无损检测技术论文范例6篇

前言:中文期刊网精心挑选了无损检测技术论文范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

无损检测技术论文

无损检测技术论文范文1

【关键字】无损检测技术,质量管理,过程控制技术

中图分类号:TU201.2 文献标识码:A文章编号:

一.前言

基层单位的质量管理工作应更侧重对过程的控制,只有将质量管理体系的宏观认识与基层单位专业技术知识有机地结合,才能使质量工作落到实处,行之有效。文章用CNAS审核实例,说明过程控制在无损检测技术质量管理中的体现。

二.过程控制

1.实验室在以关注目标代替关注过程中迷失了原来的初衷。质量工作常常被认为是做表面文章,咬文嚼字,这是因为无论是不符合项的整改、纠正措施的实施、还是体系运行的监控,最终都落实在文字和书面上,给人的印象就是编写一些文件、报表。可是为什么这样写,为什么更改某个文件会导致其他文件也要改,这里面实际上已经蕴涵了分析的过程,尤其要关注不同文件之间的关联性,以及文件本身的逻辑性是否合理。

不实际参与其中的人很难体会质量工作的技术含量,特别是基层单位在编制作业层文件时,这一点尤为明显。因此,基层单位编制文件的人员必须具有一定的专业技术能力和工作经历,否则将标准或上一级程序文件中的规定及要求生搬硬套而不加以灵活适应性的转化,就更会给人形式化的印象。

实际上,质量工作除了在文件、程序上的标准化、规范化之外,在基层单位更重要的是将质量管理的思维和方法有机融入科研和测试工作中,使过程更趋合理、更规范、更行之有效。在以科研、工程技术为主流业务的科研院所中,对基层单位从事质量管理工作的人员的要求实际上较高,不但要对质量体系有宏观的认识,而且要有所在单位的专业技术背景或教育经历。

2.过程包括三个要素,输入、活动和输出。无损检测过程的管理是对全过程以及每一个子过程的管理,包括接受无损检测委托、样品管理、检测工艺规程或图表编制、检测系统和环境、检测工作实施、检测结果评定、发出检测报告、以及相关资料的归档等等。对无损检测的输入、活动过程和输出质量都要进行控制。

无损检测试验室作为实验室的一个种类,质量控制结构可用图1简略表示。

图1 无损检测试验室质量控制结构简图

3.整个无损检测流程中每个步骤都有相应的文件对其进行控制和记录。当接收任务时,在实验室管理体系层面规定了以何种形式接收任务,谁负责接收,以及对委托任务进行评审的方式。在试验室管理作业文件层面则进一步细化,包括评审委托任务的人员、接收的任务如何向下传递等。当编制检测工艺规程或图表时,在实验室管理体系层面仅有简单描述,但在管理性作业文件层面,详细规定了规程的格式、编号规则、编制及批准人员的资格、如何进行受控等。

当使用检测所需原材料时,实验室管理体系层面仅要求使用合格产品。但在试验室质量控制程序中则详细规定了如何从专业技术上保证所用产品合格,有专用表格记录定期的监控结果,并规定保存期限备查。

三.无损检测过程控制应用

2008年实验室开始接受CNAS审核,专业技术在质量管理中的重要性显著体现,并更侧重于在过程中进行质量控制。通过CNAS审核为承揽大量国际业务、提高实验室地位、增强实验室检测竞争力打下了坚实基础,并且已经在测试任务工作量以及单位效益上有所体现。以无损检测为例,CNAS审核要求提供大量的记录,包括人员培训、能力复查、原材料及辅助材料状态、方法的适用性有效性、环境状况、设备日常维护、性能校验、检定校准、检测原始记录等等,所有要求的这些记录,实际上就是在过程中设置的许多控制点,只要这些控制点的要求达到了,那么最终的检测报告在很大程度上就是可靠的、有保证的。而且,

这也是变事后处理为事前预防,最大限度地消除质量隐患,提高检测质量控制水平非常有效的手段。本文以几个实例说明审核中的过程控制。

1.2008年的一个不符合项是,X射线光谱检验所用的《合金分析仪操作规程》没有按所依据标准ASTM E1621-2005《X射线发射光谱分析标准导则》对测试样品表面提出具体的要求。尽管在现场审核时的现场试验结果符合要求,而且试验使用的仪器X射线合金分析仪说明书中以及通过比对试验证明试样表面处理状况对检测结果影响不大,但审核员仍认为有对测试样品表面处理的可能。实验室立即采取的纠正是暂时停止光谱检测任务,技术人员和质保人员对《合金分析仪操作规程》文件进行审查修订,增加样品表面处理要求内容,同时用复检试验证明之前的检测未受影响。

根本原因就是标准导则中规定不是特别清晰,并且专业试验人员做过比对试验证明试样表面粗糙度等状况对X射线合金分析仪检测结果影响很小,而技术人员对待检样品表面的油漆、油脂以及其他镀层等情况未充分考虑,疏忽了这些附着物中的金属元素对样品材质的影响,所以作业规程中未明示相关要求。通过试验证明对样品表面进行合理的处理会对样品材质中的元素含量更精确一步,尤其是对微量元素。此外,组织相关人员进行了培训,使所有涉及人员都知晓。

2.2009年的一个不符合项是,零件中某一部位在进行射线检测时,将像质计裁剪为一半以便垂直于射线束放置在狭窄的凸边上。尽管被裁掉的另一半还在,对实际检测没有影响,但仍然可能造成像质计无法追溯到合格证。针对这个问题做整改,现场有类事情形立即停止,同时废除所有的裁剪像质计,并向厂家订购特制的短尺寸像质计。由技术人员和质保人员共同审查文件,没有找到像质计标识唯一性的规定。

