前言:中文期刊网精心挑选了通信工程论文范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
通信工程论文范文1
1.1施工材料与设备
材料与设备是建设通信工程的基础物质条件,倘若材料与施工设备本身质量存在缺陷,那么工程整体质量绝对会受到影响。通信工程中最为常见的材料之一是光导纤维,又称光缆。假如选择不当或使用了劣质光缆,工程项目完工后投入使用的寿命与效果均会明显不达标。在通信工程施工中,仪器仪表是必不可缺的关键设备,针对工程项目的特殊要求,因此使用到的仪器仪表规格、功能、精度等级都是不一样的,一旦混淆使用或操作不当均会给施工质量造成严重损害。
1.2施工工艺与方法
施工工艺与方法的选择是决定施工质量的关键。通常,通信工程项目的施工工艺与方法是在施工前就已经确定的,若无特殊情况是不可随便更改的。各类新技术、新材料逐渐渗透进工程建设工作中,要协调好技术、材料、设备间的相互联系,充分发挥出各类组成成分的优秀性能,施工工艺的选择至关重要。在现实施工过程中,施工质量与进度,很大程度上取决于施工工艺与方法是否合理。
1.3作业条件与环境因素
工程施工现场环境和作业条件是影响施工质量的主要外因。由于通信工程施工周期长,施工范围比较大,所以容易受到环境条件的影响。恶劣的环境条件无法满足施工对作业条件的需求,势必会对施工质量造成影响,偶尔还会因为天气过于恶劣,施工作业不得不暂停的情况,严重影响施工进度。所以,在施工过程中施工人员务必对环境因素进行充分考量。
二、通信工程施工质量控制的有效对策
2.1施工准备阶段的质量控制工作
通信工程项目施工准备工作,是为后期施工的顺利开展奠定良好基石。所以,施工准备工作不可怠慢。以光缆线路工程为例,施工准备工作具体可从以下几方面着手:2.1.1技术准备拿到设计图纸后,施工人员应对其进行研究,如有疑问应及时与设计部门沟通,并对设计工程量进行核对,确定准确无误,开始拟定技术实施方案。组织施工人员进行路由复测及技术交底。另外,要准备足够的施工技术材料,结合施工规范与质量验收标准,制定适合的施工组织计划与质量控制措施。对施工期间所需要使用到的材料和仪器进行检查,一经发现任何异常务必及时处理。把所有的准备工作落实到位。2.12光缆单盘检测在准备阶段,应着重注意查看光缆技术性能是否完好。可借助光时域反射仪,检验测试光纤的衰减、长度及色散等参数,确保光缆各项指标能够满足施工需求。结合光缆订货清单与设计要求,对光缆的规格、型号、长度进行检查。光缆开盘后,重点检查缆身有无破损,端头封装是否严密。尤其是在对材料的相关性能进行测试时,要做好材料检测结果的记录,方便日后工作交接或对质。确定光缆出厂合格证与测试记录均符合标准,为光纤性能提供可靠保障。2.1.3光缆配盘光缆的配盘工作至关重要。一般情况下应以复测路由的结果作为主要依据,通过计算确定最终光缆铺设的总长度,根据工程需求选择合适单盘进行配缆。原则要求:根据路由复测,光缆配盘应尽量做到整盘敷设,减少接头,同时应考虑人(手)孔间的累计距离及必要的盘留,减少浪费光缆。保证全程衰耗指标达到设计要求;近局端设备侧光缆长度不少于1公里,且光缆接头尽可能避开交通要道;不同型号的光缆按设计要求进行布放;编制并保存好中继段光缆配盘图,以备竣工资料使用,为日后通信工程的正常维护提供方便。
2.2施工过程中的质量控制
通信工程的施工环节对工程质量影响深远,若希望为工程施工质量提供可靠保障,务必采取有效措施,处理好施工过程中的每一个细节。通信工程的各个工序是一环扣一环,各环节的施工质量与否至关重要,对任何异常情况都要给予及时干预,尽量避免纰漏的出现。2.2.1光缆架(敷)设光缆架(敷)设可谓是整个通信项目建设工作的重点内容,其施工质量的好坏将会直接影响到后期的施工质量。光缆架(敷)设方式一般分为:架空光缆、管道光缆、进局光缆。架空光缆架设前,应检查并保证架空杆路及相应吊线的施工质量符合相关的规范要求。在架设光缆时,通常利用挂钩吊挂;在山地或路面不平的地方架设光缆,则以绑扎法固定光缆。光缆接头应尽量设置在方便维护的地方,预留光缆一般固定在电杆上。架空杆路的光缆间隔3~5档杆则需设置U型伸缩弯,避免因温度变化而引起的热涨冷缩。当架空光缆转为管道光缆时,应使用镀锌钢管予以保护并用防火泥封住管口。铺设管道光缆前,务必要提前检查管道内有无异物,有无堵塞现象。光缆布放的孔位以设计文件要求为主,如有变更应及时做好记录。光缆敷设之前须先在管孔内穿放光纤子管,光缆敷设尽量选择同孔位同颜色子管敷设,其他空置的管孔孔头要进行封堵,避免管孔的堵塞,便于后期其他管线敷设使用。结合人工敷设的方法来看,为确保光缆不会受到磨损,管道光缆应尽量采取整盘的方式进行铺设。布放时尽量降低牵引力,而整盘光缆的布放则从中间开始,分别向四周进行布放,于每个人孔处设置施工人员辅助牵引。光缆出管孔15cm内,不可进行弯曲处理,人(手)孔内的光缆余线要进行必要的固定,并贴上不同标志方便识别。局内光缆敷设时,一般从局前人孔经进线室引至传输机房。布放时上下楼道及每个拐弯处应设专人,按统一指挥牵引,牵引中保持光缆呈松弛状态,严禁出现打小圈和死弯。应根据设计要求或规定留足预留光缆,预留光缆应盘放在绕圈盘上。光缆经由走线架、拐弯点(前、后)应予绑扎,并垫胶管,避免光缆受侧压。光纤在机架内的盘绕应大于规定的曲率半径。金属回强芯、屏蔽线、铠装层,应按设计要求接地或终结。局内光缆应当作好标志,并在醒目部位标明方向和序号。2.2.2光缆接续该环节为工程施工中的关键部分,这部分工作的质量将会直接影响到施工质量与日后投入使用的效果。所以,在施工期间,务必给予该环节足够的重视,利用有效措施,增强质量控制力度。具体可通过以下方法进行:首先,在剥离光缆护套时,务必把握好切割深度,过浅会导致切割不充分,过深则容易损坏纤芯。其次,在光纤涂覆层剥离时,操作者应注意动作轻柔且干净利落,在顺利剥离光纤涂覆层的同时,不会对光纤造成损害。再者,光纤端面切割是整个接续过程中的关键。在对光纤进行切割的过程中,操作者务必要做到平稳、迅速,确保断面平整干净无毛刺。最后,在进行光纤熔接的操作时,操作者应注意仔细查看熔接情况,发现异状,应立刻停止熔接并查明原因,妥善解决问题。接续损耗应达到规范要求。2.2.3测试光纤接续时,施工人员要对熔接过程中的所有光纤进行双向测试,实时监测光纤熔接质量,严格核算光纤损耗,抽查盘纤质量。最后,在封装接头盒前,务必再次对所有光纤进行反复检测,确保全程衰耗达到设计要求。确定无误后方可封盒,以免因需调试反复开启接头盒,影响封盒质量。最后做好测试记录,收集技术资料。
2.3竣工验收阶段的质量控制
在进行该环节工作时,首先要对竣工验收资料进行汇总与整理,形成竣工文件,对工程质量进行初步验收。工程初验中发现的质量问题应在建设单位及监理单位规定的时间内,按规范要求进行整改。整改的工程项目应重新经过验证,合格后交付建设单位,并办理相关的签证手续。在终验期间,要对工程进行全面、彻底的检查,具体操作可结合相关质量评定标准执行。工程质量应符合国家现行有关法律、法规技术标准、合同规定及设计文件的要求。验收合格后交给维护单位。笔者需要强调的是,在进行隐蔽工程质量现场验收时,要会同建设单位和监理单位做好随工签证记录,为顺利验收与投入使用提供可靠依据。
2.4提高对影响工程质量因素的控制力度
为进一步提高通信工程的整体施工质量,提高防范意识,加强影响工程高质量的各类因素的监管力度很有必要。具体详情如下所示:2.4.1加强对施工人员的管理力度前文中提到,在通信工程施工期间,人为因素是影响施工质量的重要因素。所以,笔者认为,应加强对施工人员的管理力度,最大化降低失误的发生率。要定期举办培训活动,加强技术考核,注重对道德文化的培养,帮助员工树立正确的思想观念,始终坚持质量第一。同时,加强对现场施工与管理人员专业技能的培训,提升他们的专业技能水平,能够选择正确的施工工艺与施工方法,并规范执行各项操作。最后,要设立健全的责任制与奖惩制度,激发员工工作积极性,对员工不良习惯和违规行为加以约束。提高员工责任感,激发员工工作潜能。对于部分施工难度系数大、技术含量要求高的施工环节,尽量选择技术过硬的员工来完成。2.4.2加强施工材料与设备的管理前文中笔者谈到,材料与设备是建设通信工程的基础物质条件,倘若材料与施工设备本身质量存在缺陷,那么工程整体质量绝对会受到影响。所以,提高对材料与机械设备的管理力度,为工程质量提供良好保障很有必要。施工管理人员对材料质量要进行严格把关,结合工程需求,筛选合适材料。对进场的材料进行仔细审核,材料务必三证齐全且密封性良好,抽检结果也要毫无问题。材料入库后,应指定专人进行管理,负责材料的出库与入库,避免因管理不善引起资源浪费现象的发生。要对施工期间需要用到的机械设备进行检查,确保其性能是否良好,精准度是否符合标准。另外,还要定期对设备进行保养与维护,必要时送相关计量中心检测,确保设备随时保持最佳的工作状态,满足工程施工的需要。2.4.3方法因素的控制施工决策层应提前根据工程设计,结合现有人力资源与物力资源,拟定科学、合理、可行性强的施工规划,选择最为合适的施工方法,提前准备好各类突发事件的应急措施。尽量确保项目施工顺利进行,在提高施工效率的同时,提高资源有效利用率,为工程质量提供可靠保障。2.4.4环境因素的控制在项目施工期间,工程施工现场环境和作业条件是影响施工质量的主要外因,由于通信工程施工周期长,施工范围比较大,容易受到环境条件的影响。所以,要根据工程技术环境、施工现场作业环境的实际情况,采取有效措施,尽量降低环境因素对工程质量的不利影响。共建和谐、文明的施工环境,降低安全事故的发生率,为施工质量创造有利条件。
