前言:中文期刊网精心挑选了工程热力学研究范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
工程热力学研究范文1
中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2014)23-0039-02
“工程热力学”是能源与动力工程专业的一门重要专业基础课,其教学与研究的主要对象是热能与其他形式能之间的转换关系、转换规律及应用。它不仅是相关专业课的基础,而且是在涉及能源、化工和冶金等领域,特别是能源转换与利用的各领域中深入研究、开发和创新的基础。该课程的概念性比较强,涉及的理论也较为抽象,同时与生产实际又有十分密切的联系。在教学过程中,对该课程老师和学生都有“难教难学”的感受。如何提高“工程热力学”课程的课堂教学质量,一直是相关专业教师长期探索的目标。
案例教学法是由哈佛法学院院长朗代尔于1870年最先采用的,在法学教育中发挥了极大的作用,并被推广至医学、管理学等实践性和应用性较强的学科的教学中普遍应用。科研案例教学法在案例教学法的基础上,从分析课程特点及课程教学现状入手,在教学内容上尝试选用专业任课教师及课题组已完成的应用到该课程基础知识的科研项目,将其设计、组织并呈现于课堂,使学生在“工程热力学”课程中通过对具体科研案例的讨论、分析、表达等活动,让学生在具体的科研案例中牢固掌握该课程的理论知识,形成理论结合实际的教学方法。在此基础上促使学生积极思考,主动探索,提高自主学习能力、实践能力和创新能力,并能够将“工程热力学”这门课程灵活应用到今后的专业学习和实际工作中。
一、“工程热力学”教学改革研究现状
目前,“工程热力学”教学改革研究主要集中在以下几个方面:第一,教学内容的设置和优化,主要以课程的设置、教学内容的侧重点和更新点作为重点改革内容。[1]第二,实验课教学的改革,主要对实验课的比重、实验教学的方式、实验考核方式以及实验课与科研相结合的教学方式进行了探讨。[2]第三,新方法新技术在“工程热力学”教学中的应用。随着现代技术的发展,多媒体技术、网络技术、视频技术等也被引入“工程热力学”教学中,成为教学改革研究的方向之一。[3-5]
案例教学法在“工程热力学”教学中已有应用,[6,7]但科研案例教学法在工科生“工程热力学”教学中却鲜有报道。在“工程热力学”教学中,授课老师往往采用最多的是“举例”,“举例”虽然有助于理论知识的形象化,但其局限性是仅仅解决了某个独立的知识点,而对知识的整合性较差。而科研案例教学法不同于“举例”的最大区别在于侧重了知识面的涵盖,在具体应用时设定了比“举例”更为复杂的科研案例情境,应用专业术语将不同章节知识点加以整合,形成系统且相对完整的案例,贴近实际,应用性更强。科研案例教学法利用任课老师的科研课题,将已成熟的科研案例设计组织后呈现给学生,能够更好地为学生的专业学习和“工程热力学”课程培养目标服务。
二、科研案例教学法意义及应用价值
将科研案例教学法应用在工科生“工程热力学”课程教学中的意义主要有:一是通过具体的科研案例,增强学生对理论课程的兴趣,培养学生在思考中掌握此学科的基本概念和理论知识。二是通过科研案例教学,可在一定程度上代替部分实验教学,解决经费及设备不足造成的实验难以开展的问题。三是通过针对性强且典型的的科研案例,引导学生思考,加深对知识的理解和记忆,培养学生的自主学习能力、实践能力、创新能力、分析问题和解决问题的能力,为其获得终身学习的能力奠定基础。四是通过科研案例教学,使得科研为教学服务的同时,为学生进一步掌握专业技能和提高实践能力打下坚实基础。五是通过科研案例教学,引导和促进教学老师积累科研案例,从事科研工作,起到科研促进教学,教学促进科研的双重作用。六是通过科研案例教学法在工科生“工程热力学”课程中的应用,进一步完善了工科生“工程热力学”教学方法的改革。
三、科研案例教学法在工科生“工程热力学”课程教学中的应用
1.科研案例教学法在工科生“工程热力学”课程实践教学中的应用
“工程热力学”课程教学的目的就是培养学生掌握热力学基本概念及其基本定律,理想气体的热力性质(包括实际气体),研究热能与机械能之间的相互转换,分析各种热力循环过程、计算与应用热力循环,培养学生独立解决实际热力工程问题的能力。
例如在动力装置循环一章中,通过对蒸汽动力装置循环的过程及效率的学习,研究提高循环效率的方法。那如何让学生更有效地掌握这些方法呢?科研案例教学法应是一个较好的尝试。授课老师通过讲解课题组承担的电厂锅炉改造及其烟气余热回收利用的科研项目,将其问题提出,结合本章基础知识分析解决问题的方法,将完整过程呈现给学生,增强学生对本章知识点的兴趣,同时引导学生自己提出解决方法,教师加以点评,使之在思考中加深对基本概念和理论知识的理解,从而提高其分析问题和解决问题的能力,进而加强科研能力的培养,充分将教学和科研有机地结合起来。
2.科研案例教学法在工科生“工程热力学”课程理论教学中的应用