查找到的根本原因是,内部程序文件只对像质计的摆放做了规定,却未考虑某些特殊情况下像质计无法按要求完整摆放。此外检查检测过程中的其他环节,确定没有类似的情况。分析了潜在的影响和实际的影响后,作为预防措施,修订程序文件,增加像质计标识和特殊情况的相应要求,并将修订后的程序对所有相关人员培训。经过详细周密的回复并提交相关证据,不符合项顺利关闭。

四.结束语

无损检测技术质量管理中的过程控制技术是一项十分关键的技术,对于肩负质量检测法律责任的无损检测机构来说更是尤为重要。因此应该加大对于这方面的研究,促进其继续发展。

参考文献:

[1]汪明武 王鹤龄 锚固质量的无损检测技术 (被引用 61 次) [期刊论文] 《岩石力学与工程学报》 ISTIC EI PKU -2002年1期

无损检测技术论文范文2

关键词:无损检测;研究;高等院校;人才培养

中图分类号:G640 文献标志码:A?摇 文章编号:1674-9324(2013)47-0139-02

一、引言

笔者于2005年至2011年之间在英国华威大学(University of Warwick)进行无损检测相关领域的学习及研究工作,期间广泛参与了英国无损检测研究中心(RCNDE)所组织的多项校际及校企之间的交流活动,对英国RCNDE模式及英国高等院校无损检测领域研究及人才培养模式及现状有较为深入的了解。本文将对RCNDE组织下的英国著名高校无损检测相关领域的研究情况及教育模式进行简要介绍,并从个人体会出发,浅谈该模式对我国无损检测研究及人才培养的启发。

二、RCNDE介绍

1.RCNDE基本情况。英国的无损检测研究中心(Research Centre of Non-destructive Evaluation,以下简称RCNDE)是2003年在英国帝国理工大学(Imperial College)及斯特拉斯克莱德大学(University of Strathclyde)的倡导之下建立的,RCNDE在建立之初除了这两所大学以外,还有布里斯托大学(University of Bristol),巴斯大学(University of Bath),诺丁汉大学(University of Nottingham)及笔者当时所在的华威大学(University of Warwick)[1]。目前(截至2013年),RCNDE的成员学校还包括伦敦大学学院(University College London),伦敦南岸大学(London South bank University)和纽卡斯尔大学(University of Newcastle),并且仍然在发展壮大中。各成员高校的具体研究方向将在本文的第三部分进行介绍。RCNDE是由英国自然科学与工程研究委员会(以下简称EPSRC)资助设立的,其宗旨在于将最新的研究成果与工业界的实际需求紧密结合起来,从而引领世界无损检测领域的发展方向。因此除了上述英国著名高校以外,RCNDE还包括许多工业界的会员[2],包括Airbus,BAE Systems,BP,British Energy,National Nuclear Laboratory,Defence Science and Technology Laboratory[Dstl],E.ON Engineering Ltd,GKN,Health & Safety Executive (HSE),Network Rail,Petrobras,Rolls Royce plc,RWE npower,Serco,Shell,Tenaris等等。这些工业界的成员单位享有诸多有利条件。

2.RCNDE的研究情况。RCNDE的研究项目主要分为三大类[3],分别是:(1)长期的能够提高产业能力的新型无损检测技术的“战略核心研究”(Strategic core research);(2)中短期的能够解决工业现存及将来可能存在的需求的“目标研究”(Targeted research);(3)贴近产业实际及需求的“技术解决方案”(Technology solutions)。“战略核心研究”项目主要来源于学术界和工业界成员广泛的交流。工业界成员单位提出一些长期的研究需求,包括先进检测技术,高级检测技术,早期检测技术,检测技术性能改进,有挑战性的检测技术及无损检测技术的可靠性及实用性验证。该类项目研究经费由EPSRC和工业界共同资助,值得一提的是工业界成员加入RCNDE的会员费用有一部分也用于该种类的资助。“目标研究”项目着眼于工业界成员单位的中长期的检测需求,同时也考虑RCNDE的战略目标。项目资助来源广泛(公共资金居多),其中EPSRC提供一半左右的资金。英国国防部等其他英国政府部门也参与赞助。对于这类项目,在对研究中心有益的前提下,RCNDE也着力促成国际间的合作,但是仅限于欧洲内部。笔者博士阶段从事的电容成像无损检测研究即为一项“目标研究”项目。“技术解决方案”类项目与工业界的联系更为紧密,旨在为无损检测实际问题提供可靠的解决方案。这类项目包括技术可用性研究,产品开发技术转让。如果成员单位有需求,RCNDE会发起科研项目以利用其经验及成果从而获取成功解决问题的方法。如果无损检测需求与下游合作单位研发机构的需求契合,RCNDE将发起工业合作项目,这些项目的配套资助可从英国工业和贸易部(DTI)或者欧盟获取。如果“技术解决方案”类项目以技术探索为主,RCNDE会协助将技术以产品或者服务的方式转化为可用的解决方案,这将极大地扩展合作的领域和范围(例如与设备及服务公司合作及成立附属科技公司等)。