三、结束语
通信工程论文范文2
教育的本质是促进人的发展,合理定位高校专业人才培养目标,设计符合专业发展要求的课程体系,有助于高校人才培养工作的顺利展开,有助于高校明确办学指导思想,提升竞争力。通信工程专业人才的培养目标依据教育部教学指导委员会制定的《高等学校电子信息科学与工程类本科指导性专业规范》,充分理解国家对通信工程类的人才的培养目标和培养规格。以《南开大学公能素质教育纲要》为指导,根据现代工学学科建设的需要和通信工程专业的特点,从而制定我校具有“公能”特色的人才培养目标。我校不断强化学生全面素质和创新能力的培养,以“注重素质、培养能力、强化基础、拓宽专业、严格管理、保证质量”为教学指导思想,秉承“允公允能,日新月异”的校训,坚持育人为本,强化质量特色。通信工程专业不仅要强调全面贯彻德智体全面发展的方针,而且要适应经济建设和科技发展。在制定通信专业的培养目标过程中,要体现出通信事业现状和通信发展的方向,培养出通信事业需要的创新型技术人才。因此,我校的通信工程专业着力培养具有高尚的道德品质、深厚的知识基础、优秀的专业能力、积极进取的创新精神、开阔的国际视野、特色鲜明的电子信息技术科学的专业人才。依据“厚基础,宽口径”的育人理念,培养具备通信技术、通信系统和通信网等方面的知识,能在通信领域中从事研究、设计、制造、运营及在国民经济各部门和国防工业中从事开发、应用通信技术与设备的创新型科学与技术人才。依照这一培养目标,有必要细化素质、能力、知识等方面的具体要求,深化教育教学改革,建立与之相适应的课程体系,将培养目标落实到教学实践过程中。
2课程体系改革坚持的原则
课程体系是学校人才培养的总体设计,是安排教学内容、组织教学活动的基本依据,同时也是学校教学改革的总体反映。通信工程专业是应用性很强的专业,其课程体系的建设既要保证人才的知识系统性和学科前沿性的要求,又要体现应用型人才培养的实践特性。因此,我校通信工程专业的办学理念坚持以满足国家重大需求为导向,瞄准国际发展前沿,理工兼备、综合发展。在上述教学理念的指导下,通信工程专业课程体系的改革遵循以下几个原则:(1)秉承“允公允能、日新月异”校训,坚持“以人为本、立德树人”的中国特色社会主义办学方向;(2)学习和借鉴国内外知名高校成功的办学理念和经验,突出我校的历史积淀和办学精神,凝练通信工程专业的教学特色、优化本科课程教学体系;(3)科学、合理的分类设置基础课、专业基础课和专业课,充分考虑专业间、课程间以及不同年级知识结构的关联度,避免因人设课的现象;(4)在全体专业教师范围内选拔胜任的任课教师,组成课程组,定期开展教研活动;(5)教授必须上教学第一线,承担并完成本科基础课教学任务;(6)深化教学方式改革,贯彻“讲一练二考三”要求。
3课程体系改革的内容与措施
3.1组织调研
对国内外高等学校的通信专业进行考察与调研:国外高校主要通过网上调研的方式,通过访问各国外高校的网站,对人才培养目标和专业课程设置等进行调研;国内高校主要通过派出相关专业教师到清华大学、北京邮电大学、电子科技大学等高校进行实地考察,对无线通信技术、宽带通信、光纤通信、移动通信技术、计算机通信等方向的人才培养目标、课程设置、教材建设、毕业生就业情况以及未来几年内的人才需求情况进行了调研。同时,走进与通信学科密切相关的各大企业,充分调查研究社会企业对通信工程人才的知识与能力结构需求。
3.2建设课程体系
构建“专业+模块”的课程体系,其中“专业”是保证通信工程专业人才的基本规格和全面发展的共性要求,体现“厚基础、宽口径”,“模块”主要是实现不同方向人才的分流培养,体现个性。将公共基础课分为数学类课程模块、物理类课程模块、英语类课程模块和计算机类课程模块,专业基础课分为电子电路课程模块和应用设计模块,专业课分为通信理论模块、通信网络和专业实践模块。这种模块化的教学模式,是对传统教学模式的整合与创新。传统教学课程之间缺乏良好的衔接,彼此内容间有重叠。模块化课程可以使教学避免课程间的重复和脱节,适度把握课程间的交叉与渗透,构成完整的知识体系,帮助学生融会贯通。各个模块课程的授课教师组成了课题组,以课题为引领,带动教师参与到课程建设中来,课题组通过顾问专家指导、讲座等形式完善课程和教材建设,合理设置专业课程结构,整合教学内容,改革教学方法,以期形成独具特色的教学体系。此外,我们对课程体系中的细节问题进行了修订。全面考查专业课程名称并进行调整,对6门专业选修课的课课程名称进行规范;新开设4门专业选修课,补充了调整前缺少的相关领域的课程;将通信电路和现代交换原理与技术两门课程由专业选修课调整为专业必修课;陆续开设科技论文写作、通信技术系列讲座、实践类的一系列课程,形成一整套优质的课程体系。
3.3优化课程内容
直接反映授课内容的是课程的教学大纲,课程大纲首先由任课教师制定,由教学指导委员会审核并修订,审核通过后,主讲教师按照教学大纲执行教学计划。在课程讲授过程中,如果主讲教师发现问题,或者随着社会发展需求更新教学内容、授课教材等,需要及时修改教学大纲,调整教学内容。要求教师根据课程的学科知识体系,梳理出相关知识群,形成课程教学的知识脉络和框架,明晰课程的整体教学目标和教学内容。同时,进行精品课程的建设,通信电路作为通信工程专业的基础课,将作为通信工程专业重点培养的精品课程,推出一系列教学改革措施,包括课时的调整、理论讲授与实际练习比重的调整、授课方式的改革、加强课程资源共享系统和共享制度建设等等,最终实现“讲一练二考三”的教学理念。
3.4增加实践比重
在综合考虑各门课程知识之间的衔接关系,对专业基础课和专业课的开设时间和讲授内容进行调整的基础上,我们适当地增加了涉及通信前沿技术的选修课程,并着重加强实验和实践类课程,重视学生创新能力、实践能力的培养和锻炼,适当开设或增加实习、实训的课时和学分,开设认知实习课程,鼓励学生进行实践。由此,拓宽学生的专业知识面,满足学生的未来发展需要,培养学生多方面、多角度立体思维的能力,强调宽厚的基础知识学习和创新实践能力的培养。积极鼓励学生参加电子设计竞赛、国创、百项等实践活动,利用开放实验室资源,组织学生形成研发设计小组。鼓励学生利用这些资源进行系统设计、电路焊接调试等动手练习,并组织专业教师指导,充分发挥学生的主动能动性,进一步加强学生实验动手能力的培养。
3.5加强教学管理
成立教学指导委员会,通过听课、审核大纲等方式,加强教学规范化管理,进一步理顺教学管理体系,明晰职责,加强教学督导。实施院领导听课制度,明确教学系职责,强化过程管理。建立课程建设课题组,以课题为引领,带动一部分教师参与到学校课程建设中来,通过顾问专家指导、讲座等形式完善课程和教材建设,合理设置专业课程结构,整合教学内容,改革教学方法,以期形成独具特色的教学体系。
4结束语
通信工程论文范文3
超宽带(UWB,Ultra Wide Band)无线技术在无线电通信、雷达、跟踪、精确定位、成像、武器控制等众多领域具有广阔的应用前景,因此被认为是未来几年电信热门技术之一。1990年,美国国防部首先定义了“超宽带”概念,超宽带无线通信开始得到美国军方和政府部门的重视。2002年4月,美国FCC通过了超宽带技术的商用许可,超宽带无线通信在民用领域开始受到普遍关注。目前“超宽带”的定义只是针对信号频谱的相对带宽(或绝对带宽)而言,没有界定的时域波形特征。因此,有多种方式产生超宽带信号。其中,最典型的方法是利用纳秒级的窄脉冲(又称为冲激脉冲)的频谱特性来实现[1]。
超宽带无线电是对基于正弦载波的常规无线电的一次突破。几十年来,无线通信都是以正弦载波为信息载体,而超宽带无线通信则以纳秒级的窄脉冲作为信息载体。其信号产生、调制解调、信号隐蔽性、系统处理增益等方面,具有独特的优势,尤其是能够在密集的多径环境下实现高速传输。由于脉冲持续时间很短,多径分量在时域上不易重叠,多径分辨能力高,通过先进的多径分离技术或瑞克接收机,可以充分利用多径分量。
目前,典型的超宽带无线通信调制方式以TH-PPM、TH-PAM为主,本论文中,介绍超宽带无线通信中的调制技术,主要讨论TH-PPM、TH-PAM的基本原理,并且对比调制技术的优缺点,性能的好坏,并进行动态的仿真,从仿真图中较清楚的研究调制方式,从而得出正确的结论,细致的研究超宽带无线通信中的调制技术。
