前言:中文期刊网精心挑选了模糊神经网络的优点范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
模糊神经网络的优点范文1
简而言之模糊神经网络就是具有模糊权值和输入信号的神经网络。模糊神经网络是自动化控制领域内一门新兴技术,其本质上是将常规的神经网络输入模糊信号,因而模糊神经网络具备了模糊系统和神经网络的优势,集逻辑推理、语言计算等能力于一身,具有学习、联想、模糊信息处理等功能。模糊神经网络是智能控制和自动化不断发展的产物,在充分利用神经网络的并行处理能力的基础上,大大提高了模糊系统的推理能力。模糊神经网络是科技发展的产物,有效吸收了神经网络系统和模糊系统的优点,在智能控制和自动化发展等方面有着重要的作用,能够有效地处理非线性、模糊性等诸多问题,在处理智能信息方面能够发挥巨大潜力。模糊神经网络形式多种多样,主要包括逻辑模糊神经网络、算术模糊神经网络、混合模糊神经网络等多种类型,被广泛的运用于模糊回归、模糊控制器、模糊谱系分析、通用逼近器等方面的研究中,随着智能控制和自动化领域的不断发展,模糊神经网络广泛应用于智能控制领域。
2基于模糊神经网络的生物质气化炉的智能控制系统
2.1温度智能控制系统
生物质热值、给料理以及一次风量等因素变化能够影响到生物质气化炉的炉温,但是最重要的影响因素是在气化炉工作过程中物料物理和化学反应的放热和吸热。由于生物质气化工作过程中的生物质热值的变化范围较小,在实际运行中很难测量与控制,有时可以忽略不计,同时,该工作过程中存在非线性和大滞后等问题,采用传统的数学模型达不到预期测量效果,因此需要利用模糊神经网络设计气化炉炉温控制系统,不断的提高温度的控制效果。模糊神经网络首先根据当前温度以及设定温度设,主控制器对最优的生物质物料添加量进行预测,然后由副控制根据该添加量,全面跟踪控制送料速度,从而能够进行精确上料和控制炉温。模糊神经网络系统十分庞大复,其中包含了大量错综复杂的神经元,蕴含对非线性的可微分函数训练权值的基本理念。模糊神经网络具有正向传递和反向传播两个不同的功能,在信息的正向传递中,采用逐步运算的方式对输入的数据信息进行处理,信息依次进入输入层、隐含层最终到达输出层。假如在输出层获得的输出信息没达到预期效果时,就会在计算输出层的偏差变化值后通过网络将偏差信号按原路反向传回,与此同时各层神经元的权值也会随之进行改变,直到符合预期的控制效果。
2.2含氧量智能控制系统
在生物质气化工作过程中,可燃气体的含氧量是衡量其生产质量的重要依据,能够严重影响气化产物的安全使用,因此,通过模糊神经网络实现生物质气化炉含氧量的智能控制十分重要。其含氧量智能控制系统的目的是为了合理控制可燃气体的含氧量,从而稳定气化炉的温度。但是,一次风进风量是影响可燃气体的含氧量的重要因素,所以可以把控制一次风量作为主要调节手段,有效地解决含氧量控制和炉温控制之间的矛盾,在控制炉温的前提条件下,最大程度地降低可燃气体含氧量,进而有效控制气化产物含氧量的。生物质气化炉含氧量的智能控制系统是严格运用模糊神经网络控制原理,主控制器采用温度模糊免疫PID控制,根据炉内含氧量和温度的偏差进行推算,查找出鼓风机转速的最优状态,副控制则以此为根据,全面跟随与控制鼓风机的速度,确保鼓风机转速。生物质气化炉工作过程中的不同阶段和部件具有不同的控制要求,模糊神经网络就要充分发挥被控对象的优良性能,根据不同的控制要求,合理运用模糊神经网络控制原理对PID参数模型中的数据信息进行在线修改,从而达到预期的控制效果。
3基于模糊神经网络的生物质气化炉智能控制系统的仿真实验
为了验证运用模糊神经网络进行生物质气化炉的智能控制的真实效果,对生物质气化炉的温度智能控制系统进行仿真实验,并进行详细地分析。为了保证生物质气化炉能够在条件大体一致的状态下进行运行状况,仿真实验可以采用组合预测算法。首先要到某厂气化炉现场采集2000组干燥层温度数据,并且从中选取连续1500组作为仿真实验样本数据,然后对剩余500组实验样本数据进行研究,通过两组数据的分析建立预测模型。然后采用模糊神经网络对生物质气化炉的温度控制系统进行三次模拟化实验,三种不同情况下的仿真试验结果为:在无外界任何干扰的情况下,模糊神经网络控制无论在超调量还是其他方面,都比单纯的模糊控制效果好;在生物质给料量扰动的情况下,模糊神经网络控制要比单纯的模糊控制所受的影响要小很多;在发生一次风量搅动的情况下,模糊神经网络控制仍受到极小的影响。从三种不同情况下的仿真试验中可以看出基于模糊神经网络的生物质气化炉的炉温智能控制系统效果较好,具有极强的抗干扰性,能够有效地预测气化炉温度实时值,把平均误差控制在很小范围内,并且智能控制系统能实时跟踪实际温度的变化,根据实际温度的变化做出相应的变化,从而能够有效地控制气化炉温度和可燃气体含氧量。