三、RCNDE高校成员情况

1.成员高校无损检测领域研究。清华大学李路明教授在2005年访问英国后所撰写的《英国高等院校无损检测技术研究与人才培养情况简介》一文[4],对帝国理工学院,布里斯托大学,华威大学及曼彻斯特大学的无损检测相关学科进行了介绍,本文仅对其文章没有涉及的有关内容进行介绍,重复的部分不再赘述。斯特拉斯克莱德大学的无损检测相关研究集中在隶属于电子电气工程学院的超声工程中心(CUE),主要研究领域为:传感器阵列设计(稀疏二位阵列排布、线性阵列等);机器人无损检测技术;CMUT设计及建模;非接触式无损检测技术;无损检测传感器无线网络;智能结构的超声检测;高温检测等。巴斯大学的无损检测研究集中在其机械学院下的材料研究中心(MRL),其主要方向有2个,一个是由Darryl Almond教授领衔的热成像研究团队(研究对象以复合材料为主,手段包括超声/激光/电磁激发的热成像),另一个是Michele Meo博士领衔的非线性超声技术团队(面向金属及复合材料)。

诺丁汉大学的无损检测相关研究主要集中在应用超声实验室(Applied Ultrasonics Lab,利用超声技术追踪微粒状物质的性态及其动态变化,利用超声技术检测、定位及描述航空复合材料的微孔缺陷)及应用光学实验室(Applied Optics Lab,主要是激光超声)。伦敦大学学院(UCL)无损检测相关研究主要在其机械系下属的超声研究课题组进行(Ultrasounics Group,主要是医学超声方向)伦敦南岸大学的无损检测研究主在其波动及场研究中心进行,主要研究领域包括搭载无损检测传感器的墙壁爬行机器人,水下机器人,管道爬行机器人的研发,以及用于核工业,石油化工,食品处理,能源及航空工业的无损检测技术开发。

纽卡斯尔大学的无损检测研究主要由田贵云教授领衔,其研究方向较为广泛,包括电磁传感器开发,电磁传感器阵列及网络,电磁无损检测技术(涡流等),高级信号处理等。目前该课题组所承担的主要课题包括:威胁识别与定位(反恐领域),防腐层下缺陷的电磁识别方法,齿轮的电磁无损检测方法,海洋风电设备的健康监测,涡流激励热成像,复杂形状裂缝的磁照相技术等等。除了具体的无损检测新技术研发以外,田教授长期致力于中英两国无损检测从业人员的交流合作,承担了EPSRC赞助的中英无损检测交流项目,促成多次人员互访及学术交流活动,为两国无损检测领域的交流发展起到了极大的推进作用。对于笔者的母校华威大学来讲,除了李路明教授文中提到的电磁超声(EMAT)和空气耦合超声(Air-coupled Ultrasound),华威大学的科研人员近年来还从事了包括电容成像,近红外成像等新型无损检测技术的研发,并在三维打印技术在无损检测领域的应用做了深入的探索。从以上的介绍可以看出,这几个大学的主要研究领域在声学和电磁学,其中尤其值得关注的是这些大学都非常重视基础研究,并以此为基础强调基础研究的应用背景,基本上可以说是在应用引导下的基础研究。

2.成员高校无损检测领域人才培养。与我国部分高校本科阶段开设无损检测专业不同[5-7],上述英国学校在本科教育方面没有专门的无损检测专业或方向,无损检测研究及人才培养主要集中在研究生阶段,其学科主要集中在机械工程、材料、物理、电子科学等领域,这和无损检测自身的学科背景也是一致的。值得一提的是,除了传统意义上自然科学的哲学博士(P.h.D)的培养工作,RCNDE成立了无损检测领域“企业需求-高校研究”紧密结合的工程博士(EngD)培养中心(CDT),目前在IDC名下有多名博士生注册在帝国理工,斯特拉斯克莱德大学,布里斯托大学,诺丁汉大学和华威大学进行学习和研究工作。CDT所提供的EngD学位教育面向应届毕业生和已在工业界就业的工程师所开设(既包括Airbus,NNL,BAE Systems,BP,EDF,E-ON,GKN,Network Rail,RWE npower,Rolls-Royce,Serco,Shell,QinetiQ,Doosan Babcock及Renishaw等大公司,也包括一部分无损检测领域的小型企业)。EngD这个以解决工程实际问题为目标的学位教育模式要求学生在注册学校完成相关课程(可以采用灵活选课、时间不限的方式)的前提下,结合工程界的实际情况依托所在学校的研究经验和资源开展相应研究工作,最终完成研究论文。对RCNDE及成员高校来讲,这样的模式对于了解工业界的需求,从工业界得到资助,把握研究方向显得非常重要,实施几年来已经初步达到了预期的效果。

四、RCNDE模式的启发

无损检测技术论文范文3

关键词:模块化设计 无损检测 模块化设计在无损检测中的应用

引 言

随着生产技术的迅速发展和日趋激烈的市场竞争,以及用户个性化的设计需求,会对制造企业的批量生产造成巨大冲击,制造企业生产方式会由传统的少品种大批量转变为多品种小批量生产。这就会给机械设计人员及企业造成许多的困扰。如何既能为顾客提供个性化产品,又能保证生产周期,保质保量地完成客户的需求,提高企业服务水平和客户满意度,已成为制造企业及设计人员追求的目标。模块化设计是解决这一矛盾的有效方法。模块化设计可以在保证产品通用性的同时,提供多样化配置,既能满足用户个性化需求,又不降低企业效益。从而使个性设计和批量生产这对矛盾得以解决。与传统设计方式相比,模块化设计可降低设计风险,提高产品可靠性,缩短产品研发周期。模块化产品设计可以以少变应多变,以尽可能少的投入生产尽可能多的产品,以最为经济的方法满足各种要求。因此,模块化设计在各个领域已广泛应用。