关键字:超宽带 调制方式 PPM调制 PAM调制 OFDM调制
2 概述
2.1 总述
近几年来,超宽带短距离无线通信引起了全球通信技术领域极大的重视。超宽带通信技术以其传输速率高、抗多径干扰能力强等优点成为短距离无线通信极具竞争力和发展前景的技术之一。FCC(美国通信委员会) 对超宽带系统的最新定义是:相对带宽(在- 10dB 点处) (fH - fL)/fc > 20 %(fH ,fL ,fc分别为带宽的高端频率、低端频率和中心频率) 或者总带宽BW> 500MHz。[1]它与现有的无线电系统比较,在花费更小的制造成本的条件下,能够做到更高的数据传输速率(100~500MbPs) 、更强的抗干扰能力(处理增益50dB 以上) ,同时具有极好的抗多径性能和十分精确的定位能力(精度在cm 以内) 。
2.2 UWB基本原理
发射超宽带(UWB) 信号最常用和最传统的方法是发射一种时域上很短(占空比低达0. 5 %) 的冲激脉冲。这种传输技术称为“冲击无线电( IR) ”.UWB - IR 又被称为基带无载波无线电,因为它不像传统通信系统中使用正弦波把信号调制到更高的载频上,而是用基带信号直接驱动天线输出的[6];由信息数据对脉冲进行调制,同时,为了形成所产生信号的频谱而用伪随即序列对数据符号进行编码。因此冲击脉冲和调制技术就是超宽带的两大关键所在。
2.2.1 脉冲信号
从本质上讲,产生脉冲宽度为纳秒级的信号源是UWB 技术的前提条件。目前产生脉冲信号源的方法有两类: ①光电方法,基本原理是利用光导开关导通瞬间的陡峭上升沿获得脉冲信号。由于作为激发源的激光脉冲信号可以有很陡的前沿,所以得到的脉冲宽度可达到皮秒(10 - 12 ) 量级。另外,由于光导开关是采用集成方法制成的,可以获得很好的一致性,因此是最有发展前景的一种方法。②电子方法,利用微波双极性晶体管雪崩特性,在雪崩导通瞬间,电流呈“雪崩”式迅速增长,从而获得具有陡峭前沿的波形,成形后得到极短脉冲。在电路设计中,采用多个晶体管串行级联,使用并行同步触发的方式,加快了雪崩过程,从而达到进一步降低脉冲宽度的目的[7]。
冲激脉冲通常采用单周期高斯脉冲,典型的单周期高斯脉冲的时域和频域数学模型分别表示为:
(2-1)
(2-2)
单周期脉冲的宽度在纳秒级(0. 1~1. 5ns) ,重复周期为25~1000ns ,具有很宽的频谱,如图2-1 所示。实际通信中使用的是一长串的脉冲,由于时域中信号的周期性造成了频谱的离散化,周期性的单脉冲序列频谱中出现了强烈的能量尖峰。这些尖峰将会对信号构成干扰,通过数据信息和伪随机码来进行编码P调制,改变脉冲与脉冲间的时间间隔,可以降低频谱的尖峰幅度[2]。
图2-1 单周期脉冲的时间域和频率域的表示
2.2.2 UWB的调制技术
超宽带系统中信息数据对脉冲的调制方法可以有多种。脉冲位置调制( PPM) 和脉冲幅度调制(PAM) 是UWB 最常用的两种调制方式。通常UWB信号模型为:
(2-3)
其中,w ( t) 表示发送的单周期脉冲, dj , tj 分别表示单脉冲的幅度和时延。
a PAM- UWB
PAM是一种通过改变那些基于需传输数据的传输脉冲幅度的调制技术。在PAM调制系统中,一系列的脉冲幅度被用来代表需要传输的数据。任何形状的脉冲都是通过其幅度调制使传输数据在{ - 1 , + 1}之间变化(对于双极性信号) 或在M 个值之间变化(对于M 元PAM) 。增加传输脉冲所占的带宽或减少脉冲重复频率,都可以增加一个固定平均功率谱密度的UWB 系统所能达到的吞吐量和传输距离,可以看出这一效果与增加传输功率的峰值的效果是相似的。[8]
采用脉冲幅度调制(PAM)的超宽带信号波形如下:[4]
(2-4)
其中, dj 是信息序列, Tf 是脉冲重复周期。根据dj 的不同取值, 可将PAM调制方式分为以下三种:
(1) OOK(发送数据为1 ,UWB 信号的幅度为1 ;发送数据为0 ,UWB 信号的幅度为0) ;
(2)PPAM(发送数据为1 ,UWB 信号的幅度为β1 ;发送数据为0 ,UWB 信号的幅度为β2) ;
(3)BPSK(发送数据为1 ,UWB 信号的幅度为1 ;发送数据为0 ,UWB 信号的幅度为- 1) 。
对于这三种方式,在超宽带的PAM调制方式中多采用BPSK方式。
b PPM- UWB
脉冲位置调制(PPM) 又称时间调制(TM) ,是用每个脉冲出现的位置落后或超前某一标准或特定时刻来表示某个特定信息的[3]。二进制PPM 是超宽带无线通信系统经常使用的一种调制方法,相对其它调制方法来说也是较早使用的一种方法。采用PPM的一个重要原因是它能够使用零相差的相关接收机来接收检测信号,而这种接收机有着非常好的性能。采用脉冲位置调制( PPM) 的超宽带信号波形如下:
(2-5)
其中, dj 取0 或1 ,δ为调制因子, 与脉冲宽度Tm (1/Tf ) 是一个数量级。当发送数据为1 时脉冲就会相应滞后一个时延δ。
图2-2 给出了上述四种调制方法的信号波形图,对这四种调制方式给出了一个比较直观的描述。
除了这些对脉冲的调制方法外,用伪随机码或伪随机噪声(PN) 对数据符号进行编码以得到所产生信号的频谱时,根据编码的不同即扩频和多址技术不同,超宽带系统又被分为跳时的超宽带系统(TH - UWB) 、直扩的超宽带系统(DS - UWB) 、跳频的超宽带系统(FH - UWB) 和基带多载波超宽带系统(MC - UWB) 等[9]。
图2-2 不同调制方式的信号波形[4]
2.3 UWB 技术特点
由于UWB 与传统通信系统相比,工作原理迥异,因此UWB 具有如下传统通信系统无法比拟的技术特点[4]:
(1)系统容量大。香农公式给出C = Blog2 (1 +S/N) 可以看出,带宽增加使信道容量的升高远远大于信号功率上升所带来的效应,这一点也正是提出超宽带技术的理论机理。超宽带无线电系统用户数量大大高于3G系统。
(2)高速的数据传输。UWB 系统使用上GHz 的超宽频带,根据香农信道容量公式,即使把发送信号功率密度控制得很低,也可以实现高的信息速率。一般情况下,其最大数据传输速度可以达到几百Mbps~1Gbps。
(3)多径分辨能力强。UWB 由于其极高的工作频率和极低的占空比而具有很高的分辨率,窄脉冲的多径信号在时间上不易重叠,很容易分离出多径分量,所以能充分利用发射信号的能量。实验表明,对常规无线电信号多径衰落深达10~30dB 的多径环境,UWB 信号的衰落最多不到5dB。
(4)隐蔽性好。因为UWB 的频谱非常宽,能量密度非常低,因此信息传输安全性高。另一方面,由于能量密度低,UWB 设备对于其他设备的干扰就非常低。
(5)定位精确。冲激脉冲具有很高的定位精度,采用超宽带无线电通信,可在室内和地下进行精确定位,而GPS 定位系统只能工作在GPS 定位卫星的可视范围之内。与GPS 提供绝对地理位置不同,超短脉冲定位器可以给出相对位置, 其定位精度可达厘米级。
(6)抗干扰能力强。UWB 扩频处理增益主要取决于脉冲的占空比和发送每个比特所用的脉冲数。UWB 的占空比一般为0. 01~0. 001 ,具有比其它扩频系统高得多的处理增益,抗干扰能力强。一般来说,UWB 抗干扰处理增益在50dB 以上。
(7)低成本和低功耗。UWB 无线通信系统接收机没有本振、功放、锁相环( PLL) 、压控振荡器(VCO) 、混频器等, 因而结构简单,设备成本将很低。由于UWB 信号无需载波,而是使用间歇的脉冲来发送数据,脉冲持续时间很短,一般在0. 20ns~1. 5ns之间,有很低的占空因数,所以它只需要很低的电源功率。一般UWB 系统只需要50~70mW 的电源,是蓝牙技术的十分之一[10]。尽管如此,UWB 在技术上面临一定的挑战, 还有诸多技术的问题有待研究解决,比如需要更好地理解UWB 传播信道的特点,建立信道模型,解决多径传播;需要进一步研究高速脉冲信号的生成、处理等技术;研究新的调制技术,进一步降低收发结构的复杂度等。
2.4 UWB发射机和接收机组成框图
2.4.1 UWB发射机组成框图
UWB发射机直接发送纳秒级脉冲来传输数据而不需使用载波电路。所以,UWB发射机比现有的无线发射设备要简单得多。TH-UWB发射机组成框图如图2-3所示[5]。
图2-3 UWB发射机组成框图
调制后的数据与伪码产生器生成的伪码一起送入可编程延迟电路,可编程延迟电路产生的时延控制脉冲信号发生器的发送时刻,脉冲信号发生器输出的UWB信号由天线辐射出去。脉冲信号产生电路的一个关键部分是天线,它的作用相当于一个滤波器。
2.4.2 UWB接收机组成框图
TH-UWB接收机采用相关接收方式,接收机框图如图4所示。图4中虚线内的部分是相关器。它由乘法器、积分器和取样/保持电路三部分组成[5]。