4结束语
模糊神经网络的优点范文2
介绍了基于神经网络的故障针诊断方法和结合模糊理论应用的故障诊断。分析了小波变换的现代模拟电路软故障诊断的研究现状。
关键词:
模拟电路;软故障诊断;神经网络;模糊理论;小波变换
在最近几年,现代模拟电路故障诊断方法的研究成为了新的热点。其中有基于神经网络。并结合专家系统、小波变换、模糊理论和遗传算法。“小波神经网络”和“模糊神经网络”成为主流的模拟电路软故障诊断方法。
1基于神经网络的故障诊断方法
神经网络有自组织性、自学性、并行性、联想记忆和分类功能,这些信息处理特点使其能够解决一些传统模式难以解决的问题。其中模拟电路故障诊断中的非线性和容差问题就是运用神经网络的非线性映射能力和泛化能力来解决的,同时这也是专家门的较为感兴趣的研究热点。基于神经网络的模拟电路故障诊断方法有一些,其中包括测试节点的选择、确定被测故障集、故障特征的提取等步骤,这种方法与基于测前仿真的故障字典法雷同。前者用制作神经网络和样本集来储存特征信息,而且在测试完毕后定位故障是通过神经网络来处理。所以可以把基于神经网络的方法当作是基于测后仿真和测前仿真的延伸与综合。在故障诊断领域,误差反传神经网络(backpropagationneuralnetwork,BPNN)拥有较好的模式分类特性。然而仅仅以节点电压视作故障特征训练的BPNN只能适用于诊断模拟电路的硬故障。在软故障方面,一般需要基于神经网络和多种特征提取方法的综合应用来诊断。
2基于模糊理论应用的模拟电路软故障诊断
在一些故障诊断问题中,模糊规则适合描述故障诊断的机理。模糊理论中的模糊运算、模糊逻辑系统、模糊集合拥有对模糊信息的准确应付能力,这使得模糊理论成为故障诊断的一种有力工具。神经网络与模糊理论相结合,充分发挥了模糊理论和神经网络各自的优点,并以此来弥补各自的不足,这就是所谓的“模糊神经网络”。这种方法的基本思想是在BPNN的输出层和输入层中间增加一到两层模糊层构造模糊神经网络,分别利用神经网络和模糊逻辑处理低层感知数据与描述高层的逻辑框架,这样一来跟神经网络分类器相比,“模糊神经网络”对模拟电路软故障诊断效果的优势就非常明显。通过一个无监督的聚类算法自组织地确定模糊规则的数目并生成一个初始的故障诊断模糊规则库,构造了一类模糊神经网络,通过训练调整网络权值,使故障诊断模糊规则库的分类更加精确,实现了电路元件的软故障诊断。
3基于小波变换的模拟电路软故障诊断
小波变换是一种新的变换分析方法,它继承和发展了短时傅立叶变换局部化的思想,同时又克服了窗口大小不随频率变化等缺点,能够提供一个随频率改变的"时间-频率"窗口,是进行信号时频分析和处理的理想工具。它的主要特点是通过变换能够充分突出问题某些方面的特征,能对时间(空间)频率的局部化分析,通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。若满足时,则由经过伸缩和平移得到的函数成为小波函数族。小波变换具有时域局部特征,而神经网络具有鲁棒性、自学习、自适性和容错性。如何把二者的优势结合起来一直是人们所关注的问题。一种方法是用小波变换对信号进行预处理,即以小波空间作为模式识别的特征空间,通过小波分析来实现信号的特征提取,然后将提取的特征向量送入神经网络处理;另一种即所谓的小波神经网络或小波网络。小波神经网络是神经网络与小波理论相结合的产物,最早是由法国著名的信息科学研究机构IRLSA的ZhangQinghu等人1992年提出来的。小波神经用络是基于小波变换而构成的神经网络模型,即用非线性小波基取代通常的神经元非线性激励函数(如Sigmoid函数),把小波变换与神经网络有机地结合起来,充分继承了两者的优点。近几年来,国内外有关小波网络的研究报告层出不穷。小波与前馈神经网络是小波网络的主要研究方向。小波还可以与其他类型的神经网络结合,例如Kohonen网络对信号做自适应小波分解。
由于神经网络、小波变换、模糊理论在当今的发展上还不是很完善,例如在诊断中,模糊度该如何准确地定量化,对小波变换之后故障信号进行怎样构造能体现故障类别的特征等,因此这些基于神经网络的诊断方法或多或少地存在一些局限性。一般来说,神经网络方法的长处并不是提高诊断精度,而且无论运用什么方法,在选取状态特征参量和确定电路故障集方面,传统的故障诊断方法仍然具有理论上的指导意义。所以,抽取合理的故障特征比构造合适的神经网络更为重要。
参考文献:
[1]梁戈超,何怡刚,朱彦卿.基于模糊神经网络融合遗传算法的模拟电路故障诊断法[J].电路与系统学报,2004,9(2):54-57.
