超高层建筑设计要点范例6篇

前言:中文期刊网精心挑选了超高层建筑设计要点范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

超高层建筑设计要点范文1

关键词:复杂高层;超高层建筑;结构设计要点

1前言

由于复杂高层与超高层建筑建设难度相对较大,为保证人们居住的安全性,相关建筑结构设计人员就应该以提高建筑结构安全性为主要目标,找出更有利于高层建筑建设的结构设计措施,从而在促进建筑行业发展的同时,保证复杂高层与超高层建筑建设能够具有合理性、抗震性,提高人们居住的舒适度与安全性。

2高层建筑整体结构设计特点

高层建筑整体结构设计特点主要体现在以下几方面:一是由于高层建筑相对较高,建筑水平荷载对建筑整体会产生一定的竖向轴应力,并在水平上受到自然灾害、风力等因素影响。因此在设计高层建筑整体结构时,除需要考虑到建筑竖向荷载外,也应该深入考虑到建筑水平荷载。二是由于高层建筑顶部压力相对较大,建筑在后期使用过程中,会出现轴向变形的问题,从而影响建筑梁弯距。因此为了保证高层建筑整体安全性,在结构设计时就应该加强对建筑梁弯矩的重视,避免发生高层建筑轴向变形问题[1]。三是对高层建筑整体抗震性的要求。高层建筑在设计过程中应该重视其结构延性,保证高层建筑能够更好的抵抗地震灾害,从而保证居住人们的生命安全。

3复杂高层与超高层建筑结构设计要点

3.1提高对建筑结构设计的重视,优化结构设计方案

复杂高层与超高层建筑结构设计方案直接决定了建筑结构后期应用的安全性。基于此,在进行结构设计时,相关人员就应该提高对建筑结构设计的重视,从而能够结合建筑工程周围实际情况,优化已经研制出的结构设计方案。首先,复杂高层与超高层建筑结构设计人员应该重视概念设计,在前期设计阶段需要坚持结构设计规则性、整体均衡性等原则,保证建筑结构各个部分都能够发挥出更有力的支持作用;其次,在完善复杂高层与超高层建筑结构设计时,结构设计人员应该加强与工程施工人员的沟通,从而在外观效果、施工效果的角度上实现对建筑结构设计方案的优化,避免建筑结构出现后期转换的问题[2]。最后,由于计算机技术在结构设计过程中发挥了重要的作用,因此相关人员还应该积极采取有效的计算机软件,实现对结构设计方案更科学的优化。

3.2深入分析建筑结构设计指标,提高结构设计的合理性

建筑结构设计指标不仅是复杂高层与超高层建筑结构设计人员应该遵循的指标,也是保证复杂高层与超高层建筑结构设计合理性的重要因素。因此在设计建筑结构时,相关人员就应该加强对以下几点内容的重视,从而提高复杂高层与超高层建筑结构设计的合理性。一是地震荷载指标:在研究人员的深入分析下,发现超高层建筑结构自震周期在6秒至9秒之间,因此在地震荷载指标的影响下,建议复杂高层与超高层建筑结构设计中直线倾斜下降时间控制在十秒左右。同时在分析该项技术指标时,也要全面结合建筑周围的实际情况,从而保证评估结果能够满足建筑结构合理性的要求;二是风荷载指标:由于复杂高层与超高层建筑主要会受到地震以及风力的影响,因此相关人员还应该遵照当前所提出的风荷载指标对建筑结构设计进行全面评估,从而实现对建筑变形的控制,提高建筑居住的安全性。

3.3根据相关建筑结构设计规范,保证结构设计的抗震性

由于建筑结构直接影响着人们的生命安全,因此在建筑行业快速发展的背景下,国家制定了科学、合理的建筑结构设计规范。针对复杂高层与超高层建筑提出的设计规范,有以下两种:《高层建筑混凝土结构技术规程》和《高层建筑抗震规程》。要想保证复杂高层与超高层建筑结构设计更加合理,能够更好的满足建筑抗震性要求,相关人员在设计复杂高层与超高层建筑时,就要严格按照相关建筑结构设计规范进行设计工作。同时也要全面考虑到当前建筑项目所处的外部环境、需求的抗震类别以及施工条件,以保证复杂高层与超高层建筑结构设计抗震能力为建设目标。在按照相关规范设计后,利用相关分析方法对复杂高层与超高层建筑进行结构抗震性的深入分析。

3.4重视后期居住的舒适性,保证建筑结构设计的科学性

在复杂高层与超高层建筑结构设计中,除需要重视上述设计要点外,还需要考虑到后期人们居住的舒适性。一方面,这是当今社会人们生活水平提高后对建筑结构提出的要求,另一方面,也是复杂高层与超高层建筑必须达到的建设目标。由于复杂高层与超高层建筑竖向荷载相对较大,因此在前期施工以及后期居住中,都会出现一定的压缩变形问题[3]。基于此,为了保证后期人们能够居住的更加舒适,在进行建筑结构设计及施工过程中,就应该积极采取预变形技术,并通过计算机软件进行详细的模拟演练,从而保证建筑结构设计能够更加科学合理,更好的满足人们居住要求。

4总结

综上所述,相关结构设计人员在设计复杂高层与超高层建筑时,要深入分析建筑结构设计指标、相关建筑结构设计规范以及居住的舒适程度,从而保证设计人员能够设计出结构更加合理、抗震性能更高、科学性更高的复杂高层与超高层建筑结构方案,保证复杂高层与超高层建筑使用寿命与安全性,为人们居住、工作提供更安全的环境。

参考文献:

[1]刘国荣.试论超高层建筑结构的抗震性设计[J].中国新技术新产品,2015(11):118.