接收机与发射机类似,两者的区别在于接收机的基带信号处理器从取样/保持电路中解调数据,基带信号处理器的输出控制可编程时延电路,为可编程时延电路提供定时跟踪信号,保证相关器正确解调出数据。
图2-4 UWB接收机组成框图
2.5 UWB 技术的应用前景
UWB 系统在很低的功率谱密度的情况下,UWB具有巨大的数据传输速率优势,最大可以提供高达1000Mbps 以上的传输速率,使UWB 同其它短距离无线通信系统的技术优势非常明显,如表1 所示。现有的各种无线解决方案(例如802. 11 ,Bluetooth等) 的速率均低于100Mbit/s ,UWB 则在10m 左右的范围之内打破了这一限制,UWB 的应用将使人们可以摆脱更多线缆的牵绊,通信因而变得更为方便[6]。
2.6 结束语
无线通信已经迅速渗入我们的生活当中,对容量不断增长的要求需要一种不对现有的通信系统造成影响的新的无线通信方案,超宽带脉冲无线电系统正好满足了这一要求。UWB 技术对于无线短距离的高速数据通信是非常有竞争力的,随着研究的深入,凭借多方面的优势,它将在很多领域占有一席之地。特别是短距离传输的后3G领域,UWB 将有广阔的发展空间[8]。
表1 几种短距离无线通信比较
IEEE802. 11a
Bluetooth
UWB
工作频率
2. 4GHz
2. 402~2. 48GHz
3. 1~10. 6GHz
传输速率
54Mbps
小于1Mbps
大于480Mbps
通信距离
10m~100m
10m
小于10m
发射功率
1 瓦以上
1 毫瓦~100毫瓦
1 毫瓦以下
容量空间
80kbps/m2
30kbps/m2
1000kbps/m2
应用范围
无线局域网
家庭和办公室互连
近距离多媒体
终端类型
笔记本、台式电脑、掌上电脑、因特网网关
笔记本、移动电话、掌上电脑、移动设备
无线电视、DVD , 高速因特网网关
3 MATLAB 软件工具介绍
3.1 MATLAB语言的概述
MATLAB是一种科学计算软件,适用于工程应用各领域的分析设计与复杂计算,它使用方便,输入简捷,运算高效且内容丰富,很容易由用户自行扩展。因此,它已成为大学教学和科学研究中最常用且必不可少的工具。
MATLAB是“矩阵实验室”(MATrix LABoratoy)的缩写,它是一种以矩阵运算为基础的交互式程序语言,着重针对科学计算、工程计算和绘图的需求。与其他计算机语言相比,其特点是简洁和智能化,适应科技专业人员的思维方式和书写习惯,使得编程和调试效率大大提高。它用解释方式工作,键入程序立即得出结果,人机交互性能好,为科技人员所乐于接受。特别是它可适应多种平台,并且随计算机硬、软件的更新而用时升级。因而,MATLAB语言是数值计算用得最频繁的电子信息类学科工具。它大大提高了课程教学、解题作业、分析研究的效率。
3.2 MATLAB的历史
在1980年前后,美国的Cleve Moler博士在New Mexico大学讲授线性代数课程时,发现应用其他高级语言编程极为不便,便构思并开发了MATLAB(MATrix LABoratory,矩阵实验室),它是集命令翻译、科学计算于一身的一套交互式软件系统,经过在该大学进行了几次的试用之后,于1984年推出了该软件的正式版本。它是以著名的线性代数软件包LINPACK和特征计算软件包EISPACK中的子程序为基础发展而成的一种开放型程序设计语言,其基本的数据单元是一个维数不加限制的矩阵,这就允许用户可以根据数值计算问题的复杂程序,对问题进行分段甚至逐句编程处理,显然这与C、FORTRAN等传统高级语言完全不同。在MATLAB下,矩阵的运算变得异常的容易,后来的版本中又增添了丰富多彩的图形图像处理及多媒体功能,使得MATLAB的应用范围越来越广泛,Moler博士等一批数学家与软件专家组建了名为MathWorks的软件开发公司,专门扩展并改进MATLAB。
为了准确地把一个控制系统的复杂模型输入给计算机,然后对之进行进一步的分析与仿真,1990年MathWorks软件公司为MATLAB提供了新的控制系统模型图形输入与仿真工具,并定名为SIMULAB,该工具很快在控制界得致函广泛的使用。但因其名字与著名的软件SIMULA类似,所以在1992年正式改名为SIMULINK。此软件有两个明显的功能:仿真与连接,亦即可以利用鼠标在模型窗口上画出所需的控制系统模型,然后利用该软件提供的功能来对系统直接进行仿真。很明显,这种做法使得一个很复杂系统的输入变得相当容易。SIMULINK的出现,更使得MATLAB的控制系统的仿真与其在CAD中的应用打开了崭新的局面。
3.3 MATLAB语言的特点
MATLAB语言有以下特点。
(1) 起点高
每个变量代表一个矩阵,以矩阵运算见长。当前的科学计算中,几乎无处不用矩阵运算,这使它的优势得到了充分的体现。
(2) 人机界面适合科技人员
MATLAB的语言规则与笔算式相似。MATLAB的程序与科技人员的书写习惯相近,因此,易写易读,易于在科技人员之间交流。矩阵的行列数无需定义。MATLAB不必有阶数定义,输入数据的行列数就决定了它的阶数。键入算式立即得到结果,无需编译。MATLAB是以解释方式工作的,即它对每条语句解释后立即执行,若有错误也立即做出反应,便于编程者立即改正。这些都大大减轻了编程和调试的工作量。
(3) 强大而简易的做图功能
能根据输入数据自动确定坐标绘图,能规定多种坐标系,(极坐标系、对数坐标系等),能绘制三维坐标中的曲线和曲面,可设置不同颜色、线型、视角等。如果数据齐全,通常只需一条命令即可出图。
(4) 智能化程度高
绘图时自动选择坐标,大大方便了用户;做数值积分时自动按精度选择步长;自动检测和显示程序错误的能力强,易于调试。
(5) 功能丰富,可扩展性强
MATLAB软件包括基本部分和专业扩展两大部分。
基本部分包括矩阵的运算和各种变换、代数和超越方程的求解、数据处理和傅立叶变换及数值积分等等。可以充分满足大学理工科学生的计算需要。
扩展部分称为工具箱。它实际上是用MATLAB的基本语句编成的各种子程序集,用于解决某一方面的专门问题,或实现某一类的新算法。现在已经有控制系统、信号处理、图像处理、系统辨识、模糊集合、神经元网络及小波分析等工具箱,并且向公式推导、系统仿真和实时运行等领域发展。
MATLAB的核心内容在于它的基本部分,所有的工具箱子程序都是用它的基本语句编写的。
3.4 MATLAB仿真
通过利用所学的理论知识,建立一个完整、准确的需求说明,清楚、准确地提出仿真试验所要解决的问题。
对所提出的仿真系统给出详细定义,明确系统中的模块、系统构成、模块之间的相互关系,系统的输入输出、边界条件以及系统的约束条件,并明确仿真所要达到的目标。
根据仿真系统分析的结果,确定系统中的参数、变量及其互之间的关系,并以数学形式将这些关系描述出来,从而构成仿真系统的数学模型。数学建模是系统仿真中最关键的一步,所建立的数学模型必须尽可能准确地反映所关心的真实系统的特性,而又不能过于复杂,以免降低模型的效率,增加不必要的计算过程,即建模需要根据求解问题的要求,在模型的近似程度与复杂程度之间折中。电子与通信系统的数学模型通常以方框图形式或数学方程形式来表达。
根据建立的数学模型所需要的数据元素,收集与模型系统有关的数据。根据数学模型建立系统的计算机仿真模型,收集数据,确定其中各子模块的结构,输入输出接口,输入输出的数据表达形式,数据的存储方式等。然后编制相应的程序流程,用MATLAB语言实现。
仿真模型验证的目的是确定计算机仿真模型是否准确表达了数学模型。仿真模型验证通常的方法是将数学模型的解析结果(或理论结果)与仿真所得到的数值结果相比较来完成的;或通过已知的系统输入输出结果,对比在相同条件下的系统仿真结果来验证仿真模型的正确性。
根据仿真试验设计的方案,让计算机执行计算,并在执行计算的过程中了解仿真模型对于各种不同输入信号以及不同参数和仿真机制下的输出,得出试验数据,从而预测系统在实际环境中的运行情况。
对仿真模型的运行阶段所产生的数据进行分析,其目的是从运行阶段所产生的数据中找出系统运行规律,对仿真系统的性能做出评价,为系统方案的最终决策提供辅助支持。对仿真结果进行分析,对仿真数据的可靠性、一致性、置信度等做出判定,最终将仿真结果以曲线、图表和文字等形式形成论文。
4 超宽带无线的调制技术
发射超宽带(UWB)信号最常用和最传统的方法是发射时域上很短的脉冲。这种传输技术称为“冲激无线电”(Impulse Radio,简写为IR)。信息数据符号对脉冲进行调制,其调制方式可以有多种。脉冲位置调制(PPM)和脉冲幅度调制(PAM)是最常用的两种调制方式。除了要对脉冲进行调制外,为了形成所产生的信号的频谱,还要用伪随机码或伪随机噪声(PN)对数据符号进行编码。一般是,编码后的数据符号引起脉冲在时间轴上的偏移,这就是所谓的跳时超宽带(TH-UWB,Time-Hopping UWB)。直接序列扩谱(DS-SS)就是编码后的数据符号对基本脉冲的幅度进行调制,这在冲激无线电(IR)中被称为直接序列超宽带(DS-UWB,Direct-Sequence UWB),这种调制方式似乎非常有吸引力[1]。