[2]谭阳红,何怡刚.模拟电路故障诊断的小波方法[J].电工技术学报,2005,20(8):89-93.
模糊神经网络的优点范文3
只有清楚地了解电梯控制系统的运行原理才能够及时准确的诊断出电梯故障原因,因此清楚的了解电梯运行原理,每一个电梯维修人员必须要做到。电梯运行过程总体上可分为以下几个阶段:第一、登记层外召唤信号和登记内选指令阶段;第二、电梯门关闭或者电梯按照系统指令停运阶段;第三、启动阶段;第四、在到达信号记录的楼层前进行减速制动;第五、平层开门阶段。在整个过程中电梯需要从外界接收信号并处理,然后完成相应的指令或者输出信号,由此可以将电梯看作是一个完整的独立的系统,只需要外界给予相应的信号就可以自动的做出动作。电梯系统内部复杂的构件紧密的结合在一起,正是如此才使得电梯系统故障具有了复杂性、层次性、相关性以及不确定性的特点。
二、神经网络技术基本原理
生物学上的神经是由一个个简单的神经元相互连接进而形成了复杂的庞大的神经系统,同理,神经网络就是由大量简单的处理单元相互连接形成的复杂的智能系统。单独的处理单元类似于一个神经元,是一个可以接受不同信息但是只输出一种信息的结构单位。神经网络系统与生物学神经系统相似的是具有自我修改能力,它可以同时接收大量的数据并进行统一的分析处理,进而输出相应的处理结果。这就使得神经网络系统具有了高度容错性、高度并行性、自我修改性、学习性以及高度复杂性,也正是由于这些特性才使的利用神经网络技术能够及时准确的查明电梯故障原因并得出故障解决方案。电梯故障诊断中应用的神经网络模型分为三个层次:输入层、接收外部信号或者是电梯自我检测信息(如载重信息);隐含层、对接收到了大量数据进行相应的分析处理;输出层、将记录着动作命令的数据传送出来。在电梯出现故障时,首先可以通过神经网络模型快速确定故障发生在哪一层达到节约时间的目的。但是神经网络也会因为收敛速度过于慢、训练强度太大或者是选择的网络模型不好等问题导致诊断结果受到影响。
三、神经网络模型在电梯故障诊断中的应用分类
神经网络模型已经成为了如今电梯故障诊断中应用最广泛的技术模型,相比于传统方式它具有诊断速度快、故障原因命中率高的优点,因此引起了各方面专业人士的强烈关注,并在他们的不懈努力下得到了发展与创新。它跨越多个专业领域、通过对各种复杂的高难度工作的不断的发展与改进出现了越来越多的应用模型,下面主要介绍了当前应用最普遍的BP网络模型,并且简单的引入并介绍了近年来新兴的模糊神经网络模型和遗传小波神经网络模型。
(一)BP网络模型
BP神经网络作为神经网络应用最广泛的一种,它多应用的误差反向传播算法使其在模式识别、诊断故障、图像识别以及管理系统方面具有相对先进性。基于BP网络的电梯故障诊断技术就是通过学习故障信息、诊断经验并不断训练,并将所学到的知识利用各层次之间节点上的权值从而表达出来。BP网络系统的主要诊断步骤主要可以分为三步。第一步:对输入输出的数据进行归一化处理,将数据映射到特定的区间。第二步:建立BP网络模型,训练BP网络模型。第三:通过已经训练好的网络模型对原来的样本进行全面的检测。算法步骤:a、在一定的取值范围内对数据进行初始化;b、确定输入值数值大小,计算出预期输出量;c、用实际输出的值减去上一步得到的数值;d、将上一步得到的误差分配到隐含层,从而计算出隐含层的误差;e、修正输出层的权值和阈值,修正隐含层的权值;f、修正隐含层的阈值,修正隐含层和输入层的权值。
(二)遗传小波神经网络模型
遗传算法运用了生物界的优胜劣汰、适者生存的思想对复杂问题进行优化,适用于复杂的故障,起到了优化简化问题的作用。对局部数据进行详细的分析是小波法最大的特点,所以它被誉为“数字显微镜”。遗传算法小波神经网络就是运用小波进行分解的方法分解模拟故障信号,将得到的数据进行归一化,将归一化后的数值输入到神经网络模型中。它融合了神经网络、小波分析和遗传算法三者所有的优点。基于遗传小波神经网络的电梯故障诊断的一般步骤为:测试节点信号采样、小波分解、故障特征量提取、归一化得到训练样本集、遗传算法优化、得到故障类型。遗传小波神经网络模型在故障原因复杂、数据信息量巨大的电梯系统的应用中能够发挥更大的作用。