[2]关伟,于连友,贾国熠.关于超高层建筑的相关结构设计讨论[J].门窗,2013(2):215~216.

超高层建筑设计要点范文2

关键词:复杂高层;超高咏ㄖ;结构设计;设计要点

中图分类号:TU97 文献标识码:A

在建筑行业发展中,越来越多新技术、新工艺和新材料应用其中,这就对工程结构设计提出了更高的要求。尤其是在当前复杂高层和超高层建筑的结构设计中,可能受到一系列客观因素影响,为工程结构埋下安全隐患,影响工程结构设计质量。尤其是在高层建筑结构设计中,相较于普通的建筑而言,结构设计要求更高,需要充分结合建筑特性,把握复杂高层和超高层建筑设计技术要点,提升设计合理性,为后续施工活动有序开展打下坚实的基础。

一、复杂高层和超高层建筑结构设计

某建筑工程总高度78.5m,高22层,主楼地下两层,地面20层。建筑结构为框剪结构,通过多方设计方案论证,桩基工程选择后压浆钻孔灌注桩,选择端承-摩擦桩的装荷载形式,压浆钻孔灌注桩295根,φ700桩252根,有效桩长18m~19m。采用标号C25的混凝土,关注前0.5m?~0.5m?碎石置于空洞地步。关注过程中,导管同孔底之间的距离为0.5m,连续灌注混凝土。

复杂高层和超高层建筑结构设计中,相较于普通的建筑结构设计而言存在明显的差异。一般其概况下,普通建筑的高度是在200m以下,复杂高层和超高层建筑的高度则超过了200m,这就对建筑工程稳定性提出了更高的要求。普通建筑多为钢筋混凝土结构,而复杂高层和超高层建筑结构则是多为钢结构或是混合结构,设计技术含量较高,结构更为复杂。此外,在复杂高层和超高层建筑结构设计中,需要充分考虑到建筑抗震要求、环境因素、自重以及风荷载等因素的影响,设计内容较为复杂,所以复杂高层和超高层建筑结构设计难度更大。

二、复杂高层和超高层建筑概念设计

(一)提升对概念设计的重视程度

近些年来,在复杂高层和超高层建筑结构设计中,设计理念不断创新,积累了丰富的结构设计经验,其中最具代表性的就是概念设计。在概念设计中,提升结构设计规则性和均匀性;结构中作用力传递更为清晰;结构设计中应该充分体现高标准的要求;结构设计中融入节能减排理念,促使结构设计更为科学合理;设计中,提升建筑材料利用效率,在满足建筑结构整体设计要求的同时,迎合可持续发展要求。基于此,为了满足上述设计要求,设计人员应该同建筑工程师进行密切的交流,在充分交流基础上,提升建筑结构设计合理性。

(二)选择合理的结构抗侧力体系

在复杂高层和超高层建筑结构设计中,为了可以有效提升结构设计安全性,选择抗侧力体系是尤为必要的。在选择结构抗侧力体系中,应该根据建筑具体高度来选择,明确结构抗侧力体系和建筑物高度之间的关系,如果建筑高度在100m以下,可以选择框架、框架剪力墙和剪力墙体系;如果建筑高度在100m~200m以内,则选择框架核心筒、框架核心筒伸臂;建筑高度在600m左右时,选择筒中筒伸臂、桁架、斜撑组合体;在结构设计中,需要充分考虑到结构内部各个部件之间的关系,形成一个整体;如果建筑工程结构中存在多个抗侧力结构体系,应该分别对这些抗侧力结构体系进行分析,在此基础上科学分析和判断。

(三)提高建筑抗震设计重视程度

提高建筑抗震设计重视程度是尤为必要的,尤其是在复杂高层和超高层建筑结构设计中,抗震设计对于建筑安全影响较大。在选择抗震方案中,需要选择合理的施工材料,质量符合建筑要求;尽可能降低地震过程中能量的扩大,对建筑构件的承载力进行验收,计算地震下建筑结构位移数值;高层建筑工程设计中,结构抗震手段的应用需要在得到位移数据基础上实现,设计更加合理的建筑工程结构设计方案,一旦建筑结构发生变形可以起到有效的保护作用;结构设计中体现出建筑构件的生产要求和界面变化情况,提升结构设计稳定性和牢固性。