1.模块化设计的概念及其意义

1.1.模块化设计的概念

模块化是以可完成独立功能的模块为基础。具有通用化、系列化、组合化的特点,是可以解决复杂系统多样化与功能多变要求的一种标准化形式。

模块化设计(Modular Design,MD)是指模块化设计是指在对一定范围内的不同功能或相同功能不同性能、不同规格的产品进行功能分析的基础上,划分并设计出一系列功能模块,通过模块的选择和组合可以构成不同的产品,以满足市场的不同需求的设计方法。

1.2.模块化设计的意义

采用模块化设计具有以下优点:

1.2.1.有助于提高产品研发质量

1.2.2.提高工作效率和节省生产周期

1.2.3.节约生产成本

1.2.4.有助于改进企业管理。

1.2.模块化设计的意义

基于上述模块化设计的优越性,模块化设计这一新的设计概念和设计方法迅速在各个领域得到广泛应用,它的竞争优势主要体现在两个方面:一方面解决品种、规格的多样化与生产的专业化的矛盾;另一方面也为先进的制造技术、提高设备的利用率创造必要的条件,实现以不同批量提供顾客满意度的产品,进而使企业实现产品多样化和效益统一。

2.模块化设计在无损检测技术中的应用

2.1.无损检测及其作用

无损检测技术即非破坏性检测,就是在不破坏待测物质原来的状态、化学性质等前提下,为获取与待测物的品质有关的内容、性质或成分等物理、化学情报所采用的检查方法。无损检测技术在现代许多领域中,不仅起到保证产品质量与安全监督作用,还在节约能源和原材料资源、降低生产成本、提高成品率和劳动生产率方面起到积极的促进作用。作为一种新兴的检测技术,其具有以下特征:无需大量试剂;不需前处理工作,试样制作简单;能进行在线检测;不损伤样品,无污染等等。所以无损检测是现代工业许多领域中保证产品质量与性能、稳定生产工艺的重要手段。

模块化设计原则

模块化设计的原则:

2.1.1.力求以少量的模块组成尽可能多的产品,并在满足要求的基础上使产品精度高、性能稳定、结构简单、成本低廉,模块间的联系尽可能简单;

2.1.2.模块的系列化,其目的在于用有限的产品品种和规格来最大限度又经济合理地满足用户的要求。

模块化设计有两种情况,一种是在对各种不同类型、不同规格产品进行分析的基础上,从中提炼出较强的共性。据此设计模块,其目的不仅是为满足某种产品要求,更是为了在更广的范围内通用,称为模块创建;另一种是为完成某种复杂产品功能。选用设计合适的模块确立它们的组合方式,称为模块组合。产品进行模块化设计时,根据用户需要,将模块合理组合,通过不同的组合方式,就可以设计出千变万化的产品。

2.2.模块化设计在无损检测技术中的应用

基于模块化设计的优点,模块化设计现在已广泛地应用于各个领域。以下就是机构模块化设计在超声波检测中的应用的实例。超声波检测是无损检测技术应用最广泛的手段之一。超声波检测适用于适合于金属、非金属、复合材料等多种材料的无损检测。针对不同的被检测物需要有不同的机械辅助机构,这将给设计、生产以及周期上的带来种种不便,模块化设计可以有效地解决这一问题。

引用模块化设计后,被测零件可以千变万化,而机构的模块化设计可以保持不变或者是稍有改变,这样可以大大节省设计时间和生产周期,从而节约成本。

3.结论

设计师运用模块化设计思想开发检测系统的辅助机构的设计,通过严谨细致的全面思考,充分利用已建立和考验过的实践经验,最大程度地降低了各方面的研制风险,节省了开发费用、缩短了研制周期,提高了产品质量和可靠性。随着客户对产品个性化需求的增加,产品定制化趋势越来越明显,模块化设计可以使产品在保证高通用性的同时,提供多样化配置,这是解决制造企业产品的标准化、通用化、定制化及柔性化之间矛盾的可行方案。模块化产品的可分解性、模块的兼容性、互换性和再利用性等,是绿色产品的特性,是制造业发展的趋势。产品的模块化设计具有广阔的发展前景和极大的市场竞争力,势必会对未来市场的产业发展带来极大影响。

参考资料:

[1] 林宋 《机械模块化设计关键技术》, 机械工业出版社, 2011-06

[2] 张俊哲《 无损检测技术及其应用》,科技出版社,第一版. 1993

无损检测技术论文范文4

论文关键词:钽铌铍加工材,超声波探伤,着色渗透探伤,超声波测厚,渗漏试验

1.前言

钽铌铍及其合金材料现已被广泛应用在航空、航天、医疗、石油、化工等行业。随着应用领域的不断扩大,对产品的检测要求越来越高,要稳固占领市场,就要有质量稳定的产品,同时要为用户提供各种无损检测报告。国内外用户已明确提出对订购的钽、铌、铍加工材进行无损检测。其中超声波探伤是无损检测的一种重要方法,其次还有着色渗透探伤法,超声波测厚法,耐压水压检测法等。无损检测是始终与材料质量、安全联系在一起的一门极其重要的应用技术,对其质量控制和安全使用起着举足轻重的作用。我分厂钽铌铍及其合金管、棒、板材品种多、规格杂,采用各种无损检测方法可以检测材料内部或外部的缺陷,为提高信誉度、稳定生产工艺、控制中间转料、出厂产品质量提供依据。

