力学关系构建载荷反求动力学方程,通过频响函数求逆法进行载荷反求,用奇异值分解法(SVD)改善频响函数求逆过程中的矩阵病态问题;Choi等人[9-10]运用最小二乘的Tikhonov正则化方法解决矩阵的病态问题,在提高载荷反求结果稳定性与抗干扰性方面效果良好,并对比分析了不同正则化参数选择方法对载荷反求精度的影响.国内在正则化反求法方面做了很多研究[11-13],其中应用较广的是Tikhonov正则化反求法.郭荣等[14]综合运用Tikhonov正则化与奇异值分解的反求方法,有效提高了结构载荷反求精度.

然而Tikhonov等正则化反求法存在其自身的缺陷,由于该方法对反求载荷有平滑的作用,导致在响应测试噪声水平较高,或者系统线性程度不高的情况下,在反求信号的峰值处将很难得到较好结果[12].对此,结合文献[15]中室内试验台架驱动文件生成方法,提出新的载荷反求方法.其基本流程是,将Tikhonov正则化所反求的载荷重新激励系统,将获得的响应与真实期望响应对比,通过误差反馈补偿来逐步修正Tikhonov正则化反求法所得到的载荷信号,以提高在载荷峰值处的反求精度.考虑到在实际工程中,所研究的对象往往是复杂结构仿真模型,迭代中l繁的正向求解过程相当耗时,甚至导致反求过程难以实现.对此,本文结合模型减缩技术,对大型有限元结构进行降阶处理,得到规模较小的等价模型,在保证响应计算精度的同时,极大缩短正问题的求解时间,提高计算效率.

1 虚拟迭代载荷反求原理

1.1 Tikhonov正则化理论

对于线性系统,在待反求载荷f(t)的作用下,系统的响应可以由单位脉冲响应函数与动态载荷的卷积分形式表示为:

y(x,t)=∫t0G(x,t-t)f(t)dt(1)

式中:y(x,t)为结构测点x处的响应,可以是位移、速度、加速度等;f(t)为载荷的时间历程;G(x,t)是相应的载荷作用点到响应点的Green函数,即单位脉冲响应.

考虑零初始条件系统,可将式(1)中的卷积分在时域内进行n个等间隔时间点离散,可化为一组线性方程组:

1.2 迭代反求算法

线性时不变系统响应噪声水平不高时,采用最优正则化参数的Tikhonov方法可较精确地反求激励载荷,但是当系统响应噪声水平较高时,即使是最优的正则化参数,也难以平衡解的逼近性与稳定性这对矛盾;且在工程实际中,系统的各个环节,如汽车的衬垫等连接部件,在一定程度上都存在非线性因素,导致反求难度增大.对此,采用迭代的方法,根据响应误差反馈补偿,逐步修正所求载荷信号,使其达到要求[16].

首先,对一个已知系统,其响应信号Yδ,由上述Tikhonov正则化方法反求,计算出初始载荷信号为:

1.3 减缩技术

载荷的迭代反求过程,需要反复计算仿真系统的动响应,仿真系统通常用有限元的方式表达.但对于有限元模型,通常网格越密仿真精度越高,但密集的网格会导致响应求解时间增长,尤其在反复迭代计算过程中,正问题的求解时间过长是影响迭代的重要因素.对此,采用模型减缩技术,对原始有限元模型进行降阶等效,再对降阶模型进行迭代响应计算,从而解决计算精度与计算效率之间的矛盾.本文采用的减缩方法是IRS[19]方法.

IRS 减缩方法是一种基于 Guyan静力减缩法并考虑惯性力影响的改进方法.系统的运动方程可以表示为:

1.4 迭代收敛条件

上述Tikhonov迭代正则化算法可用流程框图表示,如图1所示.

2 数值算例

为了验证上述迭代法对Tikhonov正则化反求结果的优化作用,以及模型减缩技术对迭代效率改善的正确性与有效性,下面给出几种不同载荷形式的算例进行仿真对比分析.选用一块带约束的平板,在ABAQUS中建立如图2所示的有限元模型,平板一边两端用螺栓夹紧固定,模型中平板的弹性模量为210 GPa,密度为7.85 g/cm3,厚度为4 mm,边长为500 mm.

2.1 模型减缩应用及结果分析

为提高响应计算速度以及迭代效率,对该模型进行减缩降阶,在确保模型精度不受影响的情况下,用近似的低阶模型代替原来复杂的高阶系统模型来进行迭代反求.对该有限元模型,质量矩阵和刚度矩阵通过ABAQUS被直接导出,在模型上选取包括激振点与拾振点在内共 176个节点,用IRS减缩法在 MATLAB 中对平板模型进行模型减缩,并用模态置信度(MAC值)分析减缩前后模型模态振型吻合程度,验证该减缩模型的精度[20].

