新媒体代运营协议范例6篇

前言:中文期刊网精心挑选了新媒体代运营协议范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

新媒体代运营协议

新媒体代运营协议范文1

关键词下一代网络软交换存在问题

Abstract:Itdescribesthestateofsoftswitchtechnologyintheworld,servicesprovidedbyNGNbasedonsoftswitch,relatedorganizationsonsoftswitchstudyandproblemsonitsdevelopment.

Keywords:NGNSoftswitchProblem

1国际软交换技术的发展状况

下一代网络(NGN)是一个建立在IP技术基础上的新型公共电信网络,它将话音、数据、视频等多种业务集于一体。建设下一代网络是电信竞争的需要。随着通信技术的飞速发展和电信市场的逐步开放,电信业的一个最重要的发展趋势就是业务运营和网络运营的分离,由网络运营商提供可靠、高效的基础承载平台,由业务提供商提供各种应用,他们与设备制造商三足鼎立,共同推动了电信业的繁荣和进步。

软交换技术是下一代网络的核心技术,软交换思想吸取了IP、ATM、IN和TDM等众家之长,形成分层、全开放的体系架构,作为下一代网络的发展方向,软交换不但实现了网络的融合,更重要的是实现了业务的融合。

目前,欧洲电信运营商对于软交换(下一代网络)的发展和应用大体上采用比较务实和谨慎的态度,运营商都是根据自身网络的实际情况和业务的发展来采取对策。德国电信聚焦海外市场,积极开拓国际IP网的话音业务,并在新技术投入使用之前,注重新技术和新设备的试验和评估。2001年开始在国际网络进行软交换的试验,放置了一台软交换机和4个媒体网关开展IP网络提供语音业务、呼叫中心业务和VPN业务的试验,其软交换的标准采用SIP-T协议。英国电信则逐步地在长途网和本地网实现分组话音,本地网有5个节点开展了软交换实验,部分已经商用,并且试验规模在逐步扩展。在提供话音质量的保证方面,英国电信已在其承载网络内全面采用ATM技术。比利时电信认为2004年以后引入NGN比较适当,但目前需注意跟踪技术和设备的发展,比利时电信的技术部门在NGN方面重点研究未来分组话音网络的体系架构和需求、开展NGN技术培训、建立NGN实验室,为开展现场试验进行技术准备。一些北美电信运营商也正在积极开展有利于软交换提供话音业务的试验,有些运营商已经开始提供商用业务。

2002年3月,中国电信下一代网络(NGN)试验项目在北京、上海、广州、深圳4城市启动。中国电信与北电网络、爱立信、西门子、中兴通讯、上海贝尔5厂家签订了下一代网络试验工程设备合同。合同涉及金额近1亿元人民币。根据中国电信与北电网络签署的合同,在北京、上海、广州和深圳4城市部署北电网络的SUCCESSIoN下一代网络解决方案。NGN网络全国试验网项目涉及的技术面、提供的业务量、网络覆盖的广度、深度均在全球首屈一指。

在设备制造商方面,特别值得一提的是加拿大北电网络,其NGN产品为SUCCESSIoN(继往开来)解决方案,于1999年在BT-SPAIN首次正式商用,迄今为止,在全球超过24个国家的40多个网络中得到试验或商用。其商用客户中包括VErIzoN、SPrINT、中国电信、香港宽频(HKBN)、新世界电信(NEWWorLDTEL)及铁通等。

SUCCESSIoN的应用类型包括了长途及汇接(C4)业务、本地接入(C5)及多媒体业务、无线汇接及3G核心网业务以及有线电视多网合一业务。目前几种解决方案已经在实际网络中运用。其中,VErIzoN的软交换本地汇接网络包含2个软交换节点及70多个媒体网关,每个节点每天处理超过1100万次呼叫。SPrINT作为全美第一个实现TDM端局以软交换替换的运营商,其第一期工程(350万线)全部采用北电的SUCCESSIoN方案。香港宽频应用SUCCESSIoN本地IAD接入方案,在短短的17个月时间内,已拥有16万用户,是全球最大的基于以太网IAD接入的NGN网络,目前运营稳定良好。在最近的市场调研报告中,北电网络列全球软交换市场份额第一,也是全球VoIP和VoATM媒体网关市场份额第一。

2NGN提供的业务

软交换技术的引入除了对现有PSTN话音业务实现全面的继承以外,还在基于SIP的宽带多媒体业务、PSTN与因特网业务结合衍生的业务、用户个性化业务以及业务创新方面有着PSTN和因特网等单一网络无法比拟的优势。传统PSTN由于终端智能和带宽的限制,无法实现多种灵活的业务逻辑和多媒体业务。由于业务逻辑控制和网络智能在PSTN内每个交换机上呈分散式节点式分布,并且由于用户数据由各自归属的交换机管理,导致某些业务(如广域CENTrEx)难以开展。PSTN的终端种类非常单一且没有智能,业务的智能完全由交换机实现,因此一直以来难以实现用户对业务的个性化定制,而且由于终端智能的限制存在使用不便和各种电话补充业务难以推广的问题。引入NGN则在业务实现的简单性和灵活性上有了本质改变。NGN的业务逻辑控制和网络智能在软交换和应用服务器等少量网元上集中部署,因此可以方便地在全网实现业务部署和业务升级,NGN对广域CENTrEx的实现就非常容易。由于NGN引入了对等性控制协议(SIP),使得终端的智能大大提高,目前市场上已经出现了丰富多彩的SIP智能终端。终端智能的提高及媒体承载能力的加强(如支持话音、视频等)使得用户对业务的个性化定制成为可能并且已经商用。如NGN的“呼叫屏蔽”这一特性,用户可以对不同来话进行筛选性的监控,可以在不同时间对不同来话实施不同的应答策略,应答的方式也不仅仅局限于接听、转发、挂断等传统方式,而是包括了话音应答、问候音播放、语音信箱转接、电子邮件转接、网页推送等多种不同的应答方式。这种灵活性在传统PSTN上是无法实现的。