(四)复杂高层和超高层建筑结构设计融合经济理念

在复杂高层和超高层建筑结构设计中,由于工程项目较为庞大,在具体的结构设计中,可能受到客观因素影响出现一系列成本问题。故此,在建筑结构设计中,需要充分融合经济型设计理念,对结构设计方案优化处理,避免建筑工程结构冗长带来的资源和资金浪费,提升资金利用效率。

三、复杂高层和超高层建筑结构设计精准性

(一)选择合理的结构设计软件,提升设计结果精准性

在复杂高层和超高层建筑结构设计中,设计工程师需要充分掌握前沿的设计手段和方法,能够选择合理的分析软件,提升计算结果准确性。当前我国复杂高层和超高层建筑结构计算软件种类繁多,但是不同软件侧重点存在明显的差异,这就需要在结构设计中,设计人员可以了解到不同软件的具体功能和应用范围,结合工程结构设计要求来选择合理的计算机软件。此外,在复杂高层和超高层建筑结构设计中,还应该对力学理念合理判断和分析,结合自身丰富的设计经验,提升计算结果精准性。

(二)加强荷载和作用力的考量

在复杂高层和超高层建筑结构设计中,设计工程师需要充分结合复杂高层和超高层建筑结构特性,明确结构自身的竖向荷载力大小和风荷载的影响因素,将其融入到后续的结构设计中,提升设计合理性。复杂高层和超高层建筑结构设计中,除了需要考虑到结构稳定性问题以外,还可以组织风洞试验,测试建筑的抗风能力。在后续的实验中,可以设计模型来模拟在不同风场环境下,建筑物的抗风能力和受力情况,有针对性提升建筑物结构的稳定性。

建筑工程结构设计中,还需要考虑到倒塌水准,主要表现在以下几个方面:其一,复杂高层和超高层建筑的延性结构构件,构件的弹性变形能力高低同结构抗震能力存在密切联系;其二,对于复杂高层和超高层建筑中的构件,满足各项技术要求;就复杂高层和超高层建筑结构设计要求,对于建筑物中的控制构件,满足建筑结构抗震设计要求,能够在不同环境下保持相应的弹性。

(三)科学计算自振周期

复杂高层和超高层建筑结构设计中,需要充分把握震动规律,提升设计合理性。但是不同的振幅和频率,可能出现大幅度震动现象,进而影响到建筑结构稳定性。故此,在建筑结构设计中,需要科学计算出自震周期,结合抗震强度、建筑高度进行科学计算,确保自振结果精准性。

(四)建筑的垂直交通设计

复杂高层和超高层建筑的结构形式主要为框架―剪力墙和核心筒结构,此种建筑结构形式可以有效提升结构稳定性,同时垂直交通体系结构可以产生较大的水平在和抵抗力。除了需要考虑到楼梯、电梯和卫生间等区域以外,向平面中央集中,可以有效减少空间占地面积,赋予建筑更好的交通环境和采光效果。垂直交通结构体系设计中,需要充分协调采光和节能之间的关系,便于后续的维护工作开展。

结论

综上所述,复杂高层和超高层建筑由于自身特性,建筑物高度较高,在结构设计中需要充分考虑到建筑抗震性能、垂直交通设计和载荷计算等问题,确保建筑工程结构稳定性和安全性,满足高层建筑使用要求,维护人们的生命财产安全。同时,对于建筑行业长远发展具有更加突出的促进作用。

超高层建筑设计要点范文3

关键词:超高层;复杂高层;建筑结构;设计要点

1超高层及复杂高层建筑结构设计的要求

(1)科学分析构造。在设计超高层及复杂高层建筑结构过程中,设计人员需要对建筑的整体构造进行合理设计,严格遵循实用性与稳定性的原则,对结构设计细节加以高度重视,加固设计部分应力符合集中的部位。同时设计人员需要综合分析外界的环境因素,如风向风力、温度变化等,以免建筑物出现形变和侧移等问题,确保构造的稳定性[1]。此外,设计人员需要准确把握建筑材料的性能,尤其是材料的形变能力和延展性,以便因材料质量问题而影响建筑构造的使用性能。(2)优选结构方案。结构方案的选择是超高层及复杂高层建筑建设的前提与基础,因此设计人员需要以工程实际情况为依据,科学确定结构方案,在确保结构安全稳定的基础上,协调好建筑成本投入及结构优化之间的关系。同时构建系统科学的评价方案,在评价体系中纳入相关的评价标准,如自然因素、施工工艺、工程材料和设计要求等,然后分析和对比超高层及复杂高层建筑的结构设计方案,优选出最佳方案,保证工程的有序实施。(3)完善计算简图。在结构设计环节,计算简图的目的就是为方案的选择提供数据支撑,达到结构精细化分析的目的。由于计算简图的完善与否直接关系到结构设计的科学合理,因此在实际工作中,设计人员应体现出计算简图的全面性与直观性特征,对结构简图的绘制误差进行科学控制,以便获得关键性的内容,真实准确反映出工程的结构信息,便于工程的顺利开展。