2.1.1 减缩前后振型对比

2.1.2 动响应计算效率分析

在载荷反求过程中往往需要反复多次求取系统响应,因此动响应计算效率是衡量反求实际效果的重要标准.分别对算例原模型、IRS减缩模型求动态响应,比较相同时间历程的动态响应所消耗实际CPU时间,结果如图4所示.

由此可见,相比于原模型,IRS减缩模型大大减少了动响应计算时间,因此,模型减缩很大程度上提高了计算效率,所需计算响应时间历程越长,效果越明显.在本文数十次迭代计算动态响应过程中,IRS模型减缩技术的应用将极大地提高迭代计算响应效率.

2.2 载荷反求对比分析

在板面节点308#施加垂直于板面的单位载荷,选取响应节点62#垂直板面方向速度作为响应(如图2所示).首先计算载荷点到响应节点对应的Green函数;再以不同形式载荷下的响应,进行载荷反求;最后对仿真得到的响应数据加入一定水平的随机噪声来模拟测试误差.此时带噪声的速度响应可用下式来表示:

式中:Y(t)为仿真得到的速度响应;std(Y(t))为速度响应Y(t)的标准差;lnoise为噪声水平的百分数;rand(-1,1)是区间-1,1的随机数[12].

在速度响应中加入15%的模拟噪声,首先用传统的Tikhonov正则化方法进行载荷反求,以L曲线法确定最优正则化参数,得到待求载荷,计算反求精度;再以此反求载荷,作为初始激励载荷,用上述虚拟迭代方法修正载荷信号,进行反求优化,以达到精度要求;最后对比优化前后载荷反求精度.

选用不同频率、不同幅值周期正弦、正弦扫频(10~100 Hz)、三角波以及随机激励等形式的激振力激振进行载荷反求,反求结果如图5-图9所示.

由图5-图9可以看出,对不同形式的激励,在一定噪声水平情况下,传统的L曲线法确定最优参数的Tikhonov正则化方法能够很好地抑制噪声对反求结果的干扰,具有很强的稳健性.但在载荷峰值处,反求误差较大,反求整体精度受影响,这主要是由于正则化方法对反求载荷有平滑的作用,使得该方法在载荷峰值难以得到准确的反求结果.Tikhonov正则化方法对这几种载荷反求的加权误差为8.0%左右.而本文提出的迭代Tikhonov正则化方法不仅能够继承传统正则化方法反求结果稳健性的优点,同时还可以改善其在载荷峰值处反求结果,提高反求精度,反求结果加权误差最低可降至2.0%.迭代Tikhonov正则化方法无论对确定信号还是随机载荷激励都有很好的反求精度,且对如图9所示中的高频载荷段迭代反求也有很高的精度.

3 结 论

本文在传统Tikhonov正则化反求方法的基础上,提出了一种新的迭代改进方案.结合有限元算例和模型减缩技术,分别采用传统Tikhonov方法和本文迭代方法对三角、正弦以及随机载荷等激励进行载荷反求.结果表明:

1)本文提出的基于Tikhonov正则化迭代反求方法不仅能够继承传统Tikhonov正则化反求法有效抑制噪声的特点,同时还可以提高其在峰值载荷处的反求精度,整体反求精度高;

2)应用模型减缩技术可以提高动响应求解效率,有助于载荷反求迭代过程的开展,最终又快又好的求得激励载荷.

参考文献

[1] MARCHUK G I. Methods of numerical mathematics[M]. Berlin: Springer-Verlag, 1975: 16-18.

[2] O兴盛,刘杰,丁飞,等.基于矩阵摄动的随机结构动态载荷识别技术[J].机械工程学报,2014, 50(13):148-156.

SUN Xingcheng, LIU Jie, DING Fei, et al. Identification method of dynamic loads for stochastic structures based on matrix perturbation theory[J]. Journal of Mechanical Engineering, 2014, 50(13): 148-156.(In Chinese)

[3] 彭凡,马庆镇,肖健,等.整体平动自由结构载荷时域识别技术研究[J].振动与冲击,2016, 35(6):91-95.

PENG Fan, MA Qingzhen, XIAO Jian, et al. Load identification technique in time domain for free structures with overall translation[J]. Journal of Vibration and Shock, 2016, 35(6): 91-95.(In Chinese)

[4] SANCHEZ J, BENAROYA H. Review of force reconstruction techniques[J]. Journal of Sound and Vibration, 2014, 333(14): 2999-3018.