此外,NGN能够实现许多PSTN所无法实现的业务特性,一号通就是一个很好的例子。PSTN通过IN方式也可以实现一号通业务,然而NGN基于SIP协议可以轻松实现IN方式的一号通所无法实现的能力。如NGN的一号通业务可以实现用户根据自己的需要随时设定对来话的振铃终端和振铃顺序,而这些策略可以依据来话者的不同和时间段的不同而变化。比如对自己的家人和同事可以实施两种完全不同的振铃策略,自己上班和下班时的振铃策略也可以完全不同。这就给了用户最大的自由和灵活性,保证可以有一种方式能联系到他,给日常生活和工作带来了极大的方便。这种业务特性是PSTN所无法实现的。类似的例子还有许多,如WEB800、点击传真等。

NGN不但在业务实现的简易性和灵活性上有独到之处,并且能实现许多PSTN无法实现的业务,而且具有业务的惟一性。NGN的业务能力主要包括:

A)全面继承PSTN传统话音业务(包括基本话音业务、电话补充业务、CENTrEx业务、ISDNPRI补充业务、IN类业务等);

B)基于SIP的宽带多媒体业务;

C)PSTN与因特网相结合的业务(即PINT业务,如点击拨号、点击传真、WEB800、ICW等);

D)用户可定制的个性化业务。从事软交换研究的国际组织

NGN是目前运营商和设备厂商都在讨论的热点技术,也是国外许多标准化组织和论坛(包括ITU-T的第11和16工作组,IETF的IPTELEPHoNY工作组、信令传输工作组(SIGTrAN)、媒体网关控制工作组(MEGACo),ETSI的TIPHoN,国际软交换协会(ISC),3GPP,3GPP2,MPLS论坛,ATM论坛,DVB,DSL论坛,PARLAY等)的研究工作重点。我国网络与交换标准研究组和IP研究组于2000年开始制定NGN网络的相关标准。

其中,ISC成立于1999年5月,目前有近150个成员,是运营商和设备供应商交流需求和动态的场合。国际上大多数知名的电信设备制造商,如阿尔卡特、朗讯、北方电讯、CISCo、西门子、富士通、诺基亚、爱立信等,另外有一些电信运营商如美国的LEVEL3、QWEST、AT&T、日本的NTT等均为该协会成员。

软交换论坛包含5个工作组,负责网络架构、协议制定等技术工作。

业务应用工作组负责业务功能制定、协调以及API标准的应用。

网络结构工作组负责软交换网络功能架构的制定。

设备控制工作组负责软交换间以及软交换与其他网络设备间控制协议的制定和补充、增强,如MGCP、MGC和设备的兼容性等。

网络管理工作组负责网络管理的结构和协议制定。

SIP工作组负责SIP协议在软交换网络中的应用和增强。

此外,ITU-T和IETF在相关协议的标准化方面已经取得了重要的进展,如H.248协议、BICC协议、SIP协议和SIGTrAN系列协议等。

4存在的问题

目前虽然不少厂家推出了软交换的解决方案,各运营商也在积极进行相关的试验,但新技术的应用需要相当长的时间来完善。从目前厂家所提供的解决方案来看,目前存在的主要问题如下:

A)国际上尚无大型网络的组网和运营经验。传统电信网经过长期的运营积累,在网络组织方面已经具有相当成熟的经验;而基于软交换的NGN网络组织目前国内外尚无成熟的经验,是采用基于软交换的全平面结构,还是采用分区域选路结构等,在技术和实践方面都有待进一步的探索。

B)协议尚未做到兼容性,标准还在发展之中。不同厂家的软交换在技术标准的选用及协议的兼容性方面还难以做到相互兼容。BICC协议、SIP-T协议和H.248协议也在发展之中,协议的选项需要运营商根据业务的需要来进一步确定。

C)API没有成熟的产品。基于开放的业务平台,采用标准的API接口为网络运营商提供新业务开创了未来美好的前景,但是相应的产品仍在探索和研发之中。

D)业务开发问题。标准、开放的API接口能够快速、灵活地提供丰富的业务,这是软交换体系的一个优势所在,但目前厂家能够提供的业务多集中为基本语音业务及补充业务、IN类业务、PINT业务、多媒体终端之间的同步浏览、统一消息、多媒体会议等,究竟什么业务才是运营商手中的杀手业务,才能真正带来收益,是目前运营商和设备商在共同苦思冥想的问题,目前并未出现使人眼前为之一亮的业务。

E)网络安全和网络Qos问题。目前业界还没有一个非常完善的方法来解决网络安全性的问题,只能通过要求TG、软交换等网络设备应具备一定的反入侵能力以增强系统的安全性,用户账号、密码等用户数据的安全则只能采用加密的方式解决。在网络Qos方面,IETF组织已经提出了多种服务模型和机制来满足Qos的需求,其中比较著名的有综合业务模型(INTSErV)、区分业务模型(DIFFSErV)、MPLS技术、流量工程等,具体这些方案如何组合使用、可行性如何,效果如何,有待研究。

新媒体代运营协议范文2

[关键字] IMS(IP多媒体子系统) IP技术 发展趋势

随着通信技术和信息应用的发展,电信业务需求正在向固定移动融合、语音与互联网应用相结合的综合信息服务转变,传统运营商面临移动运营商与互联网应用提供商的激烈竞争,IMS(IP多媒体子系统)作为下一代网络控制技术的核心正引起业界广泛的关注。

一、通信行业IMS现状:

综上所述,从通信行业整体运行环境分析全业务是未来发展的必然趋势。

二、全球IMS市场发展趋势

目前全球已有超过200个IMS商用和试商用网络,规模商用已逐渐形成。国外主流运营商初期部署IMS主要用于固网改造、VOIP和融合业务提供,建设IMS的最终目标均为固定和移动融合的统一核心网。

三、国内IMS市场形势分析

中国电信:在全国13个省市IMS试点已经完成;2011年4月南方10省市IMS集采开标,重点是固网网改;2011年9月份计划剩余省份的IMS集采。广东电信(彩色e家)和福建电信(固网网改)IMS已经商用。

中国联通:IMS总体策略不明确,北京开试验局,8个省份通过业软以语音网关名义销售布点。但集团暂无IMS集采计划,采取跟随策略。

中国移动:2008年下半年开始IMS试点,2009年16省开通试验局;2010年4月,移动IMS集采开标,31省同时开工建设,份额占比63.4%。16省CORE,19省SBC,一级ENUM全部;当前已有8省份实现规模商用,友商未实现真正商用。