2超高层及复杂高层建筑结构设计的要点

超高层及复杂高层建筑结构设计的要点具体表现为以下几方面:(1)注重概念设计。在超高层及复杂高层建筑的结构设计中,需要高度注重概念设计,适当提高结构的均匀性、完整性、规则性,保证结构抗侧力与竖向的传力路径相对直接与清晰;同时在设计中适当融合节能和环保的理念,构建切实可行的耗能机制,关注材料与结构的利用率,保证结构受力的完整性。(2)加强抗震设计。抗震设计保证超高层及复杂高层建筑安全性的前提与基础,要想做好抗震设计应做好如下几点:①关注抗震结构设计的方法和质量。由于地震作用方向的随机性强,对地震荷载进行准确计算后,需要从构件与结构等方面出发,科学选用抗侧力结构体系,使刚心与形心相重合,提高结构安全性能[2]。②认真考虑抗震设防烈度。抗震设防烈度是建筑结构设计的重要内容,在烈度设计中应以建筑物最大承受强度大小为主,以此增强建筑物的安全性与经济性,有效减少建设误差,保证人们的生命财产安全。③科学选择建材。抗震设计材料应具备材质均匀、高强轻质等特点,并且构件连接应有良好的延性、连续性、整体性,这样才能有效消耗地震的能力,降低地震反应,减少因地震造成的损失。④加强构件强度。为了增强超高层及复杂高层建筑结构的抗变形能力和抗震性能,可以选择强度较大的结构,如钢结构、型钢混凝土结构、混凝土结构等。(3)合理选择结构抗侧力体系。要想保证建筑的安全性,必须要对结构抗侧力体系进行科学选择,但是在选择过程中需要注意几点:①在实际设计环节,应该高度重视相关结构抗侧力构件的联系,使其形成统一和完整的整体。②如果建筑结构中涉及诸多抗侧力结构体系,则需要对其进行认真分析,科学评判其贡献程度,对其效用进行详细考察[3]。③从建筑物实际高度出发,对所学的结构体系进行确定,如建筑物高度不超过100m,框架剪力墙、框架、剪力墙为最佳体系构成;高度保持在100~200m的范围内,剪力墙和框架核心筒为最佳体系构成;盖度在200~300m的范围内,框架核心筒和和框架核心筒伸臂为最佳体系构成;高度低于600m时,衔架、斜撑、组合体、筒中筒伸臂、巨型框架为最佳体系构成。

3结束语

在超高层及复杂高层建筑结构设计过程中,需要对其设计要点进行准确掌握,从施工过程、抗震设防烈度和结构方案等方面处罚,做到科学分析构造、优选结构方案、完善计算简图,并加强抗震设计,注重概念设计,合理选择结构抗侧力体系。这样才能提高材料的利用率,保证建筑结构的稳固性和安全性,增强建筑的整体质量和使用性能,达到良好的设计效果。

参考文献

[1]吴荣德,李国方.复杂高层与超高层建筑结构设计要点探析[J].住宅与房地产,2015,28:40.

[2]胡先林.试论复杂高层与超高层建筑结构设计要点[J].建材与装饰,2016,10:124~125.

超高层建筑设计要点范文4

关键词:超限高层建筑防震设防结构设计

Abstract: the paper mainly with an engineering example, in view of some overrun highrise structure design key points are analyzed, and the main structure of the building from the selection, structure calculation and result, and seismic fortification, etc, this essay aims at strengthening high-rise structure design level and ensure the quality of the construction and security.

Keywords: overrun highrise shock resistance structure design

中图分类号:TU318文献标识码:A 文章编号:

一.工程概况

某超限高层建筑,总建筑面积为4.797万。本工程地下3层,地上39层,地上通过抗震缝分为两栋楼,房屋高度120.18米,采用部分框支剪力墙结构体系,其中部分剪力墙在2层转换。地基基础设计等级甲级。混凝土结构的环境类别为一类及二a类,相应地,混凝土结构的裂缝控制等级为Ⅲ级(对一、二a类环境分别为wlim=0.3mm及0.2mm)。混凝土受弯构件的挠度限值按跨度由小到大依次为l/200、l/250。建筑场地类别Ⅱ类,抗震设防烈度Ⅶ度,设计基本地震加速度值为0.10 g。

二.建筑结构选型

(1)主楼高度(±0.00以上)120.13m,地面以上结构层为39层,其中出屋面3层,高度为8.8m。

(2)建筑规则为平面扭转不规则;平面凹凸不规则;布置不均匀;结构层第2层为转换层,竖向构件布置不连续; 其他不规则(局部穿层柱)。

(3)本工程为现浇钢筋混凝土结构,楼盖整体性好。

(4)结构类型:框架―剪力墙结构,属于复杂类型。

(5)超限类型:本工程高度超限;扭转不规则、凹凸不规则、构件间断(带转换结构);