2各种无损检测方法原理及应用

2.1超声波探伤原理及应用

探伤仪按缺陷显示方式分类分为:A型、B型、C型、三种显示,我厂采用的均为A型,A型显示是一种波形显示,探伤仪荧光屏的横坐标代表声波的传播时间(或距离),纵坐标代表反射波的幅度。由反射波的位置可以确定缺陷位置,由反射波的幅度可以估算缺陷大小。原理如图1:

超声波检测仪工作原理:同步电路产生周期性的同步脉冲信号。一方面它触发发射电路(或经触发延迟在时间上做适当延迟后触发发射电路)产生一个持续时间极端的电脉冲加到探头内的压电换能器上,激励品片产生脉冲超声波。另一方面,同步脉冲经过扫描延迟,在时间上适当延迟后控制扫描发生器产生线性较好的锯齿波,经过轴放大器放大后加到示波管Y轴偏转板上,使光点从左到右随时间做线性地移动。超声波透过偶合剂射入试件。在试件内部传播的超声波遇到界面或缺陷时即产生反射,这种超声回波已停止激振的原探头接收,转变成电脉冲输入高频放大器。经检波电路再由祝频放大器进一步放大后加到示波管的Y轴偏转板上,这是光点不仅在水平线上按时间作线性移动而且还要受Y轴偏转板上电压的影响做垂直运动,从而在扫描线上就出现波形。根据反射回波在扫描线上的位置可确定试件中界面或缺陷与换能器间的距离,荧光屏上显示的波高一般与换能器接收到的超声波声压成正比,故可据以评定反射回波的声压大小。

1-时基电路2-扫描延迟3-扫描发生器4-X轴放大5-接收电路6-高频放大及衰减器7-检测电路8-视频放大器9-同步电路10-发射电路11-示波管12-示波管荧光屏13-换能器14-试件

图1超声波检测仪工作原理图

在我们厂超声波探伤法应用几乎涉及了钽、铌、铍及其合金的管、棒、板材,贯穿了整个工艺流程,超声波探伤可以检测出料中的气孔、夹渣、裂纹及组织的不连续。我们厂从原料铸锭的领取到成品发货均需要超声波检测。钽铌铸锭在电弧熔炼过程中会产生封顶缩尾缺陷,如果锯切不干净,那么在以后压力加工中将越裂越大,导致整节铸锭的报废,超声波可发现封顶缩尾缺陷,可以及时切除。钽、铌及其合金棒材在加工过程中,由于前期很多是锻造的,会出现裂,用超声波探伤可以检测出来,并且可以分析裂的产生原因及状态,根据实际情况,判断物料是切除还是改做它用。钽、铌及其合金管材也是我们的主要产品,它们主要应用于化工防腐行业,对超声波探伤这方面要求也比较严格,我们用超声波自动水浸探伤可以大批量的对管材进行内壁和外壁的扫查,可以迅速检测出内壁和外壁的凹坑、夹渣、沟槽、裂纹等等缺陷,并自动剔除。海蓝公司是我们铍铜的最大客户,曾经因为产品的内部缺陷而退货,现在我们在超声波检验铍铜管棒的技术已经比较成熟,海蓝、7103厂、西安煤院等客户对我们的超声波技术也比较认可。

2.2着色渗透探伤法原理及应用

着色渗透探伤法是在测试材料表面使用一种液态染料,涂上该有色液体染料后,并使其在体表保留至预设时限,然后再涂上显影剂,在正常光照下观察即能辨认的有色液体。可广泛应用于检测大部分的非吸收性物料的表面开口缺陷,无需额外设备,便于现场使用。

着色渗透探伤法的优点是灵敏度较高,检测成本低,使用设备与材料简单,操作轻便简易,显示结果直观并可进一步作直观验证,其结果也容易判断和解释,检测效率较高。缺点是受试件表面状态影响很大并只能适用于检查表面开口型缺陷,如果缺陷中填塞有较多杂质时,不容易检出。

目前我们的钽、铌、铍及其合金的φ14.4以下的小规格拉制棒材在修料中是工人用肉眼判断表面是否有缺陷,这种目视检测法效率很低并且失误率很高,如果料表面的缺陷没有被发现,没有及时修理干净,那么遗留到后序的继续加工中,缺陷将越来越多,越来越大,如果投入到拉丝工序中,拉出的丝将会断掉,这不仅是人力物力的浪费,成材率也很难上去。目前我们渗透检测应用于钽铌铍φ14.4以下的拉制棒材,检验各种裂纹、麻坑、粘料等开口型缺陷,这就大大减少了工人的劳动强度,并且可以很快很准确的检测出缺陷,及时修理,效率很高。

2.3超声波测厚原理

测量超声波在工件上下底面之间往返一次传播的时间来求得工件的厚度。

数字超声测厚仪内部有计算电路,可以计算出来时间,再换算成工件厚度显示出来。如图2

图2超声波测厚原理示意图

我们的壁厚仪范围在0.102mm~254.00mm之间,精度达±0.025mm。目前我们应用它来检测各种规格材质的管材壁厚,如在调轧过程中,需要时时监控管材的壁厚,原来是调一段,切下来有尺子量,这样效率低浪费材料准确度还差,用超声波测厚效率很高而且可以整根测量。管材和板材的中间部位或是很厚的材料,壁厚尺根本量不到,用壁厚仪就很轻松的量到任何一个需要控制的点。

2.4渗漏试验的原理及应用

渗漏试验是专门检验液体或气体从承压容器中漏出或从外面渗入真空容器中的无损检测技术。渗漏试验分为不用示踪气体的压力系统和利用示踪气体检测器的压力系统。我们所选的是不用示踪气体的压力系统的气密性试验。