(三)模糊神经网络模型
模糊神经网络模型就是创新性的将神经网络与模糊理论结合到一起。它采用了广义的方向推理和广义的前向推理两种推理方式。与其它两种模型不同的是,它的语言逻辑、判断依据和结论都是模糊的。但是它的数据处理能力还有自我学习能力并没有因此而变差,反而更加丰富了它的定性知识的内容。在处理实际问题的过程中,首先要建立所有可能发生的故障的完整集合,其次将所有的故障发生原因归入到同一个集合中去,最后就是建立故障和原因的关系矩阵。分别叫做模糊故障集、模糊原因集、模糊关系矩阵。相较于BP网络模型,这种模型更加的简单易行,充分发挥了神经网络和模糊逻辑的优点,不会因为故障原因过于复杂而失去诊断的准确性,在原本丰富定性知识和强大数据处理能力的基础上具有了很大的自我训练能力。
四、结语
模糊神经网络的优点范文4
1煤岩识别系统及特征参数分析
1.1煤岩识别系统采煤机截割煤岩的工况简图如图1所示。采煤机截割的煤壁中,有时是均质的煤层,有时煤壁是煤层与岩层共存,设定煤层与岩层以一定比例存在。研究的煤岩识别系统识别的煤壁中岩层的煤层与岩层的比例分别为:全煤层、煤岩比2∶1、煤岩比1∶2以及全岩层四种情况。使用多传感器信息融合技术及模糊神经网络算法建立的煤岩识别系统主要分为两大部分,第一部分是数据采集层,通过多传感器信息融合技术对采煤机截割煤岩时的振动、阻力矩以及电机电流等进行监测,并采集数据提取特征值。第二部分是识别模型,即使用模糊神经网络算法建立煤岩识别模型。通过多传感器采集并处理后的特征分为两大类,第一类用于使用模糊神经网络算法建立煤岩识别模型进行网络训练,使得识别模型具有相应的泛化能力;第二类用于对所建立的煤岩识别模型进行性能测试,测试识别模型泛化能力,识别能力能够达到识别要求[9]。
1.2特征参数分析本文建立的煤岩识别采用多传感器信息融合技术,主要对采煤机截割煤岩时的振动、阻力矩以及电机电流等进行监测。由于采煤机在截割不同比例的煤岩时,z轴方向振动量变化基本相同,因此提高识别效率,本文的多传感器融合系统只对采煤机滚筒截齿的x轴和y轴振动量进行采集处理。图2是采煤机截割全煤层、煤岩比2∶1、煤岩比1∶2以及全岩层,这四种情况时煤岩的振动监测值。图3是采煤机截割四种情况煤岩时的阻力矩情况。图4是采煤机截割四种情况煤岩时的电机电流监测数据[10]。
2ANFIS原理及结构
模糊神经网络(ANFIS)的结构如图5所示,主要由前件网络和后件网络组成,其模糊系统采用Sugeno型。
2.1前件网络前件网络由4个层组成。前件网络的第1个网络层是整个模糊神经网络的输入层,有n个节点,模糊神经网络输入的各个分量xi与输入层的各个节点相连,将输入向量传递到第2个网络层。
2.2后件网络后件网络由r个同样具有三个网络层的并列的子网络组成。各个子网络具有一个输出值。后件网络子网络第1层是将输入量传递至第2层的输入层。第1层的第0个节点输入值为1,其用于提供模糊规则后件中的常数项。后件网络子网络第2层用于计算各个规则的后件,该层节点数为m,一个节点表示一个规则。ANFIS算法主要使用混合算法对前提和结论参数不断更新。通常将一个初始值赋予给前提参数,结论参数由最小二乘估计算法得到。最终从最后一层反向向第一层由梯度下降算法传递系统的误差,以不断更新前提参数。本文研究的识别系统所建立的模糊神经网络模型使用减法聚类算法对进行归一化处理后的流特征数据样本空间进行非线性规划,选用三角函数型的隶属度函数,模型的参数学习率设定为0.01,误差上限[15]为10-3。
3实验分析
本文通过实验方法对所建立的基于模糊神经网络信息融合的采煤机煤岩识别系统的性能进行测试分析。实验用的采煤机型号是鸡西煤矿机械有限公司生产的MG300/701?WD型采煤机,其采高可达3.2m,截深为0.63m,截割速度为6m/min。对采煤机截割全煤层、煤岩比2∶1、煤岩比1∶2以及全岩层四种情况煤岩时的振动、阻力矩以及电机电流等数据进行监测。通过建立的煤岩识别系统进行识别,识别结果如图6所示,同时与使用基于单一的振动、阻力矩以及电机电流传感器的识别系统的识别结果进行对比。测试结果表明,使用基于单一的振动、阻力矩以及电机电流传感器的识别系统能够对煤岩具有一定的识别能力,但是由于其使用单一传感器的局限性,使得识别结果准确度不够高,而本文研究的基/:请记住我站域名/于模糊神经网络信息融合技术的识别系统能够对煤层和岩层的分界面进行有效识别,识别的准确度和稳定性相比其他方法更高。