中国广电:7省份部署IMS总部不牵头,每个地市就是一个运营商;三网融合试点,仅需要基本语音和视频业务。

目前,中国电信和中国联通占据了绝大多数企业和家庭固话市场,虽然固定用户装机量持续下滑,但是固定宽带业务是移动宽带业务无法取代的(大带宽、速率稳定等优势);广电系统已经获得三网融合的试点许可,与其他电信运营商相比,广电系统具备家庭覆盖方面的绝对优势(城市有线电视的业务普及率超过90%)。同时,广电系统在内容提供方面也具有很大的优势,广电系统需要3年左右的时间完成由有线电视提供商向电信业务提供商的转型,可以预见到的是未来的三到五年时间,也是中国移动面临转型的关键阶段。总而言之,国内IMS业务部署呈现群雄并起,形势紧迫的态势。

四、什么是IMS业务

IMS : IP多媒体子系统(IP Multimedia Subsystem ),是在3GPP R5阶段提出的一个新的域,它基于IP承载,叠加在PS(分组域)之上,为用户提供文本、语音、视频、图片等不同的IP多媒体信息。其中,IP =基于IP传输+基于IP会话控制+基于IP业务实现,Multimedia =语音、视频、图片、文本等多种媒体的组合+在多种接入基础之上具有不同能力的终端组合,Subsystem =依赖于现有网络技术和网络设备发展的系统+最大程度重用现有网络系统+无线网络把PS/GPRS网络作为承载网络+固定网络把基于固定接入IP系统作为承载网络。简言之:IMS在IP网络的基础上构建一个分层、开放、融合的核心网控制架构,是一个可运营、可管理、可计费的系统。技术特点如下:

1、采用端到端的全IP网络架构

终端与设备标识IP化:终端采用SIP URI进行标识,同时每一个终端在网络中注册时均对应一个IP地址;设备采用URI格式(CSCF.省略)进行标识,URI在网络中对应一个设备的IP地址;寻址机制IP化:采用基于DNS的IP寻址路由机制:设备之间的路由基于终端和设备的URI,通过DNS将URI翻译为IP地址,实现消息的路由;接口协议IP化:所有接口采用基于IP的信令和媒体控制协议,SIP:会话的路由和接续,Diameter:认证与鉴权、Qos交互和计费,H.248:媒体网关资源控制,RTP:媒体面协议,传输各类媒体流;网络承载IP化:IMS所有核心网元与设备均承载在IP网络上 ,用户通过IP的方式接入IMS网络,并使用业务。

2、支持多种接入方式与固定移动融合

IP化+SIP+协议转换,实现IMS支持固定和移动多种接入方式:IMS端到端IP网络架构,能够支持任何基于IP的接入方式;SIP已成为IP终端(IAD/AG/IP PBX/SIP GW/SIP电话)普遍支持的协议;不支持SIP协议的终端(POTS/TDM PBX)可通过协议转换设备接入IMS网络 。

3、业务与控制分离,支持灵活的业务提供和快速部署

IMS打破竖井式业务部署模式,实现业务与控制完全分离;IMS在业务与控制分离的基础上,实现业务逻辑的解耦和灵活组合。

4、归属地服务

区别于软交换拜访地控制,IMS呼叫控制和业务处理都由归属网络完成,主要原因是:多媒体时代不同于GSM窄带通信,业务特性和个性化需求丰富,很难保证拜访地和归属地业务实现完全一致;易于实现特色业务扩展,促进归属运营商积极提供吸引客户的特色服务。

五、IMS架构将为我们带来什么

1、基本发展趋势:

2、IMS业务发展优势:

a、将路由和业务分离:

IMS继承了软交换分离控制和承载的优势,可以分布式组网,并可独立演进;

IMS进一步将业务和路由(控制层)进行了分离;满足了运营商不断增加和不断更新的业务需要。

b、接入无关性:

IMS基于全网IP实现了接入的无关性;

IMS核心网采用完全基于IP的SIP信令;

IMS接入网采用IP技术,实现了底层接入的无关性。

c、融合性、开放性

向下黏合各种异构网络、向上业务平全对外开放。

5.无漫游限制,所有业务都在归属网,漫游到哪里不会损失业务

首次实现了用户体验的移动性

1)用户通过不同终端和接入网络享受一致的业务体验;

2)用户在任何地方甚至出差到国外也享受在签约地一致的业务体验。

为什么原来移动网无法实现

1)2G网络都是在漫游地触发业务;

2)用户体验受限于漫游地网络能力;

3)IMS采用了IP承载和SIP信令,漫游地只需提供接入,无需业务触发。

总之,IMS给运营商带来了在互联网时代的“控制”平台,通过移动固定融合和Internet接入方式的引入,给IMS网络带来了前所未有的挑战。

六、总结

未来,IMS开放式的架构将成为运营商开展业务的根基。运营商可以将IMS业务能力与IP互联网应用相结合,如将IMS的语音和即时消息等通信能力与SNS网站及网络游戏结合,将IMS与IPTV相结合,利用IMS的开放性提供与互联网相结合的更加丰富灵活的业务。同时,运营商也可以将IMS的业务能力给多个业务系统调用,如将IMS网络的通信录的业务能力给移动手机终端、PC软终端共用,为用户提供统一的业务体验。

参考文献:

[1]赵光磊《IMS业务国内迈入新阶段 创新意识待强化》通信世界周刊 2011.6.

[2]高娟《IMS架构创造美好未来》通信世界周刊,2011.7.

[3]尼凌飞《IMS网络技术介绍》中国通信网,2011.10.

[4]移动集团公司《全业务基础知识介绍》移动内刊杂志,2011.10.