下面介绍我们所用的三种压力系统检测法:水压测试、气压检测和氦质谱检漏法。

2.4.1水压测试的原理及应用

如图,盛放在密闭容器内的液体,其外加压强p0发生变化时,只要液体仍保持其原来的静止状态不变,液体中任一点的压强均将发生同样大小的变化。即帕斯卡定律(在密闭容器内,施加于静止液体上的压强将以等值同时传到各点p=p0+ρgh),利用水为工作介质静压力传递进行工作如图3。该方法主要是检验料的强度。

图3帕斯卡定律P1/S1=P2/S2

我们所检测直径φ4-φ60、长度≤6米钽、铌及其合金管,铍青铜管材,水压额定试验压力2.0Mpa,工作试验压力10Mpa。我们用泵把压力加到8Mpa-10Mpa时,保持10S,当发现管材表面有渗水或管材破裂扭曲时,说明它的强度达不到标准,将判该管材不合格。

2.4.2气压检测原理及应用

气压检测是来自空压机产生的高压气源,经控制系统测控后,经高压软管输送给试样,当漏孔的两侧存在压差时,气体就通过漏孔从高压侧向低压侧流动,如果在低压侧施加适当液体后,漏孔处将会吹起一个个气泡,从而可以发现漏孔的存在。类似于自行车补车胎。

我们所检测直径φ4-φ60、长度≤6米钽、铌及其合金管,铍青铜管材的气压额定试验压力1Mpa,工作试验压力0.7Mpa。该方法主要是检验料的气密性,它简单可靠、使用方便、能定出漏孔的位置,成本低。

需要强调的是:水压试验千万不能用气压试验代替!!!水压试验为强度试验,气压试验为密封试验。一般气体容器先强度试验而后气密试验。若反之,一旦容器强度失误,它的爆炸威力“一个压力”在一平方厘米的面积上的压力是1公斤。也是现在说的一个大气压。

2.4.3氦质谱检漏法原理及应用

该方法是通过质谱室是用来检测氦的分压强。当质谱室内的总压强(真空度)低于10Mpa时,电离室中由钨丝制成的灯丝启动,加热后产生高速电子轰击离子源中的气体分子,使分子电离。大部分的气体分子都能变成离子,离子在电场中被(加速电压)加速,从而进入与其垂直的偏转磁场,不同质量数的离子其偏转半径不同。加速电压使得氦离子可以打到放大器的入口(电子倍增器),从而检测出氦离子流的强度,氦离子流与容器内的氦分压成正比,因此对氦离子的测量可以确定被检件的漏率。氮质谱检漏仪是用氦气为示漏气体的专门用于检漏的仪器,它具有性能稳定、灵敏度高的特点。是真空检漏技术中灵敏度最高,用得最普遍的检漏仪器。其灵敏可达10~10Pa.m/s。如图4。由于氦气的分子直径很小,本身是惰性气体,很安全,用它可以检测出很小的漏点,该方法在我厂常用于φ10---φ60mm钽、铌及其合金管材的漏点。

图4质谱室工作原理图

3展望

近几年NDT技术无论是在声学、电学还是磁学方面都有很大的进步,NDT技术有广泛的应用,应用NDT可以用较少的劳力和开支对钽铌铍加工材的质量进行动态或静态,长期或短期的测量和监控,目前我们厂在加工材方面的无损检测技术起步较晚比较薄弱,主要表现在人员素质还不是很高,数量偏少,设备陈旧落后,资金欠缺,技术不成熟,还未形成规模化系统化检测流水线。随着科技的不断发展,客户对NDT技术提出了更高更严的要求,由于我们的技术达不到,很多客户因此流失,在产值和声誉方面受到了很大的损失。因此我要努力向同行学习,多做实验多看资料,提高我们的技术水平和人员素质,我们的NDT技术现在仍有很多问题极具挑战性,鼓励我们要投入更大的热情和人力物力来促进它的发展。

参考文献

1 中国机械工程学会无损检测学会编.超声波检测.第2版.北京:机械工业出版社,2000

2 超声波探伤》编写组编著.超声波探伤.北京:电力工业出版社,1980

3 郭成彬等。认识数字超声探伤仪.无损检测,2004,26(3):149-154

4 国防科技工业无损检测人员资格鉴定与认证培训教材.超声检测,机械工业出版社,2008

无损检测技术论文范文5

【关键词】声波透射法;基桩;完整性检测

1 引言

在现行的检测技术中,无损检测被越来越多的人接受,成为了一种新的检测方式,特别是在各种大型工程、地下工程中得到广泛应用。在桥梁基桩桩身完整性检测中,声波透射法充分发挥了其准确性高,可定量分析出桩身缺陷的大小和确切部位的优点,具有较高的实用价值。

2 声波透射法测试原理及方法

内部的结构特性与外部环境条件等很多因素会制约混凝土的物理力学性质,混凝土的应力应变关系反应于它的声波传播特性。根据弹塑性介质中的波动理论,其应力波波速为:

其中E为介质的动态弹性模量;ρ为密度;μ为泊松比。混凝土的弹性模量和介质的强度之间存在一定的相关性。超声检测的理论依据是混凝土介质的物理力学指标(强度、密度、动弹模等)与超声波的各种传播参数(波幅、声时值、衰减系数和声速等)之间的相关关系。当混凝土介质的构成材料以及均匀度、施工条件等所有内、外因素大多数一致时,超声波在其中的传播参数也会是一致的;超声波在传播中遇到存在缺陷的混凝土介质时,超声波会产生异变,声时、声速、声幅、频谱等各项参数都会产生变化,检测桩基完整性可通过高精密声波发射-接收仪器及传感器来记录与描述。