对于超宽带信号,也可以通过很高的数据速率来产生而根本不需要具备脉冲的特性。只要UWB定义所要求的相对带宽或最小带宽在整个传输过程中得到满足,那么,靠发射高速率数据而不是窄脉冲所产生的具有UWB射频带宽的系统,就不应该被排除在UWB系统之外。诸如正交频分复用(OFDM),在数据速率适当的情况下也可产生UWB信号。因此,OFDM也是一种超宽带的调制方式。
本文主要讨论TH-UWB、DS-UWB和OFDM调制方式。
4.1 PPM-TH-UWB 调制方式
4.1.1 跳时超宽带信号的产生
在结合了二进制PPM的TH-UWB(二进制PPM-TH-UWB或者PPM-TH-UWB)中,UWB信号的产生可以系统地描述如下(参见图4-1描绘的发射链路) [1]。
SHAPE \* MERGEFORMAT
图4-1 PPM-TH-UWB信号的发射方案
给定待发射的二进制序列b=(…,b0,b1,…,bk,bk+1,…),其速率Rb=1/Tb (b/s),图4-1中的第一个模块使每个比特重复Ns次,产生一个二进制序列:
(…,b0,b0,…,b0,b1,b1,…,b1,…,bk,bk,…,bk,bk+1,bk+1,…,bk+1,…)=
(...,a0,a1,…aj,aj+1,…)=a
新的比特速率Rcb=Ns/Tb=1/Ts (b/s)。这个模块引入了冗余,其实是一种被称为重复码的(Ns,1)分组编码器。一般术语上称为信道编码。
第二个模块是传输编码器,就是应用整数值码序列c=(…,c0,c1,…,cj,cj+1,…)和二进制序列a=(…,a0,a1,…,aj,aj+1,…),产生一个新序列d,序列d的一般元素表达式如下:
dj=cjTc+aj (4-1)
式中,Tc和 是常量,对所有的cj满足条件cjTc+ <Ts,通常 <Tc。
这里的d是一个实数值序列,而a是二进制序列,c是整数值序列.现在我们遵循最常用的方法,假定c是企业界随机码序列,它的元素cj是整数,且满足
0 cj Nh-1。 码序列c可能为周期序列,其周期表示为Np。两种特殊情况值得讨论。第一种,码是非周期的,即 ;第二种是Np=Ns,这是最常用的一种,这时的编码周期与二进制码重复的次数相等。我们必须牢记:传输编码扮演了码分多址编码和发射信号的频谱形成双重角色[1]。
实数值序列d输入到第三个模块,即PPM调制模块,产生了一个速率为Rp=Ns/Tb=1/Ts(脉冲/s)的单位脉冲(Dirac pulses ) 序列。这些脉冲在时间轴上的位置为 ,因此脉冲位置在jTs基础上偏移了dj,脉冲的发生时间也可表示为( )。注意是码序列对c信号引入了TH位移,也正因为此,c被称为TH码。还要注意一点就是由PPM调制引起的位移 ,通常比TH码引起的位移cjTc小得多,即: ,cj=0除外。Tc称为码片时间(chip time)。
最后一个模块是脉冲形成滤波器,其冲激响应为。必须保证脉冲形成滤波器输出的脉冲序列不能有任何的重叠。
以上所有系统级联以后的输出信号 可表示如下:
(4-2)
比特间隔或比特持续时间,也即用于传输一个比特的时间Tb,可表示为:Tb=NsTs。在式(4-2)中,cjTc定义了脉冲的随机性或者说是相对于Ts整数倍时刻的抖动。如果用随机TH抖动 来表示由TH编码cjTc引起的时间上的位移,并假定 在0和 之间分布,则可得到:
(4-3)
正如前面提到的, 通常远大于 。这两个量的整体效果是产生一个分布在0和 之间的时间随机位移量,用 表示这个时间随机位移,可得发射信号的如下表达式:
(4-4)
更一般性地概括式(4-2)所表示的信号,其思想是:对于信息比特“0”和“1”,可以发射两个不同的脉冲波形 和 来分别表示。上面分析的PPM调制的例子,引入了 这个时间位移量,它的值根据它所代表的比特而有所不同,其实是上述思想的特殊例子,其中的 是 位移以后的波形。一种更一般的表达式:
(4-5)
当将 设置为- 时,式(4-5)也表示了PAM和TH-UWB的结合,即PAM-TH-UWB模型[1]。
4.1.2 PPM-TH-UWB的发射链路 系统模型如图4-2所示
SHAPE \* MERGEFORMAT
图4-2 PPM-TH-UWB 发射器的系统模型
图4-2中的第一个模块表示二进制源。这个模块的输出是发射到物理信道的二进制流。第二个模块表示重复码编码器。二进制流的每一个比特都被重复次。第三个模块仿真TH编码和二进PPM。这里考虑伪随机TH码。最后一个模块是脉冲形成。这个模块的冲激响应表示要发射的UWB信号的基本脉冲波形[1]。
4.1.3 PPM-TH-UWB 仿真结果及其分析
图(4-3)显示了参数设置如下时所产生的UWB信号
以dBm为单位的平均发射功率Pow, 信号的抽样频率fc, 由二进制源产生的比特数numbits, 平均脉冲重复时间Ts(单位为秒),每个比特映射的脉冲数Ns, 码片时间Tc(秒), 跳时码的码元最大值Nh和周期Np,冲激响应持续时间Tm, 脉冲波形形成因子tau(秒), PPM时移dPPM(秒)。
Stx: Pow=-30, fc=50e9, numbits =2, Ts=3e-9, Ns=5,
Tc=1e-9, Nh=3, Np=5, Tm=0.5e-9, tau=0.25e-9,
dPPM=0.5e-9
由图4-3中可以看到输出序列的前五个脉冲在其对应时隙的中间位置,而后五个脉冲则在其对应时隙的起始位置。
图4-3 PPM-TH-UWB 发射机产生的信号
图4-4 PPM-TH-UWB的幅度谱
由图4-4可以看出,TH编码和PPM调制都对幅度谱的高斯形状产生扭曲。PPM-TH-UWB信号的幅度谱将完全包含在无TH编码和无PPM调制的幅度谱包络中,这是因为以同样的形状和同样的平均功率传输等间隔脉冲的结果。
4.2 PAM-DS-UWB调制方式
4.2.1 直接序列超宽带信号的产生
直接序列扩谱(DS-SS)是一种著名的数字调制方式。这里,我们先回顾DS-SS的基本原理,并把主要精力放在它在UWB的延伸方面。
具有UWB特性的信号可以通过下面的过程产生:首先,用伪随机码或二进制PN码序列对要发射的二进制进行编码;其次,对一串窄脉冲进行幅度调制。这一过程可以看做是目前使用DS-SS系统的一种极端方式,此时脉冲在时域上是具有典型时间的奈奎斯特型脉冲或方波。让脉冲宽度远远小于切普间隔,很容易得到DS-SS-UWB的解析表达式。在传统的DS-SS系统中,RF发射信号是对载波进行幅度调制后得到的,通常使用二进制相移键控BPSK方式。而在DS-UWB中,如果没有专门的要求,这一过程可省略。[1]
更详细地,上述信号可以通过如下过程产生(见图所示发射链路)。
SHAPE \* MERGEFORMAT 图4-5 PAM-DS-UWB 信号的发射方案
假定待发射的二进制序列b=(…,b0,b1,…,bk,bk+1,…),其速率为Rb=1/Tb (b/s),图4-5中的第一个系统将每个比特重复Ns次,得到序列:(…,b0,b0,…,b0,b1,b1,…,b1,…,bk,bk,…,bk,bk+1,bk+1,…,bk+1,…)=a*,其速率为Rcb=Ns/Tb=1/Ts (b/s)。与TH方式相似,系统引入的冗余相当于一个参数为(Ns,1)的重复码编码器。
第二个系统将a*序列转换成只含有正值和负值元素的序列a=(…,a0,…,a1,…,aj,aj+1,…),转换公式为:( ).
发射编码器将一个由 1组成、周期为Np的二进制码序列c=(…,c0,c1,…,cj,cj+1,…)应用到序列a=(…,a0,…,a1,…,aj,aj+1,…),产生一个新序列d=a·c,其组成元素dj=ajcj。通常假定Np等于Ns,更具一般性的假定是Np等于Ns的整数倍。注意,序列d的元素值为 1,这一点与序列a相同,其速率为Rc=Ns/Tb=1/Ts (b/s)。
序列d进入第三个系统——PAM调制器,产生一个速率为Rp=Ns/Tb=1/Ts (脉冲/s)的单位脉冲(Dirac脉冲 )序列,其位置在jTs处[6]。
调制器输出的信号进入冲洲响应为p(t)的脉冲形成滤波器。在传统的DS-SS系统中,冲激响应p(t)是持续时间为Ts的矩形脉冲。而在DS-UWB系统中,与TH方式相似,p(t)是持续时间远小于Ts的脉冲。
以上系统级联后的输出信号可以表示为
(4-6)
注意,与TH方式相似,比特间隔或比特持续时间,即传输一个比特所用的时间是Tb=NsTs。
输出的波形显然是一个PAM波形。很容易知道,由于没有时移而且脉冲以规则的时间间隔出现,计算式(4-6)所示信号的PSD要比计算式(4-2)所示信号的PSD更容易。
上述方式的一种变形是使用PPM调制器代替PAM调制器,得到的信号可表示为:
(4-7)