其他不规则(局部穿层柱)。

(6)抗震等级:本工程地上剪力墙抗震等级为一级,地下则同首层一样;地上框支框架抗震等级为特一级,地下二、三层则是逐层降低一级。

三.结构结果分析

(1)计算软件:PKPM系列结构分析软件SATWE模块,中国建筑科学研究院PKPMCAD工程部编制。

(2)楼层自由度为3(刚性楼板)。

(3)周期调整系数:0.9。

(4)主楼结构总重: 5.72万吨(SATWE)。

(5)基底地震总剪力:32581 KN(X向)36421 KN(Y向)(SATWE)。

(6)扭转位移比:X向1.17 ;Y向1.28。

(7)转换层的上下刚度比:0.6027。

(8)最大轴压比:n=0.85。

(9)最大层位移角为1/1176,在17层(SATWE)。

(10)时程分析采用人1/1176工模拟的加速度时程曲线,选用了两组实测波和一组场地人工波进行弹性动力时程分析。弹性阶段的时程分析,构件内力,侧向位移小于采用振型分解反应谱法的构件内力和侧向位移。

四.结果计算

(1)在风荷载及地震作用下各构件的强度和变形均满足有关规范的要求。

(2)墙、柱的轴压比均符合《建筑抗震设计规范》和《高规》的要求,转换层以上柱子轴压比小于[0.85],框支柱轴压比小于[0.6]。

(3)按弹性方法计算的楼层层间最大位移与层高之比Δμ/h =1/941满足《高层建筑混凝土结构技术规程》(JGJ3-2002)第4.6.3条要求的1/800。

(4)塔楼满足(JGJ3-2002)关于复杂高层建筑结构扭转为主的第一自振周期与平动为主的第一自振周期之比最大值为0.729,不大于0.85的规定。

(5)塔楼满足(GB50011-2001)第3.4.2条关于复杂高层建筑各楼层的最大层间位移不应大于该楼层两端层间位移平均值的1.4倍的规定。

(6)除转换层外,塔楼各层均满足(GB50011-2001)第3.4.2条关于各楼层的侧向刚度不小于相邻上一层的70%,并不小于其上相邻三层侧向刚度平均值的80%的规定。

(7)塔楼满足(JGJ3-2002)第E.0.2条关于转换层上部结构与下部结构的等效侧向刚度不应大于 1.3 的规定。

(8)除转换层外,塔楼各层均满足(JGJ3-2002)第4.4.3条关于楼层层间受剪承载力不宜小于相邻上一层的80% 的规定。

(9)塔楼满足(JGJ3-2002)第3.3.5条关于按时程曲线计算所得的结构底部剪力不宜小于CQC法求得的底部剪力的65%的规定。

五.屈服判别法分析

按本工程在设防烈度地震作用下的抗震性能目标的要求,对其进行中震屈服判别分析,以判别结构在中震作用下的抗震性能。框支墙柱、框支梁在设防烈度地震作用下的抗震性能为中震弹性,标准层剪力墙的抗震性能为中震不屈服,连梁、框架梁的抗震性能为中震少量屈服,判别结果如下:

(1)框支墙柱、框支梁:个别构件需按中震弹性及小震计算结果进行包络设计,可满足中震弹性的抗震性能目标。

(2)底部加强区剪力墙:个别构件需按中震弹性计算结果进行设计,可满足中震抗剪弹性的抗震性能指标。

(3)标准层剪力墙: 个别剪力墙需按中震不屈服计算结果及小震计算结果进行包络设计,可满足中震不屈服的抗震性能目标。

(4)连梁、框架梁: 中部楼层部分连梁、框架梁出现屈服,通过实配钢筋并考虑放大,可满足少数连梁、框架梁屈服的抗震性能指标。

六.大震弹塑性分析

采用PERFORM-3D软件对结构进行弹塑性时程分析得到以下结论:

(1) 对结构输入峰值加速度为220gal的ELCentro波和安评波,进行双向地震作用的计算,结构竖立不倒,反应历程中最大层间位移角小于1/120,满足规范要求;

(2)连梁和框架梁出现弯曲塑性铰,梁端塑性铰在各个楼层分布较为均匀,计算结果显示柱未出现屈服,框支墙柱、框支梁在大震下未出现塑性铰或钢筋不发生屈服;

(3)层间位移角曲线不存在突变的情形;

(4) 综合以上,认为该结构能够满足“大震不倒”的设防目标和本工程罕遇地震作用下的抗震性能目标。

七.结构超限的抗震加强措施

(一) 超限情况

(1)房屋高度120.18米,超过《高层建筑混凝土结构技术规程》4.2.2规定的钢筋混凝土部分框支剪力墙结构房屋最大适用高度A级最大高度100米、B级120米的限值;

(2)本工程首层(二层楼面)设置梁式转换结构,属于竖向抗侧力构件不连续的竖向不规则结构;

(3)标准层在水平地震考虑质量偶然偏心作用下,结构楼层的扭转位移比大于1.2,属于扭转不规则的平面不规则结构;

(4)标准层楼板存在凹凸不规则,属于凹凸不规则的平面不规则结构。

(5)局部穿层柱,属于其它不规则类别。

(二)针对本工程超限情况,采取了以下措施:

(1)采用三个不同力学模型的空间分析程序SATWE、MIDAS GEN、ETABS进行分析计算,互相校核计算结果,确保总体计算结果吻合,确保局部构件的分析判断一致。

(2)采用SATWE软件进行了弹性时程分析,三条波基底剪力的平均值小于规范反应谱的相应值,说明规范反应谱的计算结果是偏于安全的。

(3)对结构在设防烈度地震作用下的分析结果表明,个别框支墙柱需按中震弹性及小震计算结果进行包络设计,可满足中震弹性的抗震性能目标。

(4)用PERFORM-3D进行了结构在大震作用下的弹塑性动力时程分析。

(5)采用ETABS软件对楼板的应力分析结果表明,地震作用下楼板的面内剪应力较小,楼板的剪力满足承载力验算条件,可以认为本工程楼板在常遇地震作用下处于弹性状态。

(6)针对结构薄弱部位采取比规范更严格的配筋构造。

超高层建筑设计要点范文5

关键词:超高层;建筑设计;绿色策略

建筑工程对自然资源的消耗比较大,所造成的污染和浪费的情况也比较多,在以前对建筑的建造要消耗大量的树木以及土地,对环境造成了很大的伤害,为了对环境的问题进行治理,就必须要提高我国的建筑水平,减低对资源的消耗,使用新型的能源进行建筑,保证建筑的过程的低碳性。要做到这些必须要在建筑设计的阶段注意对这些问题的处理,从建筑设计上对整个建筑的绿色性以及环保性进行合理的规划,从而从根本上提高我国的建筑水平和人们的生活质量,促进我国社会的可持续发展。

1、超高层建筑设计的发展趋势

人类社会的发展伴随着对环境的破坏,尤其建筑规模的扩大对城市的土地资源的占用也与日俱增,随着城市化的不断发展,城市人口也越来越多,所需的住宅也就越来越多,普通的住宅已经不能满足人们的生活需求,而且对土地面积的占用也很大。超高层建筑的出现可以有效的解决对土地占用的问题,但是同时也伴随着对自然资源的消耗问题,为了保证超高层建筑的稳定性和可靠性,对混凝土以及钢筋的消耗也比普通的建筑更多吗,这也就造成了超高层建筑的不够节能环保,对资源消耗过大,也容易产色灰姑娘很大的浪费的问题。随着社会的不断发展,人们也逐渐意识到了保护环境的重要性,所以对超高层建筑的节能性和环保性也就更加的重视,并认可的超高层建筑的低碳以及绿色建筑的理念。绿色建筑就是低资源消耗,高自然资源的利用率,产生的污染也少。所以在对超高层建筑进行设计的过程中要考虑到对资源的消耗问题,采用新型的设计材料可以代替一些不可再生的资源进行建造,可以有效的提高建筑的水平,另外设计人员也可以通过对室内的采光以及通风的设计,减少对电能的消耗,更多的对可再生的自然资源进行利用。

2、超高层建筑设计绿色策略应用的必要性

通过对上述内容的介绍我们知道绿色的超高层建筑和普通的超高层建筑相比更具有优越性和环保性,通过对新能源的采用以及对室内采光以及水系统的设计可以提高对资源的利用率,从而减低了对资源的浪费,节约了大量的成本,使得超高层建筑的经济效益和环境效益都得到了提高。绿色的超高层建筑还可以实现对电能以及水资源的循环利用,并可以利用太阳能对室内的温度进行调节,节省对空调的使用,减低了对环境的污染,同时通过采光的设计,也可以降低了电能的使用,从而也实现了真正的环保节能,促进了我国建筑水平的提高。所以绿色的超高层建筑是社会发展的必然趋势,可以推动我国环境的水平的提高,促进我国城市化又好又快的发展,进而也推动了我国经济和环境的共同发展。

3、设计要点

在我国的建筑中,超高层建筑和哦普通的建筑存在着很大的不同,这其中最明显的不同之处及时高度,因为层数多、高度高所以对设计技术以及施工的要求也是非常高的,要建设一个具有安全性和绿色性的超高层建筑就必须要严格按照设计的原则以及功能性进行设计,对高层建筑的节能方案进行研究,设计出符合建筑实际的绿色建筑。超高层建筑的设计的要点要从其内部空间的设计以及房顶的设计来考虑,才能设计出低碳环保的绿色建筑.