新媒体代运营协议范文3

关键词:软交换技术;SIP;电力通信

中图分类号:F470.6 文献标识码:A

引言

随着IP 网络和技术的快速发展,用户对业务的需求已不再局限于基本的语音及低速的数据业务,用户希望可以通过各种终端,在任何时间,任何地点, 都能够采用高速的接入方式, 享受个性化、多媒体综合性业务。过去设计的语音网络越来越不能适应多元通信的需求。

不仅公网如此, 各专网调度通信也面临同样的问题。目前专网调度通信实现以语音为主的调度指挥功能。 随着现代多媒体通信技术的高速发展,专网调度通信正向宽带数字化、网络化、多媒体化的方向发展。 基于 IP 网络构建语音、视频和数据于一体的多媒体调度代表了现代通信技术发展的潮流。 专网调度通信也正逐渐由基于电路交换的语音调度演变成以软交换为核心的新一代调度。

1软交换技术

软交换基于IP 网,采用分组交换技术 ,将用户传送的数据划分成一定的长度,每个部分叫做1 个分组, 每个分组信息都加载了接收地址和发送地址的标识,交换机根据每个分组的地址标志,在1 条线路上采用动态复用技术, 同时传送多个数据分组,将他们分别转发至目的地。在目的地经重新整理后, 还原成原始数据。 分组交换的特点是:通道共用,动态分配,统计复用,无连接操作寻址;通道利用率高;按照尽力而为策略提供业务;易于实现语音、 数据、 图像及多媒体通信。

1.1 软交换交换方式

软交换技术打破了传统的封闭交换结构,采用完全不同的横向组合模式, 将体系结构分为媒体接入层、传输层、控制层和业务应用层。与传统电路交换的体系结构相比, 软交换网络用分组交换代替电路交换; 将呼叫控制与业务提供从媒体层中分离出来, 实现业务与控制及传送与接入相分离;同时,通过开放业务、控制、接入和交换间的协议,构成一个开放、分布和多厂家应用的系统结构,可扩展性强。

接入层支持多媒体业务和用户的接入, 传统的电路交换网通过媒体网关应用于边缘接入层,依然可以正常运行;传输层采用分组交换技术的IP 网, 完成业务数据和控制层与媒体接入层间控制信息的集中承载传输;控制层主要由软交换设备组成,是软交换系统的控制核心,完成呼叫和业务的控制等功能,向业务层提供开放的业务接口,将呼叫控制和业务相分离;业务应用层主要指面向用户提供各种业务和服务的设备, 同时具有相应的业务生成和维护环境。 其网络体系结构既能在PSTN 中传送数据业务, 又能在分组网中以一定的质量传送语音, 克服了异构网络环境下进行业务交换的难题;将承载、呼叫控制和业务生成相分离,解决了上层服务交替时难以平滑过渡的问题; 在各层与各单元之间采用标准协议和开放接口进行通信。

1.2 软交换协议

国际上IP 网络通信的主要标准有 H.323 和SIP (Session Initiation Protocol, 初始会话协议 ),H.323 和 SIP 都是实现 VoIP 和多媒体应用的软交换通信协议,两者都对 IP 电话系统信令提出了完整的解决方案,然而两者在系统结构、应用领域以及发展方向上各不相同。 H.323 采用的是传统电话信令模式,包括一系列协议;而 SIP 借鉴互联网协议, 采用基于文本的协议。 当采用 H.323 协议时, 各个不同厂商的多媒体产品和应用可以进行互相操作,用户不必考虑兼容性问题;而 SIP 协议应用较为灵活,可扩展性强。 两者各有侧重。

1.2.1 H.323 协议

H.323 协议是由国际电信联盟电信标准化部门提出、基于电信网信令和协议制定的 IP 多媒体标准,而不是为 IP 电话专门提出的。 但是 IP 电话,特别是电话经由网关到电话的这种工作方式,可以建议采用H.323 来实现, 因而 H.323 协议也常被“借用”作为 IP 电话的标准。 H.323 协议是一个较为完备的协议, 提供了一种集中处理和管理的工作模式,适用于从终端到终端的 IP 电话网或视频会议网的构建。

1.2.2 SIP 协议

SIP 是由互联网工程任务组提出的协议,利用已有的IP 网络协议提供多媒体业务 , 是一个与H.323 并列的协议,与 H.323 体系相比,其作用类似于H.225.0。SIP 具有简单、扩展性好以及和现有的Internet 应用联系紧密的特点。 SIP 的出发点是想以现有Internet 为基础来构建 IP 电话业务网 。因此,SIP的设计思想与H.323 完全不同 , 与以H.323 协议为基础的 IP 电话相比 ,SIP 需要相对智能的终端,对于用户终端是非智能终端的场合,

也可以使用SIP 作为呼叫信令。

1.2.3 两种协议的比较

1.2.3.1 系统结构差异

首先,从系统结构上分析,在 H.323 系统中,终端主要为媒体通信提供数据,功能比较简单,而对呼叫的控制、媒体传输控制等功能的实现则主要由网守来完成。 H.323 系统体现了一种集中式、层次式的控制模式。

而SIP 采用 Client/Server 结构的消息机制,对呼叫的控制是将控制信息封装到消息的头域中,通过消息的传递来实现。 因此 SIP 系统的终端比较智能化,不仅提供数据,还提供呼叫控制信息,其他各种服务器则用来进行定位、 转发或接收消息。这样,SIP 将网络设备的复杂性推向了网络终端设备,因此更适于构建智能型的用户终端。 SIP系统体现的是一种分布式的控制模式。

1.2.3.2 应用领域

H.323 和 SIP 都是实现 VoIP 和多媒体应用的通信协议。 H.323 协议的开发目的是在分组交换网络上为用户提供取代普通电话的VoIP 业务和视频通信系统。 SIP 的开发目的是用来提供跨越因特网的高级电话业务。 这两种协议的定位有一定的重合,并且随着协议向纵深发展,这种重合竞争的关系日益加剧。 但两者所要达到的目的是一致的,就是构建IP 多媒体通信网 ,由于使用方法不同,因此不可能互相兼容,两者之间只存在互通的问题。

H.323 是属于国际电联的标准 , 以 H.323 为标准构建的多媒体通信网很容易与传统PSTN 电话网兼容, 因此, H.323 更适合于构建电信级大网。 国际上几乎所有的商业性 IP 电话网或视频会议网都以H.323 为基础。 而且,不同版本的 H.323协议通过不断升级和扩展,已经日趋完善,为基于H.323 的 IP 多媒体业务提供了很好的保障。

SIP 协议相对简单,但功能也相对简单。目前,有许多运营商正在利用SIP 构建试验网, 但若利用SIP 构建电信级大网 , 必须对其进行补充 、完善,这样,SIP也变得复杂起来。事实上SIP 的发展趋势正是如此,SIP 的普遍使用也能够推动下一代网络的演进。

1.2.3.3 发展方向

目前,包括中国在内的许多国家都采用了H.323 作为 IP 电话网关之间的协议。 整个 IP 电话系统只是把IP 网络作为传输媒介,在用户的接入上还是采用电路交换系统,而把 IP 电话网关作为电路交换网和IP 网络的接口。 大多数电信运营商也已经将H.323 作为建立新一代视频会议系统的首选, 将传统的基于电路的 H.320 视频会议应用转移到基于IP 的 H.323 系统中。 从应用的规模上说,在现实的电信运营中,H.323 已经成为 VoIP和多媒体通信事实上的主导协议。