注意到在式(4-7)中,由于码的伪随机特性,编码会起到白化频谱的作用。
4.2.2 PAM-DS-UWB 发射链路 其系统模型如图4-6所示.
SHAPE \* MERGEFORMAT
图4-6 PAM-DS-UWB 发射机系统模型
图4-6中的前两个模块分别表示二进制源和重复码编码器。第三个模块是在重复码编码器的输出端实现DS编码和二进制PAM调制。我们考虑伪随机DS码,分配给一般用户的是长度为NP的二进制码序列。最后一个模块是脉冲形成器[1]。
4.2.3 PAM-DS-UWB 仿真结果及其分析
图4- 7 由PAM-DS-UWB发射机产生的信号
图(4-7)显示了参数设置如下时所产生的UWB信号
以dBm为单位的平均发射功率Pow, 信号的抽样频率fc, 由二进制源产生的比特数numbits, 平均脉冲重复时间Ts(单位为秒),每个比特映射的脉冲数Ns, 码片时间Tc(秒), 跳时码的码元最大值Nh和周期Np,冲激响应持续时间Tm, 脉冲波形形成因子tau(秒), PPM时移dPPM(秒)。
Stx: Pow=-30, fc=50e9, numbits =2, Ts=2e-9,
Ns=10, Np=10, Tm=0.5e-9,
tau=0.25e-9,
这个信号由两组脉冲序列组成,每组包含10个脉冲,每组映射信息源的一个比特。从图4-7中可以看出每二组的10个脉冲与第一组的10个脉冲在极性上是相反的。
图4-8 PAM-DS-UWB的幅度谱
由图4-8可以看出,幅度谱的包络具有基本脉冲的傅氏变换的形状,即高斯形状。且Np(信号每比特发射脉冲数)值越大,图形分布越宽,即幅度峰值越小。
4.3 OFDM调制技术
4.3.1 概述
多频带(MB)方式与本章前两节分析研究的IR原理不同。根据2002年,FCC公布的UWB定义,带宽超过500MHz的信号都是UWB信号。因此,按照FCC规定的频带范围3.1~10.6GHz,将此7.5 GHz的带宽分割成最小带宽为500MHz的若干个频带。为了尽量减小同窄带通信系统的相互干扰,UWB采用较小的功率,于是UWB信号对于窄带通信系统来说相当于热噪声,并不被窄带通信系统的接收机检测到,也可以避免特定频带上的非人为干扰[1]。
在每个子频带内可以使用不同的数据调制类型,并不一定要用IR方式,正确的频谱带宽可以通过合适的比特速率实现。应用最广泛的是众所周知的正交频分复用(OFDM)。
4.3.2 多频段OFDM-UWB信号产生
一个已调的OFDM信号由调制在不同载波频率 上的同个并行发射的信号组成。这些载波等间隔地位于频域上,其间隔为 。OFDM调制器输入的二进制序列每K比特编为一组,以产生具有N个符号的数据块{ },这里假定 是L个可能的取值中的一个,K=N1bL。最后,每个符号调制一个不同的载波。为了并行传输数据块的N个符号,不同的调制载波信号在频率上必须正交[8]。
所有调制器使用相同的矩形波,其持续时间为T:
(4-8)
如果符号 在星座图中的点用 表示,OFDM信号中有N个符号的数据块的表达式如下[1]:
(4-9)
而相应的复包络是
(4-10)
其中 ,S(t)是周期为T0的周期函数。
式(4-9)中OFDM信号的数字变换相当于传输式(4-10)中复数包络的抽样值,也就是说传输序列可表示如下:
(4-11)
tc是抽样周期。
仿真OFDM调制信号,考虑的是OFDM各个载波使用QPSK调制的情况。仿真整个发射链路,产生式(4-9)的信号。
4.3.3 OFDM仿真结果及其分析 要发射的总比特数numbits; 调制信号的中心频率fp; 抽样频率fc; 每个符号在其相应载波上的传输时间T0; 循环前缀的持续时间TP;保护间隔时间TG, 矩形脉冲响应的幅度为A, OFDM系统的子载波数N。
(1) numbits=8; fp=1e9; fc=50e9; T0=242.4e-9;
TP=60.6e-9; TG=70.1e-9; A=1; N=4;
图4-9 OFDM-UWB信号
图4-10 OFDM-UWB幅度谱
图4-10中的幅度谱由子载波的幅度谱叠加而成。
(2)numbits=8; fp=1e9; fc=50e9; T0=242.4e-9;
TP=0; TG=50e-9; A=1; N=2;
图4-11 OFDM-UWB信号图
图4-11 OFDM-UWB信号幅度谱
对比以上两图,可以看出,在同样的时间里为了传输更多的符号,是以增加带宽为代价的,也就是增加子载波的数量。
4.4 总结
通过一系列的仿真,我们可以得出以下结论:PAM、PPM两种调制方法主要是为了进行信息数据符号对脉冲的调制,而信号中的伪随机TH码和DS码主要是为了产生信号的频谱,使信号的功率谱密度在采用伪随机码调制后变得更加平滑,不能干扰到其它已经存在的窄带系统[9]。
OFDM具有良好的抗多径干扰性能,通过频率的合理选择,能够同现存的窄带系统和开放频段的通信系统具有很好的共存性,同传统的超宽带系统相比有很大的优势[11]。
5 性能分析及应用前景
5.1 脉位调制(PPM)和脉幅调制(PAM)
脉位调制(PPM)是一种利用脉冲位置承载数据信息的调制方式。按照采用的离散数据符号的状态数可以分为二进制PPM(2PPM)和多进制(MPPM)。在这种调制方式中,一个脉冲重复周期内脉冲可能出现的位置有2个或M个,脉冲位置与符号状态一一对应。根据相邻脉位之间距离与脉冲宽度之间关系,又可分为部分重叠的PPM和正交PPM(OPPM)。在部分重叠的PPM中,为保证系统传输可靠性,通常选择相邻脉位互为脉冲自相关函数的负峰值点,从而使相邻符号的欧氏距离最大化。在OPPM中,通常以脉冲宽度为间隔确定脉冲位置。接收机利用相关器在相应位置进行相干检测。鉴于UWB系统的复杂度和功率限制,实际应用中,常用的调制方式为2PPM或2OPPM[3]。
PPM的优点在于:它仅需要根据数据符号控制脉冲位置,不需要进行脉冲幅度和极性的控制,便于以较低的复杂度实现调制与解调。因此,PPM是UWB系统广泛采用的调制方式。但是,由于PPM信号为单极性,其辐射谱中往往存在幅度较高的离散谱线。对此超宽带信号的幅度谱仿真也证明了这一点。如果不对这些谱线进行抑制,将很难满足FCC对辐射谱的要求[10]。
脉幅调制(PAM)是数据通信系统最为常用的调制方式之一。在UWB系统中,考虑到实现复杂度和功率有效性,不宜采用多进制PAM(MPAM)。UWB系统常用的PAM有两种方式:开关键控(OOK)和二进制相移键控(BPSK)。前者可以采用非相干检测降低接收机复杂度,而后者采用相干检测可以更好地保证传输可靠性[3]。
当发射能量相同时,使用二进制PAM调制的信号可以比使用二进制PPM调制的信号获得更好的性能。
5.2 OFDM调制
OFDM有很多优点:能够提供较大的系统容量,具有较强的抗多径干扰、抗频率选择性衰落和频率扩散能力,适应多径和移动信道传播条件,能够适应不同设计需求,灵活分配数据容量和功率,可提供灵活的高速和变速综合数据传输可以实现较高的安全传输性能,允许数据在复数的高速的射频上被编码。由于OFDM技术的良好性能使得它在无线通信系统中得到了广泛的应用[12]。
OFDM技术是将频道资源分成若干个子信道,每个子信带再采用一定的调制技术,提高频率利用率。OFDM可与PPM、PAM等结合使用,将会有性能更好的调制技术出现。
5.3 UWB的应用前景
超宽带技术在通信、雷达和无线定位等领域都将有广阔的应用前景。近年来,人们对超宽带技术深入的研究使超宽带技术在系统理论、功率放大器、脉冲的产生与接收、同步、集成电路等方面取得了重大进步,尤其是在超宽带无线产生领域的技术进步,使超宽带通信成为无线网络的重要组成部分成为可能。
相对于传统的窄带无线通信系统,超宽带无线产生系统具有诸多优点和潜力,使超宽带无线产生成为中短距无线网络的理想接入技术。根据产生速率不同,挤兑超宽带无线传输系统也具有不同的特点和应用领域。
利用超宽带技术可以提供高数据率传输的能力与定位功能,可以设计依赖定位信息优化网络资源管理的WPAN或WLAN,并应用于多媒体传输、计算机通信和家庭娱乐等领域。
利用脉冲超宽带信号对障碍物的良好穿透特性与精确测距功能,可以设计既具有通信功能也具有定位功能的超宽带脉冲无线通信与定位系统。该系统包括传输距离远(通信速率低)、颁布式移动定位、便携、超低成本、超低功耗、定位可靠性和精度高等特点。因而可以广泛用于传感器网络、消防、公共安全、库存盘点、人员监护与救生等重要领域。利用超宽带脉冲信号低截获概率、保密性高和体积小的优点,该系统还可以应用与侦察、情报收集、伤员救护、武器制导等军事领域[8]。
超宽带信号具有很低的辐射功率,而这样的辐射功率分布在某些方面GHz的频率范围内,功率谱密度极低,类似白噪声频谱,具有低干扰、低截获概率特性;同时由于使用窄脉冲为信号载体并采用跳时扩频,接收端必须已知发射端扩频码的条件下才能解调出发射数据来,加上它对多径干扰具有很好的鲁棒特性,非常适合在军事保密通信的应用。非常低的辐射功率可以避免过量的电磁波对人体的伤害[7]。
结论
超宽带无线通信技术是目前发展的热门技术。它以其自身的优点,被研究人员广泛关注。超宽带无线电技术大体包括基带脉冲传输方式和带通载波调制传输的方式两大类。脉冲传输的特点是把信息调制在离散脉冲信号上发射,而带通载波调制传输的特点则是把信息调制在正弦载波上发射。本论文是以采用基带脉冲传输技术的经典超宽带无线电通信系统为基础进行研究的。
为了更好地了解超宽带通信系统,本文先概括地介绍了超宽带无线通信的基础知识。接着将仿真的基本工具MATLAB的使用说明简单介绍。然后,重点介绍超宽带通信的调制方式,主要包括对TH-PPM、DS-PAM和OFDM调制方式的介绍,并通过仿真图像加以对比,说明调制方式的优缺点。
常采用不同的调制方案,对系统传输速率、搞多径干扰能力有很大影响。对它们进行分析比较,对系统调制信号的设计具有一定的参考意义。通常,在一个通信系统中,应用何种调制方式不仅要看调制方式本身性能,还要根据系统总的设计加以考虑。
参考文献
[1]葛利嘉,朱林,袁晓芳,陈帮富,超宽带无线电基础,电子工业出版社,2005,1~110
[2]葛利嘉,曾凡鑫,刘郁林,岳光荣,超宽带无线通信,国防工业出版社,2005,76~107
[3]常远,UWB无线通信系统信号产生和调制技术的研究,哈尔滨工程大学优秀硕士论文,2006
[4]朱慧,苏锐,超宽带技术概述,信息技术,2006
[5]武海斌,超宽带无线通信技术的研究,无线电工程,2003