3 声波透射法测试方法

3.1 主要仪器设备

超声检测仪器设备主要采用:中国科学院武汉岩土研究所RSM-SY5智能声波检测仪1台及CH-1型声波跨孔测试换能器3只。

3.2 检测方法

首先向所有被检测的混凝土灌注桩预埋声测管内注满清水,用钢卷尺准确测量出桩顶各个声测管之间的净距离。缓缓将声波跨孔测试换能器分别置于预埋管中的两个声测孔的底部,让其高度保持一致,记录好深度,每隔25cm布置一个测点,基桩声波透射法现场检测示意图参见图1。为保证检测的准确性,确保各测点发射与接收换能器累计相对高差不大于2cm,并且随时校正其高度,如果发现测试结果异常,则必须对数据不合理部位重新检测。缺陷的位置和范围通过对测、斜测、交叉测及扇形扫测等各种测试方法确定。以每两声测管为一个测试剖面,对同一基桩所有剖面分别进行检测。

图1 桩基声波透射法现场检测示意图

3.3 数据处理及判定

可以用以下三种情况来判定桩身混凝土异常的临界值:

(1) 声速判据

在混凝土中超声波的传播速度(波速)Vp依据实测声时值tp、测距L计算得出:

其中:

t0为声时值初读数,t/为声时值修正值。

式中D为测管外径,d为测管内径,d/为换能器外径,Vt为检测管壁厚度方向声速,Vw为水的声速。

μp(μt)、σv(σt)分别为波速平均值和波速标准差。

如果实测混凝土声速值低于声速临界值,则应将其作为可疑缺陷区。

(2) 波幅判据

用波幅平均值减6dB作为波幅临界值,当实测波幅低于波幅临界值时,应将其作为可疑缺陷区。

式中 AD―波幅临界值(dB);

Am―波幅平均值(dB);

Ai―第i个测点相对波幅值(dB);

n―测点数。

(3) PSD判据

采用斜率法作为辅助异常判据,当PSD值在某测点附近变化明显时,应将其作为可疑缺陷区。

式中:tci---第i个测点的声时;

tci-1---第i-1个测点的声时;

Zi---第i个测点的深度;

Zi-1---第i-1个测点的深度;

如果发现混凝土声速和波幅值出现异常并判为可疑缺陷区,必须用水平加密、等差同步或扇形扫测等方法进行更细致的测量,结合波形分析确定桩身混凝土缺陷的位置及其严重程度。

4 结语

随着现代铁路、公路的繁荣发展,很多重点工程都要求对桩基进行超声波无损检测。声波透射法优点众多,具有很广阔的市场前景。本文浅析声波透射法的基本原理和检测方法,旨在给该领域提供简单参考,还有很多缺陷和不足,有待进一步去完善。

参考文献

[1] 中华人民共和国行业标准.建筑基桩检测技术规范(JGJ 106 C 2003),北京:中国建筑科学研究院,2003

[2] 罗骐先.桩基工程检测手册,北京:人民交通出版社,2003

无损检测技术论文范文6

[关键词]桥梁桩基础;无破损;检测技术

中图分类号:V448.15+1a 文献标识码:A 文章编号:1009-914X(2015)11-0154-01

引言

社会经济的快速发展,对桥梁等交通设施建设的要求也在不断的提高,而桥梁桩基础是桥梁工程的重要部分,其质量的好坏往往决定着桥梁的性能,但常规的检测方法又具有一定的局限性,因而研究无破损检测技术具有积极的意义,以下做简要的论述。

1.桥梁桩基础常见的病害及成因

桥梁桩基础是地基加固的主要形式,也是整个桥梁结构的承压构建,但是在施工中存在用料不规范、操作不按流程、施工队伍素质不齐、设备不精确、地质环境影响等,都会造成桥梁桩基的缺陷,而桥梁桩基常见的缺陷有以下几类。

1.1 桩基桩径缩小

桩径是决定桥梁竖向承压能力的关键指标,但桩径缩小是比较常见的施工问题,会导致抗弯能力减弱、承载不达标等问题,桩基桩径缩小主要有三个方面的原因:其一,地质构造含有承压水的地层时,地下水的冲刷导致砂浆流失,桩径缩小;其二,地质条件不良,桩基周围土层遇水后向桩孔中突起致使桩径缩小;其三,钢筋绑扎过密导致流动性差,部分钢筋外漏导致桩径缩小。在此类缺陷桩基中,需要对波形进行分析,产生相反的反射波,缩径越大,振幅就越大。

1.2 混凝土桩基沉渣

此类问题主要发生在施工过程中,在钻孔灌注桩进行混凝土灌注之前没有进行彻底的清洗,导致桩基本身的强度降低。混凝土桩基沉渣也有可能是没有及时进行灌注导致的,与施工的组织规划有关。当桩基础底部为弱风化围岩时,产生同向反射波,波速急剧下降,周期变长,主频变低;当桩基础很短强度高时,产生较强的同向反射波。

1.3 混凝土桩基离析

在桥梁桩基施工中,由于搅拌不均匀,成形之后的混凝土必然出现性能上的波动,如胶结不好,或者是桩孔内存在大量的积水导致骨料受到冲刷,在桩基沉积,但砂浆浮在骨料之上,造成桩基离析的问题。此类桩基础会出现波形小范围的畸变,严重时波峰会消失,最后出现低频合成波。