但在下一代网络中, 由于 IP 产品和 IP 网关将在网络中得到大规模使用和集成,使得端到端都可以采用IP,以实现纯 IP 的业务应用。 而基于纯IP 的 SIP 借 鉴 了 HTTP (HyperText TransferProtocol,超文本传输协议 ) 和 SMTP (Simple MailTransfer Protocol,简单邮件传输协议 ),结构简单并具有可扩充性和可扩展性。 此外,SIP 还提供良好的QoS(Quality of Service,服务质量)支持。 对于NGN 在 IP 网络上实现 VoIP 和多媒体通信来讲,SIP 在全面满足 NGN 特性要求的应用上具有独特的优势,必将成为下一代网络VoIP 的重要解决方案。因此, 市场上越来越多的企业选择基于SIP 的呼叫中心、 视频会议等多种企业级应用解决方案。

2企业级 NGN 系统架构

企业级NGN 解决方案是面向行业、企业用户开发的通信平台,可将企业内部的通信业务进行整合,以实现企业内部各种业务之间的相互融合,满足行业和企业的通信需求,帮助提高企业工作效率。 SIP协议呼叫流程简单灵活、系统可拓展性好。 盐城供电公司企业级NGN 体系典型架构主要由终端接入层、 网络承载层、核心交换层和业务管理层组成。如下图所示:

1)终端接入层。 包括 IAD(Integrated AccessDevice,综合接入设备)和 AD1132综合接入网关、TG2000外置中继网关、SIPU内置中继网关、IP 话机、视频话机、软终端以及话务台软件等。 用户接入层实现用户终端的接入,IAD 和 AD1132接入普通模拟电话;TG2000外置中继网关和SIPU内置中继网关接入企业现有的电路交换系统和PSTN网;IP 话机直接接入 IP 网中,为用户提供更方便、便捷的语音业务;视频话机可提供点对点视频功能; 软件客户端可与话机配合使用,同时提供即时通信、文件传输等业务。

2)网络承载层。 统一的通信解决方案基于通信数据网 IP网络构建,不仅可为企业节省长途话费,更可以大幅提高企业运营和管理效益;同时还可提供多种协议接口和PSTN 网络互联。

3)核心交换层。 SW9000 是企业 NGN 解决方案的核心设备,提供呼叫建立和控制功能。 作为小型的NGN 系统 ,SW9000 整合了 NGN 各部件的功能,专门用于向企业网、行业网提供高效、高质话音服务。

4)业务管理层。 包括网管、CTI(Computer Tele-communication Integration,计算机电信集成)服务器、统一消息服务器等组件。网管提供系统的配置管理和故障管理等功能;CTI 服务器通过与 SW9000的配合,实现来电转接、来电排队、强拆、强插等一系列话务台功能;统一消息服务器提供语音邮箱和传真邮箱功能;计费服务器对 SW9000主机产生的话单进行提取、查询和备份;即时消息服务器提供即时消息的发送、接收、存储等相关功能和好友状态功能;地址簿服务器保存和维护企业通信目录信息。

3结语

软交换将使现有电力交换网与专用IP 网不断融合,实现电路交换与分组交换两种技术的优势互补, 产生可以传递语音和数据等综合业务的下一代由业务驱动的网络。通过语音与数据的融合, 实现业务增值。 例如,在 IP 网络上提供数据业务的同时,能够提供语音业务以及其他更多更新的业务, 这些业务包括PSTN/ISDN 以及传统智能网中提供的各种基本业务、补充业务和智能业务,以及具有 IP 特色的各种已各和未知的增值业务。 同时可大大提高电力通信专网的组网灵活性、方便性;降低后期的设备投资成本;简化设备维护量及降低设备维护成本; 从而由原来的单一电路语音技术向电路与网络相结合,实现语音、数据、视频等多媒体业务的融合。

参考文献:

[1] 糜正琨. 软交换组网与业务[M]. 北京: 人民邮电出版社, 2005.

新媒体代运营协议范文4

【关键词】 软交换 SSC.SG.MG.IP终端

一、软交换系统一般情况下由以下设备组成

1.软交换控制设备(ssc:sOftSwitch Controllcr):下一代网络控制平面的核心控制设备(也就是狭义上的软交换)。它完成呼叫处理控制功能、接入协议适配功能、业务接口提供功能、互联互通功能、应用支持系统功能等。

2.应用服务器(AS:Application Server):完成新业务生成和业务提供功能,传统的SCP也属于应用服务器范畴。

3.信令网关(SG:Signaling Gateway):主要指七号信令网关设备。传统的七号信令系统是基于电路交换的,所有应用部分都由MTP承载,在软交换体系中则需要由1P来承载。

4.媒体网关(MG:Media Gateway):完成媒体流在不同承载网络上的转换。按照其所在位置和所处理媒体流的不同可分为中继网关(TGW:Trunking Gateway)、驻地网关(RGW:Residential Gateway)、集成接入设备(IAD:Integrated Access De-vice)等。

5.媒体服务器(MS:MediaServer):完成多媒体会议、提示音、交互式语音提示等媒体服务能力。

6.IP终端(IP Terminal):主要包括H.323终端和SIP终端,如IP PBX.IP Ph。ne等。

7.其他支撑设备:如AAA服务器、策略服务器(Policy Server)、网管服务器等,它们为软交换系统的运行提供必要的支持。

在软交换系统中,软交换系统的组网与PSTN组网结构基本一致,也包括用户驻地网、接入网和核心网。核心网采用端局和汇接局两层模式。虽然结构类似,但是软交换引入了呼叫控制与承载相分离,从而造就了信令网关和媒体网关类设备。新的设备需要有新的信令协议完成控制能力的协调。