[6]徐征,UWB超宽带无线通信技术,中国电力教育2006年研究综述与论坛专刊,2006
[7]张新跃,沈树群,UWB超宽带无线通信技术及其发展前景,数据通信,2004
[8]张在琛,毕光国,超宽带无线通信技术及其应用,技术视点,2004
[9]牛?模?禾危??泶?尴咄ㄐ畔低车牡髦品绞窖芯浚?缱又柿浚?004
[10]邵怀宗,李玉柏,彭启琮,马永,时间脉冲位置调制的超宽带无线通信,系统工程与电子技术,2003
[11] Jeffrey H.Miller,”Why UWB? A Review of Ultrawideband Technology”, NETEX
通信工程论文范文4
1.通信一体化管理的定义。一体化管理指的是运用项目总体控制的模式,将管理工作方面的专业壁垒打通,从而实施规范、科学以及高效的全方面的专业的管理制度与流程。把通信项目建设过程中的各个专业的工程计划、进度和监理工作进行有机地结合,使管理工作的高效性、前瞻性以及全局性提高。保证各专业的各个环节能够紧密衔接、环环相扣,使各个专业的资源利用率和协同作业的效率得到提高,使通信工程项目的整体实施速度加快,工程质量提高。而对于通信一体化管理主要包括无线工程、交换工程、WLAN工程以及传输工程等的一体化。
2.通信项目中存在的问题。虽然我国在某些项目上曾经使用过一些项目控制的方法,并且取得一定的成效,然而仍有很多事故项目屡见于报端,引起这些问题发生的主要原因是项目管理控制不足导致。主要体现为以下几方面:第一,在项目执行的过程中,项目管理者的项目管控观念不强,导致工程项目无法按项目进度实施;第二,项目管理者虽然有一定的项目管控能力,但在面对繁杂的项目管理工作时,管理者的个人管理能力不足或企业制度不完善,导致无法有效的管控好项目的运行;第三,在对通信工程项目管控时,部分的项目管理者只关注经济收益;而忽略项目管理的生态效益以及社会效益,导致项目开展过程中遇到多种困难,无法按时完成项目。
3.一体化的作用。通信工程一体化对工程项目管理作用体现在以下几方面:
(1)对于项目管理内部,优化企业组织结构,精简管理人员,提高管理人员的管理素质水平。一体化后,各个专业不在独立配置人员,而是统一配置,利于项目组织结构扁平化,提高工作效率。
(2)统筹采购,降低成本,提高企业竞争力。一体化后,整体统筹分析材料需求量,做到物尽其用,避免浪费,节约成本。
(3)提升企业员工技术水平,使员工向复合型人才转型,提高员工的归属感和满意度,实现员工的最优效能。总之,通信工程一体化,可以实现项目工程各个环节的优化配置。
二、一体化的通信工程项目管理组织模式的规划与实施
1.项目的规划。传统模式的项目规划,是从各个专家那里得到年度规划后开始实施的。而一体化的项目管理组织模式是在任务书下达之后,建设单位在管理单位的协助下将任务书分解,对设计单位所制定的整体网络规划进行监督,召集各个专业负责人共同制定年度和月度计划。一体化的项目管理组织模式,使各个专业计划得到统一,使建设任务的实施得到高效的保证;同时,工程项目在前期规划中各个专业以及合作单位均参与其中,让个体对工程整体的网络结构更加清晰,让个体更加明确各自在项目中的重要性和所需要完成的工程内容,利于项目工程施工高效实施。
2.项目的实施。传统模式的项目实施计划是各专业依照自身的情况来制定的,由工程管理人员协调专业间的事务。对比而言,一体化的项目管理模式是各专业部门和合作单位共同制定各个工序的工程实施计划,同时,由工程项目管理部门内部协调处理日常事务,简化日常工作流程,提高专业部门间的协调效率。一体化的项目管理组织模式,作用是使各个专业制定统一的明细的工程规划和统一的进度目标,使工程项目的建设潜力最大限度地发挥和提高。同时,一体化项目管理中的制度,如工程例会及全项目的工程巡检等,能够有效地监督工程项目的整体建设状况,使工程项目建设实施地更加顺利。
3.反馈与改进。一体化通信工程项目的管理中,许多管理制度被不断优化,使一体化项目管理的体系得到持续地完善。其中全项目的巡检是由总体控制人组织工程巡检,定期对整体的项目进度、投资以及质量进行巡检,确保工程项目依据计划来实施,每周进行一次进度巡检,每月进行一次投资、质量的巡检。另外全项目的工程例会同样是由总体控制人组织,他们组织各个片区的负责人,汇报各自站点工程项目的进度,把对站点的正常进度有影响的死角挖掘出来,对问题产生的原因进行分析,同时制定有效的解决方法。
三、一体化的通信工程项目管理组织模式的发展建议
1.增强一体化中各个专业部门的沟通与协调,提高通信工程项目的管理效率。在实施一体化的工程项目管理时,各个管理单位需要在各单位之间主动做好沟通与协调的工作,否则一体化项目管理的意义将不复存在。对于传统的管理方式,经常是由建设单位的各个主管协调帮助各个管理单位。一体化工程项目的管理,管理单位之间的协调工作是由总体控制人负责的,具体的总体控制人包括各站点、项目、区域的总控人。若是某站点出现问题,则管理该站点的单位来主动协调,其余的管理单位积极配合。
2.各个专业部门和合作单位使用一体化的设计支撑系统,使工程项目管理得到完善。一体化的设计支撑系统是管理和建设部门运用统一的软件平台,也是合作单位也会使用,建设单位、设计单位以及管理单位等,使用该平台能够使信息快速传递和反馈,下达的指令也能够及时得到执行,利于日常工程施工的管控。此软件作为一个支撑系统的建设管理平台,能实现工程项目信息的快速传递和交流,改进后实现施工人员通过安装在手机终端及时了解情况和及时反馈具体内容;这样有利于各专业部门和合作单位的项目负责人及时了解工程进度和管控工程进度。因此一个优秀的支持系统平台不仅提高现场施工的效率,同时也便于一体化项目管理人员及时了解和管控项目的运作,这个系统平台是项目按计划完成的有力保证。
四、结语
通信工程论文范文5
电子技术是在物理技术和电子学的基础上,兴起的一门程技术,目前,电子技术主要分为电力电子技术和信息电子技术两大类,分别应用在电力领域和信息领域中。其中电力电子技术主要研究信号是如何发生的,信号在转化、放大、滤波等过程中有怎样的表现;而信息电子技术的研究范围比较广,甚至可以将电力电子技术当做信息处理技术,但从信息电子技术的应用方式看,可以将其分为模拟电子技术和数字电子技术两大类。
1.1电力电子技术
电力电子技术是电子技术中的新兴的一门科学技术,在电力领域有十分广泛的应用。电子技术从上世纪至今,历经了半个多世纪的发展,带动着世界信息通信行业的大力发展。如今,在高新科技产业的应用中电子技术依然是如此的适逢发展要求,同时还在不断推动着科技的进步、应用行业的改革以及社会经济的持续发展。而电力电子技术恰好满足了目前国家所倡导的循环经济、低碳环保、可持续发展社会的这种生态发展理念。从上世纪五、六十年代的硅整流器件到整流器的形式、逆变器形式及六十年代末期变频器形式的出现,电子技术经历了非常迅速的发展,同时也将电力电子技术带入到了各个相关的行业、领域当中。到了八十年代,伴随着半导体复和器件形式的问世,真正意义上推动了电力电子技术时代的到来,也使得电力电子技术建立起了属于自己时代的标志。电力电子技术不但适用于传统行业的发展,即使是在现代化的高新技术产业当中,也能适应其发展的需求。这是一门应用比较广泛的技术,并不会因时代性的更新变化而淘汰。另外,电力电子技术还能再不同的程度上促进行业的进步,同时还可以推动科技及社会经济的发展。
1.2信息电子技术
随着人们生活水平的不断提高,人们的环保意识越来越高,越来越重视低碳、环保的生活方式,这对于信息技术来讲意味着信息电子行业迎来了高速发展的黄金时期。电子技术应用在这难得的发展机遇中起着非常重要的作用,在这新环境里电子技术将引领着社会走向低消耗、高利用、可持续发展的循环经济时代。汽车的出现是工业革命的成果,标志着人类文明的进一步发展,同时汽车的出现为人们的工作、生活带来了极大的便利,对汽车行业而言,电子技术的兴起,有效地促进了汽车业的快速。但从环境保护的角度看,汽车行业的飞速发展虽为人们生活带来了便捷,但汽车也对生态环境造成严重的污染,对环保型社会的构建造成很大的影响。而在汽车研究领域,电力电子技术的引进,能将环保理念充分的应用在汽车生产制造的各个环节。目前,世界各国都加大了电子技术在汽车行业的应用研究,并且在软件技术、智能化集成的传感器技术等方面取得良好的成果。软件技术与互联网有着很大的关联。而伴随着汽车行业的不断进步,各行业中都运用到了一些新型的技术。互联网的异军突起给软件技术带来了长足的发展,使得软件技术在各企业行业中普遍使用,进而促进了软件功能的不断完善,也将一些程序输入到了网络之中。汽车行业中可以用来决策和处理的信息则是源于智能化集成传感器技术的应用。智能化集成传感器技术在对汽车的技术信息进行处理的同时,还可以对错误信息进行校矫正,起着能即使纠错的作用。而智能化集成传感器技术的另外一大优点就在于,它可以避免一些信号传输问题。
2通信工程的发展现状
在信息科学技术中,通信工程师是一个非常有发展潜力的领域,尤其是互联网通信、光纤通信和数字移动通信的发展,这些通信工程让人们在信息传递和获取的时候非常的便利高效。在当今科技高速发达的社会,人们对于信息传递和交流的需求在逐步提升,而各种信息沟通已经与人们的正常工作、生活息息相关。其中,代表性的就是现代网络技术,可以说网络技术已经渗透到了人们生活的各个方面。网络技术的发展和应用好处的满足了人们对于信息交流和信息的需求,因此,通信工程的发展前景极具潜力。信息技术的应用面积非常之广泛,在当今科技社会,信息产业或多或少的对现在最为流行的领域有着直接或间接的影响。如,媒介信息的获取和处理、光纤、计算机、激光、卫星等等。而信息产业以其特有的范围广、产值高和技术新等特点,逐步的发展成为了我国国民经济的重要组成部分,成为了引领社会经济发展的主导力量。同时通信工程的迅速兴起,也带动了我国信息产业的可持续发展。
3电子技术和通信工程间的关系