模糊神经网络的优点范文5
关键词:红外线轴温监测系统;铁路车辆;等级;热轴判别;模糊神经网络
中图分类号:U270.7;TP183
文献标志码:A
0引言
提高红外轴温监测系统的热轴预报兑现率,减少停车次数,一直是铁路部门关注的焦点问题。而热轴判别是红外监测系统的核心,判别是否准确,直接关系到列车的运行效率和安全。现有的红外热轴判别模型是根据不同厂家生产的设备而确定的[1],如HTK型、HBDS型、THDSA型等,但它们大都针对不同车型、轴承类型设定不同的热轴等级阈值,判别参数繁多,不易修改,加之轴温等级之间的模糊特性,单纯地调整热轴判别门限值,常使热轴等级判别不准,热轴预报兑现率低,热轴误报率高,导致车辆拦停频繁而严重影响了正常的铁路运输秩序[2-3]。
为提高热轴等级判别准确率,目前已有一些新的研究理论和方法[4-6]。文献[4]采用模糊统计法来建立热轴判别模型,通过隶属度函数解决了热轴等级的模糊性问题,但隶属度函数的建立困难,等级的阈值设定具有主观性。文献[5]提出了基于遗传BP网络的热轴波形判别模型,利用网络的记忆功能识别热轴的波形进行等级判别,但其同时存在网络隐含层神经元的个数确定困难以及学习速度缓慢等缺陷。本文将模糊神经网络应用于热轴判别,为解决热轴判别问题提供了一条新的途径。
1热轴判别模型分析
轴温具有随机性和模糊性,它与列车运行速度、车型、载重、线路运行状况以及环境温度都有一定关系。由于影响因素较多,且相互交叉,因此热轴的准确判别具有一定难度。传统的热轴判别方法是凭经验和点温对比总结出来的,主要有7种,如同车同轴比、同轴差方法,同车、同侧、同转向架比方法,同车、同侧最高轴与次高轴比等方法[5]31-32。这些方法尽可能地消除各种因素对轴温温升的影响,如利用同列、同车、同转向架、同轴对比等方法来消除车型、载重、车速、散热能力、车厢结构等各种不利因素对轴温的影响,从而使热轴的原始数据有高可信度。
目前,现有的热轴判别模型大都综合使用以上各种方法,来进行故障热判别。如红外线轴温监测系统(Train Hotbox Detecting System, THDS)设备生产厂家的热轴判别模型,主要针对国产轴承建立,一般当轴温温升达到40℃时,预报微热;达到60℃时,预报强热;达到75℃或轴承绝对温度达到100℃时,预报激热[6]。然而实际的热轴判别效果还是不太理想,分析主要有三个大的问题:一是热轴判别的参数太多,在全国各地不同地方,或同一地方不同季节时热轴判别参数需要修改。二是各个热轴等级的温度带重叠,按照传统的热轴阈值判别模型,不一定能够正确划分热轴。三是近几年出现了很多新车型和轴承类型,再加上老的车型和轴承类型,其正常运转热的范围变很大,通过传统的模型来判别热轴,使得预报过多,热轴预报兑现率下降。
3仿真结果
4结语
热轴等级判别没有固定的公式及模型,根据已有方法中的门限值对其进行判断难免出现一定误差。本文结合神经网络与模糊数学的优点建立热轴判别模型,给出了具体的模型参数指标,通过样本数据和误差反向传播算法对FNN模型进行训练和优化,使得热轴判别一致率达到95%,最后通过与文献[4]中的判别模型进行对比,进一步验证了该模型的有效性和准确性。
因热轴等级之间界限模糊,使用该模型使热轴判别更加科学化,将模糊推理转化为神经网络结构进行训练,使得系统各参数达到最优的值,而各个等级也无需设置门限值,大大减少了判别参数。但热轴判别关系重大,既不能漏报也不能误报,因此还需要用更多、更全面的现场数据对模型进一步完善,从而实现该模型应有的实用性和价值。
参考文献:
[1]赵长波,陈雷. 铁路货车轴温探测与应用概论[M].北京:中国铁道出版社,2010:18-34.