软交换系统通过信令网关与七号信令网互通,为此信令网关需要提供与七号信令网MTP1/2/3相对等的基于IP的承载层,这就是信令传送协议(SIGTRAN:SignallingTransport),其中包括流传控制送协议(SCTP:Stream Control Transmission Protocol),七号信令对等层用户适配协议(M2PA:SS7 MTP2 User Peer-to-Peer Adaptation Layer;M2UA:SS7 MTP2 User Adaptation Layer;M3UA:SS7 MTP3,User Adaptation I.ayer;SUA:Signalling Connection Control Part User Adaptation Layer,IUA:lSDN Q.921 User Adaptation Layer;V5UA:V5.2-User Adaptation Layer等)。基于SIGTRAN之上,可以承载应用层的信令,如与PSTN互通的ISUP,完成软交换之间互通的BICC。需要注意的是,信令网关只完成了信令传送能力,并不解释信令。

软交换与驻地媒体网关/集成接人设备之间,一般使用MGCP/MEGACO(H.248)协议互通,由软交换控制驻地媒体网关/集成接入设备的设备控制动作。在特定的应用场景下,如小企业用户,也可以使用SIP协议或H.323协义接入网关。不过在使用SIP协议和H323协议之后,这种接入网关的地位可以被归纳为一种智能终端。软交换设备与智能终端、IP PBX等设备之间使用SIP或H323协议。软交换设备与中继媒体网关之间一般采用MEGACO(H.248)协议作为设备控制协议a与媒体服务器之间一般采用MEGACO(H248)协议作为设备控制协议,也有一些软交换设备选择使用SIP协议作为媒体服务器控制协议。

软交换设备与AAA服务器之间一般采用Radius协议或一些私有协议,而与管理系统之间一般采用SNMP简单网络管理协议。

软交换设备与应用服务系统之间的协议比较复杂,对于以SCP为基础的智能业务平台,接口一般采用INAP/IP协议。对于Parlay网关或ParlayX网关,则这个接口协议采用基于分布式计算技术基础上的ParlayAPI(承载在CORBA中间件上)或ParlayX(承载在WebService中间件上)。因此,Parlay接U和ParlayX接口,虽然表现形式与传统的信令协议不同,但是其最终目的是相同的,都是完成应用控制层面的对等层状态协调。对于新型的SIP应用服务器,则业务接口协议采用的是SIP协议。

新媒体代运营协议范文5

关键词:NGN、网络、互通、框架模型

引言:通过NGN和传统网络互通,使NGN网络的逐步实现成为可能,并且使用户即能够获得丰富的NGN业务,同时又能够获得传统网络提供的业务。为了确保提供端到端业务的能力,NGN网络必须与现有的各种电信网络共存,并且必须依赖于这些网络。

此外,NGN作为电信运营商电信级业务网络中的一种,尽管IP网络是一种平面模型的网络架构,但是,对于NGN网络,很难采用一种单一的或者纯平面模型的网络架构来构造该网络。在不同的运营商之间,要求将NGN网络划分为不同的控制域和管理域,而且,每一个运营商的网络也需要划分为不同等级的运营域与管理域。因此,在不同类型的网络,不同的运营商以及不同的控制域和管理域之间,构造NGN和各种网络之间的互通模型将是十分重要的。

一、NGN网络在长航专用通信系统中的典型应用

NGN网络在长航专用通信系统中首次应用,就成功用于原有本地网的改造,在保障内部专用通信的同时,实现NGN网络与信令网(No.7网络)、互联网之间的互通。原有网络在NGN网络过渡的过程中,前期投资得到最大保护,这些投资包括为长航系统各用户敷设的双绞线缆,以及局端的接口资源等,虽然NGN是一种新技术,但这种技术在提供面向用户的接入方式上没有革新,所以无论是电信运营商还是长航系统自由内部通信系统,在规划网络向下一代网络过渡时,都要考虑到网络的平滑演进。

二、NGN和PSTN之间的互通模型

NGN和现有各种网络之间的互通包括NGN和PSTN、IP电话网(H.323VoIP网络)、IN、信令网(No.7网络)、PLMN、互联网等网络之间的互通。鉴于文章篇幅所限,本文重点探讨NGN和PSTN、H.323VoIP网络和IN网络之间的互通模型。

NGN和PSTN之间的互通模型如图1所示。

图1 NGN和PSTN之间的互通模型

由图1可知,在NGN和PSTN之间的互通功能模型中,存在信令网关(SG)和媒体网关(MG)两种逻辑实体。SG负责PSTN(例如R2,ISUP和PRI等)和NGN(例如SIGTRAN,H.323,H.248和MGCP等)之间的信令传送和会话功能。MG负责媒体传输和会话功能。在这里,软交换、SG和MG仅仅是一个逻辑实体,它们可以集成到一些物理硬件中。下面,我们分别从传输层、交换/选路层、应用层和网络资源4个层面的互通来描述NGN和PSTN之间的互通。

(1)传输层互通

由于在NGN终端和PSTN终端之间没有端到端的链路,因此,在NGN和PSTN的传输层之间不需要互通功能。在这种情况下,在对等的实体之间,不需要比特流的点对点传送,所有的流量将终结于网关,互通功能将通过各种类型的网关(例如MG和SG)实现。

(2)交换/选路层互通

交换/选路层在NGN和PSTN互通功能中是最复杂的一层,是其他层的基础,主要包括下列互通功能:1、不同信令协议之间的转换功能;2、消息和消息参数的翻译、屏蔽和过滤;3、消息和参数的映射;4、使用消息的采集;

在两种方式下,不同代码类型之间的转换(例如PCM、G.723.1或G.729之间的转换);根据不同的请求,终结不同类型的物理/逻辑链路(例如,在PSTN中,所有的链路是TDM64Kbit/s或2Mbit/s链路,而在NGN中,所有链路是基于分组技术的)。

(3)应用层互通    在PSTN中,由于应用层构造在智能网平台上,因此,应用层互通功能参考智能网部分。

(4)网络资源互通

    网络资源互通功能包括号码资源分配、QoS协商和AAA功能。

①号码资源分配:在NGN中,不是所有的主叫/被叫用户都由通用资源识别码(URI)来标识,有一些用户使用E.164编码模式,例如通过接入网关(AG)或者综合接入设备(IAD)接入的普通电话用户(POTS),软电话用户和H.323VoIP用户。为了有效地实现NGN与PSTN网络的互通,对于NGN而言,拥有号码资源的分配能力是非常必要的,这种能力可以依赖于一个与传统的操作系统互连的实际操作平台。    