3.1空间组织

在进行绿色超高层建筑设计中要注意对空间的设计和布置,超高层建筑对地面的占用面积相对比较少,但是对高空的面积占用比较多,.对城市中的空间的影响以及人们生活的影响也比较大,所以对其外形以及功能的设计尤为重要,所以为了提高超高层建筑的空间感,就要对其内部的空间分布进行研究,并设计出合理的空间感,比如可以把超高层建筑设计成一个多功能的建筑,为人们的生活提供更多的便利.另外还可以通过对室外装饰设计,为了降低超高层建筑对人们的压迫感,使得超高层建筑和周围的建筑以及街道能够更好的融合,可以在高层建筑上画一些图案或者设立一些生活化广告招商的位置,这样不但可以提高超高层建筑的环保性还可以起到美化城市的作用。同时设计人员还要注意在进行超高层建筑设计中对低碳材料的选择,尽量不要选择那些对城市有污染的材料,也要注意对通风位置以及采光设备的设计,这样可以有效的对建筑室内的温度进行控制,还可以降低建筑施工中对环境的破坏以及对资源的浪费。

3.2顶部设计要求

超高层建筑顶部是构成城市天际线的重要因素之一,造型独特的顶部设计对超高层建筑的整体形象起着画龙点睛的作用,并成为林立在建筑群中区别于其他建筑的一个重要标志。如要使超高层建筑的顶部在白天透射出天空的湛蓝,晚上成为灯塔,其顶部与主体立面形成退台,这就需要通过增加高度来进行视觉修正。运用”隐蔽”的手法:采用高高的女儿墙.精巧的屋顶,半透明的建筑材料将顶部的功能用房隐藏起来。顶部条纹在材料、色彩上和中段相呼应。主楼的平面呈切边三角形,为不等边六角形,顶部则收缩为三角形,就象一颗璀灿的钻石镶嵌于屋顶,装点着城市的天空。若在顶部不仅设置设备用房,而且再设置一个空中会所,集休闲、娱乐、餐饮于一体,即解决了隔热、遮阳、改善室内微气候以及节约资源等功能,又使人能感到前所未有的大气之感,一览众山小的气魄.望尽全市风景。

4、结构体系

超高层建筑高耸挺拔,但对结构设计无疑是个不小的挑战,地震作用是决定选择其结构体系的关键。显著提高工作和生活效率:超高层建筑将工作和生活设施适当集中,一般性工作和生活问题在建筑内部即可解决,极大地方便了人们工作和生活。根据超高层建筑结构的复杂程度和不规则性,确定结构抗震性能化设计的合理性能目标,采用弹性、弹塑性的方法进行分析,对结构不同部位采取不同的加强措施。人为控制结构在地震作用下的损伤顺序和程度,达到合理的结构抗震设计。虽然钢结构体系在超高层建筑结构设计中具有很多优点,但其缺点是导热系数大、耐火性差。因此,结构体系为全现浇钢筋砼结构体系,主楼平面呈切边三角形,利用楼、电梯间墙体形成内筒。

5、结语

总之,在现代城市的发展进程中,超高层建筑必将成为未来主要的城市建筑发展方向,为了减少建筑对自然生态环境的破坏,促进绿色城市建设的发展,在进行超高层建筑的设计中,必须要引入一定的绿色策略,通过对空间组织以及结构体系等方面实施环保节能的技术措施,加强建筑的节能多元化发展。使超高层建筑真正成为一个具有节能、环保、绿色品质、景观特色以及实用价值的现代化城市建筑。

参考文献:

[1] 穆慧敏. 谈绿色建筑与节能环保的关系[J]. 黑龙江科技信息. 2008(22)

超高层建筑设计要点范文6

关键词 :超高层建筑 结构设计 结构体系 整体倾斜

引言

一般情况下,高层的建筑概念设计有很多种,但对于加强高层建筑抗震能力的概念设计则运用的比较广泛。超高层建筑的设计以及施工通常都要耗费更多的财力和物力,因此控制好超高层建筑的质量和抗震效果至关重要。但如何设计高层建筑结构的方法却是不确定的,在这个过程中需要考虑建筑物的自身特征以及相关的外部因素。本文主要介绍的就是关于超高层建筑在进行结构设计时应当注意的问题,并作出提升超高层建筑结构设计质量的相关建议。

一、 关于超高层建筑的结构设计特点以及相关要点

(一) 重力荷载迅速增大,控制建筑物的水平位移成为主要矛盾

由于超高层建筑相对于其他类型的建筑具有不同的特性,使得其建筑结构的设计也具有自身的一些特点。首先,超高层建筑在高度上具有其他建筑所不可比拟的特性。因此,随着建筑物的高度不断上升,其重力荷载也呈直线上升的趋势,作用在竖向构件柱以及墙上的轴压力也随之增加。在这样的条件下对于基础的承载力也就提出了更高的要求。与此同时,控制建筑物的水平位移也成为了主要矛盾,这种情况主要是由两方面原因所造成的。一方面,超高层建筑的高度较高,使得风作用效应加大;而风力的加大也就使得合力作用点的位置变高,从而使其对于建筑物产生的作用效应也就变得更大。另一方面,超高层建筑的高度过高使得其自身的重心位置也相应的被升高,建筑的结构自重也相应的加大,此时在地震作用下就将导致薄弱部位加速破坏。

(二) 竖向构件产生的缩短变形差对结构内力的影响增大

受力变形、干缩变形以及徐变变形都是竖向构件总压缩量的构成部分。通常情况下,受力变形都会在瞬时间完成,并且变形量能够根据胡克定律进行大致的测量。而干缩变形所需要的时间则相对较长,通过相关的统计数据对比可以发现,在一般条件下干缩变形量大致占总压缩量的三分之一左右。而耗时最长的就是徐变变形量,线性徐变能够通过公式进行相应的计算。而受到构件的总压缩量随着高度的不断上升而增大的影响,使得在超高层建筑中竖向构件产生的缩短变形差对于结构内力的影响也逐渐变大。