[2]傅英晖. 铁路车辆轴温智能探测系统存在的问题分析及改进建议[J].中国科技信息,2010(14):275-277.
[3]刘战功. 红外线轴温探测系统热轴误报分析及建议[J]. 铁道机车车辆,2006(4):63-64.
[4]陶贤湘. 红外轴温探测系统探测可靠性和热轴预报兑现率的研究[D].长沙: 中南大学,2010.
[5]杨秋兰. 提高红外线轴温探测系统可靠性的研究[D].长沙:中南大学,2011.
[6]王家琦. HTK型热轴判别模型分析与建立[J].哈尔滨铁道科技,2012(2):17-18.
[7]北京康拓红外技术有限公司. 一种列车红外轴温探测系统的热轴判别方法:中国,200710178606[P].20080521.
[8]周润景,张丽娜. 基于Matlab与fuzzyTECH的模糊与神经网络设计[M]. 北京:电子工业出版社,2010:198-200.
[9]周春光,梁艳春. 计算智能:人工神经网络·模糊系统·进化计算[M].长春:吉林大学出版社, 2009:176-180.
[10]徐兵,程旭德,王宏利,等. 基于Matlab的Mamdani与Sugeno型模糊推理研究[J]. 计算机应用,2006,26(S2):223-224.
[11]HORIKAWA S, FURUHASHI T, CHIKAWA Y U. On fuzzy modeling using fuzzy neural networks with the back propagation algorithm [J]. IEEE Transactions on Neural Networks, 1992,3(5):801-806.
[12]张泽旭. 神经网络控制与Matlab仿真[M]. 哈尔滨:哈尔滨工业大学出版社,2011:244-252.
模糊神经网络的优点范文6
关键词: 神经网络;模拟电路;故障智能诊断
Applications of Neural network in analog circuit fault intelligent diagnosis
Huang Qian1 ,Lu Li2
Nanchang institute of technology JiangXi NanChang 330029
Abstract: The article mainly describe development course of neural network simulation circuit and the common method of fault diagnosis of simulation power based on neural network at this stage, the focus analysised BP neural network fault dictionary method and the SOM neural network fault dictionary method and respective of calculation method, and basic thought, and technology difficulties analysis, discussed application problem of neural network method in in analog circuit fault intelligent diagnosis, last talk about development trend of simulation circuit neural network diagnosis method.