②QoS协商:在NGN和PSTN之间不需要QoS协商。  

③AAA功能:对于认证、授权和计费功能,无论是由PSTN发起呼叫,还是由NGN发起呼叫,不需要双方认证和计费。

三、 NGN和H.323VoIP网络之间的互通模型NGN和H.323VoIP我们将从传输层、交换/选路层和网络资源3个层面的互通来描述NGN和H.323VoIP网络之间的互通。

(1)传输层互通 NGN H.323VoIP网络都基于分组网络,媒体链路端到端的信道由呼叫信令创建和控制,并且同基于分组网络(ATM,MPLS或IP等)的相关承载协议实现网间互连。在这里,对于对等实体之间比特流的点对点传送,所有的流量将通过分组网络传送,因此,这种传送主要与交换/选路层有关。

(2)交换/选路层互通

对于控制信令互通模型有关守(GK)选路模型和直接连接模型两种模型。

    ①GK选路模型

在GK选路模型中,NGN不会觉察到H.323网关(GW)的存在,所有的信令将通过互通GK传送,例如H.225.0,Q.931,H.245和RAS等协议。

    ②直接连接模型

    在直接连接模型中,软交换通过H.225.0(RAS)协议同GK进行初始化呼叫,然后,通过Q.931协议同GW进行呼叫建立处理过程;在创建H.245控制信道之后,软交换将直接同GW协商媒体能力和媒体流量信道。   

    (3)资源互通

资源互通主要讨论IP地址资源互通。NGN和H.323网络都基于分组技术,公共IPv4地址的数量不能满足所有的终端使用公共IPv4地址,因此,必须存在大量的基于私有IPv4地址的网络,并且需要NAT功能部件实现网络互通。

   IP地址资源互通主要由软交换和防火墙(FW)两个功能部件来实现。对于FW,内建应用层网关(ALG)功能,H.323、SIP和BICC等协议根据不同的业务量比特分析应用层协议,修改或者执行ACL功能。对于软交换,有ALG功能,在FW设备和软交换之间执行标准的控制协议(例如MIDCOM协议)。

     四、NGN和传统IN网络之间的互通模型

    NGN和传统的IN网络之间的互通功能需要解决以下两个方面的问题,一个是对于新的NGN用户,如何继承所有的传统IN业务,另一个是对于传统的用户如何提供新的NGN业务。因此,这意味着互通主要是在应用层和资源方面的互通。

NGN和IN网络的业务控制点(SCP)之间的信令互通可以采用以下两种解决方案,一个是SCP通过SG接入NGN,另一个是SCP直接接入NGN。对于前一种解决方案,需要采用传统的INAPoSS7协议,SG将MTP2或者MTP3协议转换为M2UA或者M3UA协议等,INAP协议将透明传输;对于后一种解决方案,需要采用INAPoIP协议,或者由软交换提供INAPoSS7oTDM接口,在这种情况,SCP可以和NGN进行无缝的结合。 对于NGN与IN网络的智能外设(IP)之间的互通,NGN中的实体(例如MG,软交换等)可以通过一些标准的协议(例如INAP/TCAP和H.248/MGCP等)接入到IN网络中的IP设备。

     五、结束语

    关于NGN和各种网络之间的互连互通一直是业界广泛关注的热点问题,这个话题目前谈论比较多的是NGN和各种网络的网络设备之间如何互连互通,而本文主要从网络分层的角度探讨了NGN和各种网络之间互连互通的实现方法,即NGN和各种网络之间的互连互通如何在传输层、交换/选路层、应用层和网络资源4个层面上实现互连互通。

参考文献:

[1].蔡康 等,下一代网络(NGN)业务及运营.人民邮电出版社,2004.

新媒体代运营协议范文6

关键词: 移动通信、Internet、无线数据、IMT-2000、智能网、网络融合

中图分类号: S972.7+6文献标识码: A

1前言

移动通信业务之所以发展迅猛主要是其满足了人们在任何时间。任何地点与任何个人进行通信的愿望。移动通信是实现未来理想的个人通信服务的必由之路。在信息支撑技术、市场竞争和需求的共同作用下,移动通信技术的发展更是突飞猛进,呈现出以下几大趋势:网络业务数据化、分组化,网络技术宽带化,网络技术智能化,更高的频段,更有效利用频率,各种网络趋于融合。了解、掌握这些趋势对移动通信运营商和设备制造商均具有重要的现实意义。

2网络业务数据化、分组化

2.1无线数据——生机无限当前移动数据通信发展迅速,被认为是移动通信发展的一个主要方向。近年来出现的移动数据通信主要有两种,一种是电路交换型的移动数据业务,如TACS、AMPS和GSM中的承载数据业务以及GSM系统的HSCSD;另外一种是分组交换型的移动数据业务,如摩托罗拉的DataTAC、爱立信的Mobitex和GSM系统的GPRS。

目前 ,无线数据业务只占GSM网络全部业务量中的很小一部分,但是在未来的两年中这种状况将开始扭转,并大大改变。1999年以后,随着HSCSD、GPRS等新的高速数据解决方案显露峥嵘,并成为数据应用的新焦点,无线数据将成为运营商经营计划中越来越重要的部分,它预示着未来大量的商业机遇。

(1)应用驱动市场

无线数据业务的主要驱动力在于用户的应用。话音是单一的、易于被大众所接受的业务,然而无线数据则不同,无线数据最初的应用重点放在运输管理这样的专业市场。近期无线数据业务的目标市场是销售人员或现场工程师这样的用户群。从这些先发目标的应用中积累无线数据的经验,并从中受益。

在过去的十年里,传统的生活方式已经在迅速改变,人们更经常性地移动,职业和个人生活之间的分界变得模糊,人们需要不分时间、地点访问很重要的信息。发生在用户身上的这种生活方式的改变将成为驱动无线数据业务发展的重要因素。

(2)因特网的影响和通信的其他领域一样,无线数据业务的一个最重要的驱动力来自Internet。根据最近的研究 ,未来两年欧洲的因特网用户数量将翻一番。在我国,因特网用户的年增长率将高达300%,显然用户在运动中接入因特网的需求将会增长。

为了满足接入因特网的需求,一个全球性的开放协议——无线应用协议(WAP)应运而生。WAP为将Internet的信息 内容 以及增值业务传送到移动终端提供了一种开放的通用标准,实现了IP与GSM网络的桥接,是一个为厂商提供加速市场增长、避免网络割接、保护运营商投资的标准,WAP确保任何与WAP兼容的GSM手机都能工作。