(三) 倾覆力矩增大,整体稳定性要求提高

超高层建筑由于在建设的过程中,高度不断上升使得侧向风力引起的倾覆力矩也会不断增加,随之而来的是抗倾覆力的要求也随之升高。许多具体的工程施工中都会采用增加基础埋深以及加大基础宽度或者是采取抗拔桩基等手段来达到保证整体稳定性的需求,来强化整体的稳定性。

(四) 防火防灾的重要性显现,建筑物的重要性等级升高

与此同时,在进行超高层建筑的结构设计时应当着重考虑防火防灾的功效,凸显出防火放防灾的重要作用。这是由于超高层建筑的一些建筑材料虽然具有耐热的特性,但是耐火的功效却不甚理想,一旦放生火灾的话极易造成重大的损失。并且由于高层建筑与地面之间的空间距离较大,高层中的人们很难找到有效的逃生途径也容易造成大的人员伤亡。此外,在出现地震等坍塌性事故时,需要较长的疏散时间,但超高层建筑大多采用钢筋混凝土结构,在长时间的疏散过程中极易发生其他的安全事故。与此同时,超高层建筑的投资一般都比较巨大,并且在所属区域一般都应是当做代表性建筑来建造的。所以超高层建筑无论是在经济上,还是在文化乃至政治上都具有较强的影响。为此,在进行超高层结构的设计时务必要强化结构设计的可靠性,强化建筑的整体性能质量。

(五) 控制风振加速度符合人体舒适度要求

一般情况下,风力的作用效果都会随着高度的升高而不断加强,在超高层建筑中风力的作用效果尤为明显。但是风振作用过于显著会影响到人们的舒适度,不利于人们的工作和生活,因此如何处理好风振及速度与人体舒适度之间的平衡成为了超高层建筑结构设计的重要问题。为此,必须控制好顶层的最大加速度,使其满足规定的限值。此外还要掌控好由风振带来的扭转加速度,通常情况下不应该超过标定的限值。与此同时,鉴于超高层建筑的高度较大,使得垂直于围护结构表面上的风载标准也迅速增大,所以围护结构必须进行抗风设计。

二、 超高层建筑结构设计的具体方法

进行超高层建筑的结构设计不仅要掌握好相关的要点,了解相关的结构特征,还要在具体的结构设计上合理的利用设计方法。首先,根据超高层建筑的自身特点就要做到减轻自重,减少地震作用。在这方面通常可以采用高强度轻质材料,全钢结构以及轻质隔断等都能够起到很明显的减轻结构自重,减小地震作用的效果。其次,就要降低风作用的水平力。降低风作用水平力的主要手段可以从减小迎风面积、降低风力形心以及选用体型系数较小的建筑平面形状来实现。其中为了减小迎风面积可以采用正方形的平面形式,如果计算对角线方向的迎风面宽则可以采用圆形的平面形式。而降低风力形心的方式主要可以通过采用下大上小的立面体型来实现,这种方式不仅可以有效的减小高风压在高处的迎风面积,也可以通过降低风作用的重心来使建筑物底部的倾覆总弯矩减小。与此同时,还应做到减少振动耗散输入能量。在这方面主要可以采取阻尼装置或者加大阻尼比的方式来实现。还要选择耗能、减振的结构体系,像利用偏心支撑的钢结构具有耗能的水平段,使用橡胶支座都能够做到有效的减振。最后需要完成的就是加强抗震措施。为了强化超高层建筑的抗震能力,就要从多方面共同入手。首先就要为建筑配有明确合理的计算简图,科学的分析地震作用以及相关的受力情况。大多数情况下,圆形、正多边形以及正方形等平面形状能够做到避免强弱轴的抗力不同和变性差异。但在具体的设计过程中也需要考虑到相应的问题。例如,要注意到结构平面形状是否做到对称,是否设置了多道抗震防线以及是否在满足了强度等方面的需求后采用了延性更好的结构材料等。此外,为了保证结构设计的科学性还应利用多个权威程序进行核算对比,使计算出的结果更加具有科学性和说服力。并且在设计上应当尽量向智能化方向偏转,增强对于结构设计的可控性。

结束语

超高层建筑结构的设计对于建筑的整体效果和实际功能质量具有重要的影响,但是适合的设计方法却也不是单一的。在进行设计方法以及方案的选择上,可以根据建筑的实际特点和需要来进行有针对性的选用。但终归来说,应当通过科学的设计方法使超高层建筑具备安全、舒适以及适用等方面的特征,达到相应的设计要求,满足社会以及公众的需要。

参考文献:

[1]邱仓虎,刘建平,张宇华,谢诗溶,杜文博. 对超高层建筑结构设计中几个问题的实践与思考[J]. 建筑结构,2012,07:22-26.