Keyword: Neural network;Analog circuits;Intelligent fault diagnosis
引 言
随着神经网络等人工智能技术的发展, 模拟电路故障诊断的研究又开辟了一条新路, 基于神经网络的模拟电路故障诊断方法已经成为新的研究热点。20世纪80年代末期起有学者研究将人工神经网络应用到模拟电路的故障诊断中,现阶段已经提出多种基于神经网络的模拟电路故障诊断方法,有些方法如BP( Error Back Propagation Network)神经网络故障字典法已经能有效应用于滤波电路、模拟放大电路等非线性容差电路的故障诊断, 效果优于传统的故障字典法。
1神经网络故障字典法
神经网络故障字典法把模拟电路的故障诊断看成是一个分类问题, 利用神经网络的分类功能来诊断故障。在测前把神经网络训练成一部故障字典, 字典的信息蕴含在网络的连接权值中, 只要输入电路的测量特征, 就可以从其输出查出故障。
1.1 BP 神经网络故障字典法
BP 是一种多层网络误差反传学习算法。
1)初始化,随机给定各连接权[w],[v]及阀值θi,rt。
(2)由给定的输入输出模式对计算隐层、输出层各单元输出
式中:bj为隐层第j个神经元实际输出;ct为输出层第t个神经元的实际输出;wij为输入层至隐层的连接权;vjt为隐层至输出层的连接权。
式中:dtk为输出层的校正误差;ejk为隐层的校正误差。
(3)计算新的连接权及阀值,计算公式如下:
(4)选取下一个输入模式对返回第2步反复训练直到网络设输出误差达到要求结束训练。
应用BP 神经网络故障字典法进行模拟电路故障诊断步骤如下:
(1)确定待测电路的故障集和状态特征参量, 采用电路仿真或实验的方法获取电路每一故障状态下的状态特征数据, 经筛选和归一化处理后构造训练样本集。设计BP 神经网络并进行训练。
(2)用训练样本集中的样本训练好网络, 即完成学习的过程。一般采用3 层BP 神经网络, 输入层节点数与电路状态特征参量的维数相同, 输出层节点数可与电路待测故障类别数相同,也可小于待测故障类别数, 隐层节点数则需按经验公式试凑。实际诊断时给被测电路加相同的测试激励, 将测得的实际状态特征参量输入到训练好的BP 神经网络, 则其输出即可指示相应的故障状态。
1.2 SOM神经网络故障字典法
SOM (Self - organizing Feature Map)神经网络是芬兰教授Kohonen于1981 年提出的一种自组织特征映射神经网络。这种自组织特征映射神经网络通过对输入模式的反复学习,使连接权矢量空间分布密度与输入模式的概率分布趋于一致, 即连接权矢量的空间分布密度能反映输入模式的统计特性。
SOM二维网络拓扑结构图
SOM 网络能对输入模式自动分类,通过输入模式的自组织学习, 在竞争层将分类结果表示出来。应用SOM 神经网络建立模拟电路故障诊断字典的具体步骤如下:
(1)确定电路的故障集和激励信号。通过仿真获取电路在每一故障状态下的状态特征向量, 并进行预处理得到训练样本数据。
(2) 确定SOM 网络结构。 SOM 网络只有输入层和输出层两层, 没有隐层,输入层的形式与BP 网络相同, 其结点数应与电路状态特征向量的维数相同。输出层即竞争层的神经元一般采用二维平面阵结构排列, 也可采用一维线阵或三维栅格阵的结构排列。采用一维线阵时, 输出层结点数可与电路的故障类别数相同。
(3)经过SOM 训练形成具有容差的故障字典。SOM 网络的学习算法可采用标准的Kohonen 算法。可以看出, SOM 网络法与BP 网络法构建故障字典的方法步骤完全相似,SOM 网络法一般适用于交流电路, 以电路响应的频域参量为状态特征,它能更有效地克服容差因素对故障定位的影响,SOM 网络法实际诊断时容易出现模糊故障集, 诊断过程要比BP网络法复杂。
1.2神经网络故障字典法难点
同经典的故障字典法相比, 神经网络故障字典法突出的优点是测后诊断速度快,实时性强,其原因是该方法利用了神经网络高度并行的信息处理能力。经典的故障字典法需要进行繁琐的模糊集分割处理, 且一般只能诊断硬故障。而神经网络故障字典法由于神经网络的泛化能力,可以诊断容差模拟电路, 而且对软故障情况也有很好的应用前景。应用该方法难点包括以下几个方面:
(1)神经网络的结构和参数等只能依据经验反复调试, 难以确定所设计的神经网络是最优的。
(2)数据预处理技术和训练样本集的筛选至关重要,神经网络故障字典法的诊断效果主要依赖于此。如何根据实际电路对原始数据进行预处理以突出故障特征信息及如何优选训练样本。
2 神经网络优化诊断法
传统的优化诊断法依据被测电路的解析关系, 按照一定的判据(目标函数) , 估计出最有可能出现故障的元件。优化诊断法是一种测后模拟的逼近法, 可在较少的测量数据下诊断故障,避免元件的容差问题, 可以诊断软故障和多故障但传统优化诊断法存在一个复杂的重复过程, 需要多个优化过程和多次电路模拟, 测后计算量很大。