相辅相成是对电子技术和通信工程之间关系最客观的描述。可以从两个方面来看:一方面从原理学的角度看,电子技术和通信工程之间是相互依赖、密不可分的,电子技术在通信工程中得到广泛的应用,而通信工程通过电子技术得到发展壮大;另一方面,从应用的领域看,电子技术能推动通信工程的快速发展,而通信工程也能促进电子技术发展,两者是呈相互促进发展的关系。电子技术和通信工程的有效地结合,极大的带动了相关领域的发展,例如物理电子、光电子学和微电子学等,有效地促进了现代信息社会的稳定发展。电子技术和通信工程的相结合为社会科学技术领域的进步作出了突出贡献,也奠定了良好的发展平台。不仅推动了社会经济快速发展,而且还在我国信息产业当中发挥着其无可替代的巨大作用。从工程技术角度出发,电子技术与通信工程的结合遍及了社会及应用领域的各个角落,也将现代科技时代推向了一个新的发展阶段。人们日常生活所直接接触到的有移动通信和个人通信、宽带通信与宽带通信网络。媒体通信中为满足人们的各种高质量要求,应用了信号处理以及应用技术。这些都体现了电子技术与通信工程相结合的科技成果,其他所涉及的领域还有光电子学和光纤通信工程、微波工程和纳米材料与技术等等。
4结语
通信工程论文范文6
1.1建立统一的民航通信工程质量监督管理主体
在民航通信工程这样一个重要工程的建设活动中,其监管主体必须具备以下条件:第一,监管主体应该具备在建筑施工领域和民航通信领域的专业技术知识,并且有较丰富的建筑施工监管经验,只有专业知识和监管经验兼而有之的监管主体,才能在民航通信工程建设活动中充分起到监管作用。第二,监管主体要有较强的质量监管意识,要在监管工作中树立民航通信工程建设质量重于泰山的信念,在监管工作中一丝不苟毫不懈怠,保证民航通信工程的建设质量;第三,监管主体要有一定的独立性,在以往的监管活动中因为我国民航通信工程建设领域的人才和从业主体较少,工程的建设主体和监管主体往往隶属于同一个部门,相互之间有着千丝万缕的关系,监管主体的这一形态不能保证监管人员在监管工作中的监管质量,不利于民航通信工程的质量监管。在我国社会经济快速发展人才培养水平不断提高的基础上,当前我国已经具备了建立独立的民航通信工程监管主体的客观条件。信息产业部委应该积极的利用这些优势条件,建立独立的民航通信工程质量监督机构,保证民航通信工程建设监管主体的独立性和监管工作的质量;第四,相应的质量监管主体在监管活动中应该有较大的权限,在国内能够从事民航通信工程建设的建筑企业绝大部分都是国有大型建筑企业,其本身不仅实力雄厚而且政治背景浓厚,在具体的建设施工中监管主体如果没有较大的监管权限,就不能保证建设施工监管工作的有效进行。
1.2建立统一、标准的民航工程质量监督管理标准
民航通信工程是一个对建筑质量和建筑标准化程度要求很高的工程项目,无论是建设施工活动中还是在建设施工监管活动中,施工主体和监管主体都迫切需要一个统一的、标准的民航工程质量标准。只有这一标准能够完善的出台,才能保证民航通信工程的建设主体和监管主体,能够就民航通信工程的建设施工达成一个统一的标准,让建设施工主体在建设施工中能够有标准可循,监管主体在监管活动中也“有法可依”。同时也能够解决在民航通信工程中建设主体和监管主体对民航通信工程认识不一的问题,减少建设主体和监管主体就建筑标准问题的矛盾,让二者的主要精力都放在工程质量上,保证在民航通信工程的建设施工活动中建设主体和监管主体能够各司其职,“心往一处想、劲往一处使”,共同为建设高质量的民航通信工程而努力奋斗。
1.3明确相关监管主体的权利与责任
因为民航通信工程的技术复杂性和高质量要求,当前我国能够满足其建设施工要求的施工主体绝大部分是国有大型建筑施工企业,这些企业本身实力雄厚而且有浓厚的政治背景,所以在对这样一个施工主体进行监管的活动中,相关监管主体一定要具备一定的权限,对建筑施工主体的建筑施工活动有“说一不二”的权利,才能在监管活动中保证监管的质量和效率。在民航通信工程监管活动的这种形势之下,明确监管主体的权利与责任成为一种必然。在民航通信工程的建设施工活动中,监管主体的权利主要包括有以下几项:第一要求民航通信工程的建设施工主体和建设项目的分包单位,向监管主体提供其自身的建设施工资质资料,以及当前建设的民航通信工程设计施工资料;第二进入被监视的民航通信工程建设施工现场对现场使用的建筑材料、建筑工艺、安全防护措施等进行检查、检测、拍照和录像;第三在监管活动中发现监管的施工项目有影响工程质量的缺陷,在相关证据明确的情况下可以立即责令相关的建设施工主体限期改正;第四,如果在监管活动中对相关项目产生任何疑问,监管主体可以具文要求建设施工主体提供相关的数据资料。在民航工程建设施工活动中,相关监管主体的责任主要包括,对民航通信工程在建设施工过程中出现的重大质量问题和施工安全问题承担连带责任,对民航通信工程建设完成后暴露出的质量问题承担连带责任。
二、明确监督内容和监督职责
对民航通信工程质量监督管理活动,是以保证民航通信工程安全为目标。以建设工程质量监督体系为手段,主要包括:
2.1对建设单位相关质量行为进行监督
在民航通信工程的建设活动中,建设质量重于泰山,所以在相关的监督管理制度对策中,对承建单位与民航通信工程建设有关的质量行为进行监督是十分有必要,只有在建设过程中始终保证对承建单位建设质量行为的监督,才能保证在民航通信工程建设完成之后的质量,所以对承建单位质量行为的监督一定要做到实时、深入。
2.2对各参建单位和人员的资质和资格进行监督
民航通信工程建设本身并不仅仅是一个建筑工程,还包含了通信工程和电力工程,是一个复杂的综合性工程,其在建设过程中不仅仅要将各个工程项目完成好,还要将各个工程项目结合好。民航通信工程的这种建设需求,为承建单位设置了更多的难题,对承建单位和人员的资质和资格提出了更高的要求,所以在民航通信工程招标的过程中,往往会设置相应的对承建单位和人员资质与资格的限制。相关的监管机构要严格执行限制标准,确保由高资质的承建企业保质保量的完成民航通信工程建设。
2.3对参建单位执行通信工程建设强制性标准的情况进行监督
民航通信工程作为民航运输业的重要组成部分,其自身的基本构成是有严格的标准的,为民航提供通信服务的通信工程一般都会采取统一的建设施工标准,以保证在通信服务中能够做到服务的标准化和高稳定性,同时在运行维护活动中也较为方便,所以在民航通信工程的建设施工中要坚决的贯彻执行建设强制性标准,保证承建单位对强制性标准的执行力度。
2.4受理单位或个人有关通信工程质量的检举、控告和投诉
民航通信工程作为一个对社会经济发展稳定性有重大影响的施工工程,其在建设活动中的质量问题重于泰山,所以相关的监督管理主体对民航通信工程的监督要采取多种方式结合的办法,其中最为重要的就是民航通信工程建设质量的公众监督,人民群众的眼睛是雪亮的,在民航通信工程建设施工过程中,相关的监管主体要召开新闻会,对民航通信工程的建设施工信息进行通报,并在会上向广大群众公布监督管理主体的通信方式,要求人民群众积极的对民航通信工程在建设施工中的质量问题进行监督。并对相关监督管理主体的监督管理行为进行监督,只有让民航通信工程建设施工和监管主体的监管活动都置于广大群众的监督之下,才能保证民航通信工程质量和相关监督管理工作的质量,切实实现好、维护好民航通信工程的质量。
三、具体施工质量监督
3.1建设施工前的审批工作
民航通信工程建设作为一种系统性的工程体系建设,因为其自身建设质量对民航运输安全性的重大影响,所以在建设施工之前必须要进行严格的审批工作,在招标工作完成之后,承建单位必须在开工前的七天以前,在通信工程质量监督机构办理相关的质量监督申报手续。相关监督机构受理承建单位的质量监督申请后,必须结合承建单位的资质和资格,民航通信工程建设的实际特点,确定相关的监督队伍构成,并赴实地考察后确定相关的工程质量监督工作方案。
3.2建设施工中的监督工作
在民航通信工程的建设施工过程中,相关监督机构的监督形式主要有工作方案检查、抽查、监督施工等,具体的监督内容包括:核查施工现场工程建设各方主体及有关人员的资质和资格;抽查涉及通信工程建设强制性标准内容的相关建设质量;监督承建单位组织的工程竣工验收的组织形式、验收程序以及在验收活动中由承建单位提供的施工资料是否真实,施工验收数据是否符合有关规定,民航通信工程施工建设时否有实体的质量缺陷。
3.3建设施工完成后的验收工作
民航通信工程作为民航运输行业的重要组成部分,其对民航运输安全的影响是基础性的,所以在民航通信工程建设施工活动结束后,要进行严格细致的竣工验收,在验收活动中质量监督机构如果发现任何质量问题,应该立刻以书面的形式向承建单位发出通知,责令其进行整改。在建设施工活动结束后,承建单位要向相关的质量监督机构提交《民航通信工程竣工验收表》,在表中对民航通信工程的竣工验收进行科学、系统的阐释。相关质量监管机构可以参考该工程质量监督队伍的建议,对竣工验收活动提出意见和建议,要求承建单位修改。在修改完成之后由相关工程的监督队伍全程参与民航通信工程的验收活动,对验收活动中的主要技术参数,工程主体概况和相关设备的运行状态进行系统、细致的检查,确认施工质量后形成详尽的书面材料,报请上级质量监督机构审批。
四、建立民航通信工程施工建设监督的惩罚体系
4.1对民航通信工程整体的惩罚体系
民航通信工程作为民航业的重要组成部分,其本身性质不同于普通建设工程,所以对民航通信工程整体的技术质量保障至关重要的,在建设施工过程中严禁出现承建单位非法转包、分包民航通信工程的现象,同时相关的质量监理单位也严禁将民航通信工程的监理业务转让。保证在民航通信工程的建设施工活动中,民航通信工程始终都由专业化的施工建设队伍来建设、始终都由专业化的施工监理团队来监理,只有这样才能从整体上保证民航通信工程建设的质量。才能为民航通信工程建设奠定坚实的基础。
4.2对民航通信工程质量的惩罚体系
在民航通信工程的建设活动中,质量始终是第一位的,对于在监察活动中发现的偷工减料、使用不合格材料和设备等质量问题,是对民航通信工程质量的不负责任,也是对人民群众生命财产的不负责任应当严惩不贷。民航通信工程建设是我国重要的基础设施建设,在工程的建设活动中应该严格遵守相应的工程建设标准,在监督活动中如果发现承建单位没有按照建设标准进行建设,或者建设完成后没有达到建设标准,相关监管主体要及时下发整改通知,要求承建单位限时整改。
4.3对民航通信工程施工过程的惩罚体系
民航通信工程建设施工也属于工程建筑,在建筑施工中存在着安全风险,所以在建筑过程中承建单位要对可能发生的安全事故做好充分的应急处理准备,在安全事故发生时能够保证施工人员的人身安全,保证民航通信工程的安全。发生通信工程质量事故隐瞒不报、谎报或者延期报告的,相关的监督管理单位有权根据《建设工程质量监管条例》的规定,对承建单位的责任人依法给予行政处分。在民航通信工程的建设施工过程中,因为承建单位使用劣质材料和施工工艺不到位导致的民航通信工程运行过程中发生的安全事故,要依法追求承建单位的责任,造成重大事故的要依法追究其刑事责任。
五、结束语