[5] 胡寅寅,率志君,李玩幽,等.设备载荷识别与激励源特性的研究现状[J].噪声与振动控制,2011(4):1-5.

HU Yinyin, LV Zhijun, LI Wanyou, et al. Status QUO of study on machine,s load identification technique[J]. Noise and Vibration Control, 2011(4): 1-5.(In Chinese)

[6] 刘杰,许灿,李凡,等.基于λ-PDF 和一次二阶矩的不确定性反求方法[J].机械工程学报,2015, 51(20):135-143.

LIU Jie, XU Can, LI Fan, et al. Uncertain inverse method based on λ-PDF and first order second moment[J]. Journal of Mechanical Engineering, 2015, 51(20): 135-143.(In Chinese)

[7] 莫旭辉,韩旭,钟志华.基于渐近神经网络的汽车前轮定位参数反求[J].湖南大学学报:自然科学版,2008, 35(6):18-22.

MO Xuhui, HAN Xu, ZHONG Zhihua. Identification of front wheel alignment based on the progressive neutral NETW ORK method[J]. Journal of Hunan University:Natural Sciences, 2008, 35(6): 18-22.(In Chinese)

[8] KIM Y C, NELSON P A. Optimal regularisation for acoustic source reconstruction by inverse methods[J]. Journal of Sound and Vibration, 2004, 275(3): 463-487.

[9] CHOI H G, THITE A N, THOMPSON D J. Comparison of methods for parameter selection in Tikhonov regularization with application to inverse force determination[J]. Journal of Sound and Vibration, 2007, 304(3/5): 894-917.

[10]CHOI H G, THITE A N, THOMPSON D J. A threshold for the use of Tikhonov regularization in inverse force determination[J]. Applied Acoustics, 2006, 67(7): 700-719.

[11]张磊,曹越云.总体最小二乘正则化算法的载荷识别[J].振动与冲击,2014, 33(9):159-164.

ZHANG Lei, CAO Yueyun. Load identification using CG-TLS regulariztion algorithm[J]. Journal of Vibration and Shock, 2014, 33(9): 159-164.(In Chinese)

[12]韩旭,刘杰.时域内多源动态载荷的一种计算反求技术[J].力学学报,2009, 41(4):595-602.

HAN Xu, LIU Jie. A computational reverse technique for multi source dynamic loads in time domain[J]. ACTA Mechanica, 2009, 41(4): 595-602.(In Chinese)

[13]常晓通,阎云聚.基于Green函数和正则化的动态载荷识别方法[J].振动、测试与诊断,2014, 34(1):124-129.

CHANG Xiaotong, YAN Yunju. Dynamic load identification method based on Green function and regularization[J]. Journal of Vibration,Measurement & Diagnosis, 2014, 34(1): 124-129.(In Chinese)

[14]郭s,房怀庆.基于Tikhonov正则化及奇异值分解的载荷识别方法[J].振动与冲击,2014, 33(6):53-58.

GUO Rong, FANG Huaiqing. Novel load identification method based on the combination of Tikhonov regularization and singular value decomposition[J]. Journal of Vibration and Shock, 2014, 33(6): 53-58.(In Chinese)

[15]HAY N C, ROBERTS D E. Road simulators: the iterative algorithm for drive file creation[C]//2006 SAE World Congress.Detroit, Michigan, 2006: 2006-2011.

[16]陈栋华,靳晓雄,周f.汽车室内道路模拟试验系统控制算法的研究[J].噪声与振动控制,2006(1):31-35.

CHEN Donghua, JIN Xiaoxiong, ZHOU Hong. Study on contorl algoirthm for vehicle road simulation test system[J]. Noise and Vibration Control, 2006(1): 31-35.(In Chinese)

[17]杜永昌.车辆道路模拟试验迭代算法研究[J].农业机械学报,2002, 33(2):5-7.

DU Yongchang. Research on iteration algorithm used for vehicle road simulation[J]. Transactions of the Chinese Society of Agricultural Machinery, 2002, 33(2): 5-7.(In Chinese)

[18]汪斌,过学迅,李孟良.基于迭代学习控制的道路模拟算法[J].汽车工程,2010, 32(8):686-689.

WANG Bin, GUO Xuexun, LI Mengliang. Road simulation algorithn based on iterative leaming control[J]. Automotive Engineering, 2010, 32(8): 686-689.(In Chinese)

[19]O'CALLAHAN J C. A procedure for an improved reduced system (IRS) model[C]//Proceedings of the 7th International Modal Analysis.Las Vegas: Union College Press, 1989: 17-21.