神经网络优化诊断法对传统方法进行改进, 利用Hopfield 神经网络的优化计算功能寻优, 克服了传统的优化诊断方法测后计算量大、实时性差的缺点。由于该方法最终是通过求解元件参数或参数增量来判定故障元件的。
神经网络优化诊断法的基本思想是将模拟电路的故障诊断方程转换为带约束条件的优化问题, 然后利用Hopfield 神经网络进行优化问题的求解。将优化问题映射到一种神经网络的特定组态上, 此组态相应于优化问题的可能解, 然后再构造一个适合于待优化问题的能量函数(对应于目标函数), 当Hopfield 神经网络从某一初始状态沿着能量函数减小的方向运动, 其稳定平衡解即对应于优化问题的解。对于线性电阻电路, 可以以元件参数增量和可测节点电压变化量建立故障诊断方程, 该诊断方程通常为一组欠定方程。
应用Hopfield 神经网络求解此类带约束条件的优化问题的步骤如下:
(1)分析问题: 分析网络输出与问题的解相对应。
(2)构造网络能量函数: 将实际待解决优化问题的目标函数表达成能量函数的相应形式, 能量函数最小值对应问题最佳解。
(3)设计网络结构: 将能量函数与目标函数相比较, 求出能量函数中的权值和偏流。
(4)运行网络求出稳定平衡态: 由网络结构建立网络的电子线路, 运行该电子线路直至稳定, 所得稳态解即为优化问题所希望的解。
3 其它神经网络故障诊断法
ART (Adaptive Resonance Theory)神经网络故障诊断法。ART 神经网络是一种基于自适应共振理论ART的学习算法, 包括ART1 型、ART2 型和ART3 型三种结构形式。文献三中的作者探讨了一种采用ART1 型神经网络进行模拟电路故障诊断的方法,将电路的各种故障分出层次,并按一定特征给故障类型进行编码形成故障数据样本,将故障数据样本输入ART1型神经网络进行训练, 训练完成后该ART 网络即可用于诊断。ART最大的特点是既能识别已有的故障模式, 又能较好地诊断新发故障。基于神经网络的网络撕裂法。网络撕裂法是一种大规模模拟电路分层诊断的方法, 将网络撕裂法与神经网络故障字典法相结合就形成基于神经网络的网络撕裂法。
ART的基本思路是, 当电路网络分解到一定程度后, 电路子网络继续分解往往越来越困难, 这时可以引入神经网络故障字典法, 分别为每一电路子网络构建一个神经网络, 则电路子网络级的诊断采用神经网络故障字典实现。
与传统的网络撕裂法相比, 该方法测后工作量小, 诊断过程更加简单,诊断速度加快。基于神经网络求解非线性方程的模拟电路故障诊断方法。
4 模拟电路神经网络诊断法发展趋势
近年来, 一个值得重视的现象是神经网络与专家系统、模糊控制、遗传算法和小波分析等技术相结合应用于模拟电路的故障诊断领域的研究。如神经网络与模糊逻辑理论相结合, 即所谓的“模糊神经网络”用于模拟电路的故障诊断, 其基本思想是在BP 神经网络的输入层与输出层中间增加1到2 层模糊层构造模糊神经网络,利用神经网络处理低层感知数据, 利用模糊逻辑描述高层的逻辑框架,其对模拟电路软故障的诊断效果优于单一的神经网络分类器。又如小波分析与神经网络结合应用于模拟电路的故障诊断。
小波与神经网络的结合有以下两个途径:
(1) 辅助式结合, 比较典型的是利用小波分析对信号进行预处理, 然后用神经网络学习与判别。
(2)嵌套式结合, 即把小波变换的运算融入到神经网络中去, 其基本思想是用小波元代替了神经元,即激活函数为已定位的小波函数基, 通过仿射变换建立小波变换与神经网络的联接,小波神经网络由于把神经网络的自学习特性和小波的局部特性结合起来,具有自适应分辨性和良好的容错性。
参考文献
[1] 王显强.谈谈神经网络在模拟电路故障诊断中的应用问题[J]
电路技术.2012(06)
[2] 刘华.基于神经网络的模拟电路故障诊断方法研究[J]微电子学报.2010(03)
[3]董伟.谈ART1 型神经网络进行模拟电路故障诊断方式分析. [J]电路科技. 2012(05)
[4]王承. 基于神经网络的模拟电路故障诊断方案探究.[J]电路科技. 2013(06)
[5]张宇. 基于神经网络的模拟电路故障诊断方案探究.[J]计算机测量与控制. 2012(07)
[6]王承. 基于神经网络的模拟电路故障诊断方案探究.[J]电路故障. 2013(02)
[7]刘盛灿. 神经网络的模拟电路故障的应用.[J]电路科技. 2013(06)
[8] 万磊.神经网络在模拟电路故障诊断中的应用若干问题探讨[J]
电路技术.2011(08)
[9] 郭明强.神经网络在模拟电路故障诊断中的发展历程分析[J]电路技术.2013(08)