2.桥梁桩基础无损检测技术研究

2.1 人工激震动测技术研究

通过人工激励的方式产生地震波,地震波传递之后产生反射,接收器接受之后可以进行分析。由于地震波传播的介质是非均匀性的,必然会产生反射,地震波在桥梁桩基中出现衰减,波能转化为热能。如果桥梁桩基存在缺陷,波速降低,传播时间增加,地震波信号发生散射而衰减。根据传播方向和波动介质点振动方向的差异,可以将波形分为横波与纵波,其他形式的波也能分解为横波与纵波。横波传播方向与质点振动垂直,质点位置发生剪切应变,但横波只能在固体介质中传播。纵波是指传播方向和质点振动相同的波,由于交变拉压应力的存在,出现伸缩变形,在气体、液体和固体中都能传播。

在采用人工激震动测法检测桥梁桩基时,地震波遇到桩基缺陷产生反射波,反射波相关于缺陷桩基的阻抗。缺陷桩基界面阻抗不同时,就会产生地震反射波,发射波与入射波振幅的比值即为反射系数。传感器接收到波形的参数之后,如频率、声速、振幅等,对桩基的缺陷进行分析,可以判别桩基的问题,离析桩、缩径桩、断桩等缺陷在人工激震动测技术下,其波形的表现会出现差异,通过这些差异来进行鉴别。传统的桥梁桩基检测,在桩顶安装传感器,并进行激振,获取数据之后判断桩基的质量,但是传统的检测方式会有诸多的干扰,需要检测人员有较高的分辨能力。而人工激震动测法能有效分离干扰波,利用两点之间的缺陷时进行波速计算,有效应对深度缺陷的检测。

2.2 声波透射法

声波透射法是当前应用较为广泛的一种无损检测技术,声波在不同的介质中波形具有差异,在缺陷桩基中传播时可以体现出来。缺陷桩基的混凝土材料不均匀,产生不同声阻抗声学界面,声波沿着不同的蓝截面传播,衰减快,能量散射也比较严重。桩基混凝土中产生诸多的散射波和折射波,散射波与折射波相互叠加会有声能散失,声波在缺陷桩基中会绕着缺陷进行传播,传播路线不是直线,声时变大,声速减小。声波在遇到缺陷截面时发生多次的折射和反射,声能出现衰减,频率和波幅减小,整个波形发生畸变。在声波透射检测法中,需要在灌注之前预留孔道,并在预留的孔道中埋设声波探测管,移动探测仪和接收仪,移动时注意方向和高度,逐步获取桩基横截面的数据,由物理参数来判别桩基的完整性,声波透射法对桩基的孔径和长度要求不大。声波透射法的检测中,如果实测声速值低于混凝土声速临界值,可以判定桩基存在缺陷;所检测测点声速值很小,并且趋于收敛,判定时采用声速低限值进行,如果声速值低于底限值,则判定为异常桩基。

2.3 低应变动测法

低应变动测法对于桩长远远大于桩径的情况比较实用,用振动仪对桩顶进行激振,周围土体和桩身会产生振动,通过桩基本身的应变计将桩基振动的速度和加速度传递给接受装置。低应变动测法检测方法简单、速度快、范围广而被广泛应用,如果桥梁桩基本身存在断桩、缩径、扩径等差异性界面,弹性波在传播时产生反射,传感器对声波进行处理,以便进行数据分析。通过研究桩土之间的动态响应,达到判断桩基的长度及质量问题。随着技术的发展,低应变动测法检测的精确性也越来越高,受到广泛的重视。

2.4 高应变动测法

高应变动测法的成本低,其组成的部分包括传感器、分析仪、激振设备和测量仪等,主要用于检测桩基的竖向承压能力和桩基的完整性,在桩顶施加竖向载荷,然后收集桩基相关动力系数,主要是速度与力的时程曲线,进行分析计算,从而判断桩基的竖向承压能力和质量问题,高应变动测法在高程摩擦型桩基和摩擦型桩基的检测中比较常用。

3.桥梁桩基础无破损检测的技术要求

在进行桥梁桩基础无破损检测时,需要注意几个方面的技术要求:其一,桩头处理,处理桩头,确保清理干净,平面整洁、干燥,便于后续的检测;其二,桩基础的强度要求,由于是无破损检测,在检测中不能削弱桩基础的性能,一般要求达到桩基础龄期达到10天以上,能够很好的保护桩基础;其三,传感器的选择与安装,桩基础的缺陷检测需要保证精度,因而检测设备的选择和安装至关重要,传感器是核心设备,要求精度高、灵敏性好,安装位置要根据桩径的大小合理选择,避免漏测的情况,此外,传感器必须固定好,以免差生较大的误差,影响桩基础缺陷的分析;其四,所有的检测仪器必须无故障运行,同时仪器必须连接好,处于最佳的工作状态;其五,检测后的设备保养维护,桥梁施工现场的环境比较复杂,对仪器设备会有一定的影响,因而检测后需要进行设备的维护保养,为下次的检测打下良好的基础,同时也能避免成本上升的问题。

4.结语

桥梁桩基础是桥梁建设中的重要部分,对于桥梁的性能有很明显的影响,而桥梁是当今交通基础设施的关键,影响着社会经济的运行,因而研究桥梁桩基础的质量问题具有积极的意义。随着技术的发展,追求缺陷无损检测,既能达到质量控制的目的,又能节省成本,减少破坏作用,因而研究无破损检测技术十分重要。

参考文献