(3)数据速率的发展

GSM承载业务所提供的GSM数据速率最高只能达到9.6kbit/s。国际上1998年引入的高速电路交换数据(HSCSD)技术将实现57kbit/s的数据速率,对要求连续比特率和传输时延小的应用是理想的,如会议电视、 电子 邮件、远程接入 企业 的局域网和无线图像。1999年商用化的GPRS是第一个GSM分组数据应用,将实现超过100kbit/s的数据速率。对较短的“突发”类型业务是理想的,如信用卡认证、远程测量和远程事务处理。EDGE(增强数据速率GSM改进模式)使用修改过的GSM调制方式来实现超过300kbit/s的数据速率。EDGE会让 GSM运营商特别受益,他们不但可以赢得第三代移动通信的经营执照,还可以提供有竞争力的宽带数据业务。

2.2个人多媒体通信——网络演进的方向

对随时随地话音通信的追求使早期移动通信走向成功。移动通信的商业价值和用户市场得到了证明,全球移动市场以超凡的速度增长。移动通信演进的下一阶段是向无线数据乃至个人移动多媒体转移,这一进展已经开始,并将成为未来重要的增长点。个人移动多媒体将根据地点为人们提供无法想像的、完善的个人业务和无线信息,将对人们工作和生活的各个方面产生影响。在个人多媒体世界里,话音邮件和电子邮件被传送到移动多媒体信箱中;短信将成为带有照片和视频内容的电子明信片;话音呼叫将与实时图像相结合,产生大量的可视移动电话,还将实现移动因特网和万维网浏览。像无线会议电视这样的应用将随处可见,电子商务将蓬勃开展。对于运动中的用户还有随时随地的各种信箱和娱乐服务。

3 网络 技术的宽带化

在电信业 历史 上,移动通信可能是技术和市场 发展 最快的领域。业务、技术、市场三者之间是一种互动的关系,伴随着用户对数据、多媒体业务需求的增加,网络业务向数据化、分组化发展,移动网络必然走向宽带化。

通过使用电话交换技术和蜂窝无线电技术,70年代末诞生了第一代模拟移动电话。AMPS(北美蜂窝系统)、NMT(北欧移动电话)和TACS(全向通信系统)是三种主要的窄带模拟标准。第一代无线网络技术的一大成就就是去掉了将电话连接到网络的用户线。用户第一次能够在他们所在的任何地方无线接收和拨打电话。

第二代系统引入了数字无线电技术,它提供更高的网络容量,改善了话音质量和保密性,并为用户引入了无缝的国际漫游。今天世界市场的第二代数字无线标准,包括GSM、MMPS、PDC(日本数字蜂窝系统)和IS95 CDMA等,均仍为窄带系统。

第三代移动系统,即IMT-2000,是一种真正的宽带多媒体系统,它能够提供高质量宽带综合业务并实现全球无缝覆盖。2000年以后,窄带移动电话业务需求将依然很大,但随着Internet等高速数据通信及多媒体通信需求的驱动,宽带多媒体综合业务将逐步增长,而且就未来信息高速公路建设的无缝覆盖而言,宽带移动通信作为整个移动市场份额的子集将显得愈来愈重要。第三代系统预计在2002年投入商用。

从第二代到第三代系统的变化并不像从第一代模拟网络到第二代数字网络那样存在重大的技术变迁。从 目前 的技术发展现状和趋势来讲,第二代系统将逐步子滑过渡到第三代系统,在此演进过程中,移动网络所能实现的数据速率逐步升级: GSM承载业务所能提供的数据速率为9.6kbit/s,1998年商用的HSCSD技术实现了57kbit/s的数据速率,1999年引入的GPRS将实现超过100kbit/s的数据速率,将在2000年引入的 EDGE技术可实现超过300kbit/s的数据速率。2001年后投入商用的第三代系统将能够在广域网上实现384kbit/s的数据速率,在办公室和家中还可以达到2Mbit/s。

4网络技术的智能化

移动通信需求的不断增长以及新技术在移动通信中的广泛应用 ,促使移动网络得到了迅速发展。移动网络由单纯地传递和交换信息,逐步向存储和处理信息的智能化发展,移动智能网由此而生。移动智能网是在移动网络中引人智能网功能实体,以完成对移动呼叫的智能控制的一种网络,是一种开放性的智能平台,它使电信业务经营者能够方便、快速、 经济 、有效地提供客户所需的各类电信新业务,使客户对网络有更强的控制功能,能够方便灵活地获取所需的信息。移动智能网通过把交换与业务分离,建立集中的业务控制点和数据库,进而进一步建立集中的业务管理系统和业务生成环境来达到上述目标。通过智能网,运营公司可以最优地利用其网络,加快新业务的生成;可以根据客户的需要来设计业务,向其他业务提供者开放网络,增加收益。

关于移动智能网的研究 ,早在1995年就已开始,刚开始并没有具体的标准协议出现,各厂商各自制定了自己的标准,并且据此进行了不少的研究工作,如Alcatel、Nortel、Ericsson等都先后推出了自己的初期产品。这些工作为最终移动智能网标准的形成积累了经验。

1997年末,美国蜂窝电信 工业 协会(CTIA)制定了移动智能网的第一个标准协议——IS-41D协议。1998年1月,欧洲电信标准研究所(ETSI)在GSM phase2+阶段引入了CAMEL协议(移动通信高级逻辑的客户化应用程序),当时的版本是Phase1。1998年4月,ITU-T在新推出的智能网能力集一2标准中描述了移动接入的功能实体,称为CAMEL phase2标准。

伴随着移动网络向第三代系统的演进,网络的智能化程度也在不断地提升。智能网及其智能业务是构成未来个人通信的基本条件。

5更高的频段

从第一代的模拟移动电话,到第二代的数字移动网络,再到将来的第三代移动通信系统,网络使用的无线频段遵循一种由低到高的发展趋势。1981年诞生的第一个具有国际漫游功能的模拟系统NMT的使用频段为450MHz,1986年NMT变迁到900MHz频段。我国目前的模拟TACS系统的使用频段也为900 MHz。在第二代网络中,GSM系统的开始使用频段为900MHz,IS-95 CDMA系统为800MHz。为了从根本上提高GSM系统的容量,1997年出现了1800MHz系统,GSM 900/1800双频网络迅速普及。2002年将投入商用的第三代系统 IMT-2000则定位在2GHz频段。