由于“工程热力学”课程基本概念及基本定律较多,对于学生来说,如此广泛的知识体系难以在短时间内掌握,学生对于“工程热力学”课程的理论知识感觉枯燥,导致教学效果不理想。所以设想在工科生“工程热力学”的教学过程中如果通过典型且含有问题的科研案例,使得抽象的理论变得生动具体,又与实践相结合,既提高了学生的积极性,又使得知识点容易被理解。在讲解热力学第二定律时,介绍了状态参数――熵。同学们对这个参数觉得很难理解,为此引入了课题组承担的住宅中节能技术应用的问题研究。介绍利用熵权理论来确定住宅节能技术评价中各个影响指标的权重,并在此基础上对方案进行优化,从而更直观准确地判断和选择住宅节能方案。因而科研案例不仅有助于实践教学,又有助于理论教学的实施。
3.科研案例教学法在工科生“工程热力学”课程其他方面的应用
此外,工科生“工程热力学”教育中还存在实验难以开展等问题。而科研案例教学法的开展将在很大程度上解决这些问题。科研案例教学中引入实际问题,存在实验过程和实验方案设计。该教学法突出了工科生“工程热力学”的专业特点,突破了教材的局限,使学生紧紧围绕教学重点,通过选择针对性强且典型的科研案例,突出工科生“工程热力学”的专业特点,还可解决因经费及设备不足等造成的工科生“工程热力学”实验难以开展等问题。
四、科研案例教学法在工科生“工程热力学”课程的实施
1.开课前问卷调查
设计课前问卷,问卷涉及项目可行性、案例选择的依据、案例选择侧重的专业方向、案例呈现的方式以及教学效果评价方法等等。
2.收集科研案例
教师收集教研室历年来承接或参与的科研项目,以及文献资料中可用于工科生“工程热力学”课程教学的科研案例(收集的科研案例其内容是公开的,或经课题负责人同意,可用于教学)。
3.科研案例的选择和组织
根据教学内容和学生的兴趣特点,对案例进行精心的概括、组织。案例的设计一是要紧扣教学大纲的知识点,将知识点融入到案例的呈现过程中;二是要具有代表性、针对性、可讨论性。授课章节需选择代表本章重点的科研案例,并针对专业特点做重点选择;三是要具有综合性,是指案例的设计可以在实例基础上进行加工或整合,较全面地向学生展现知识点。同时,案例的选择还需考虑学生的兴趣点,让学生在兴趣盎然的学习过程中,不仅掌握知识,还锻炼科研思维能力。
4.案例呈现和讨论
教师可以通过将文字描述、多媒体手段、图表等多种手段呈现案例,或者将几种手段相结合,引入教学案例。教师呈现案例后,要根据教学目标来一步步地、循序渐进地启发、引导学生积极思考,展开师生之间的对话,充分的沟通能够丰富学生的见识,开拓学生的视野。学生可以分小组合作对案例中的各种问题进行分析和讨论,碰撞思维的火花,发现和探索解决案例问题的方法,体验理论如何应用于实践,实践中如何提炼出理论。
5.案例总结
案例总结是科研案例教学中的最后一个环节,也是最重要的一个环节。在这个环节,教师要将讨论中碰撞出的各种观点和看法进行系统的总结,将案例背后蕴含的理论知识进行归纳。在对工科生“工程热力学”课程科研案例的总结中,不仅巩固了案例讨论的成果,也扩充了学生的实践知识和理论知识体系,加深了学生对于理论知识的理解,促进学生理论联系实际能力的发展。此外,教师还要对本次案例教学进行反思――对案例的有效性反思,对教学的过程反思,对教学的效果反思,不断完善对于科研案例教学法的掌握和运用。
6.教学效果评价
主要采用考试和问卷调查的形式进行教学效果评价。通过与以往教学方式后的考试成绩进行比较,同时,采用课前、课后问卷调查的形式共同分析学生学习效果和教师的教学效果。
工科生“工程热力学”课程一般由各工科院校能源与动力工程专业承担,因能源与动力工程专业每年承接或参与多项科研项目,其中大多是国家级和省级科研项目,具有较高的科研水平和参考价值。科研案例教学在工科生“工程热力学”教学中的应用,一定程度上完善了当前工科生“工程热力学”教学中存在的不足,将科研工作的积累服务于教学,使学生在学好这门课的同时,为其进一步掌握专业技能和提高实践能力打下坚实基础。同时还可提升教师的教学水平、科研能力和综合素质,做到真正意义上的教研相长。
教学有一定的规律,但没有固定的模式。合理采用多种教学手段,激发学生的学习热情,培养学生理论联系实际的作风和创新意识,将是工科生“工程热力学”教学改革的长远目标。
参考文献:
[1]代乾,王泽生,杨俊兰.能源与动力工程专业热工系列课程改革实践[J].中国电力教育,2013,(5):74-75.
[2]于兵川,吴红特.实验教学与科研有机结合培养学生创新意识和能力[J].实验室研究与探索,2010,29(2):76-78.
[3]高蓬辉,张东海,冯伟,等.将基础数学物理知识融入“工程热力学”教学中的探索[J].中国电力教育,2013,(22):87-88.
[4]蒋亚龙.工程热力学课程教学研究初探[J].教育教学论坛,2014,
(4):97-98.
[5]谭小群,刘英炎.安全工程专业“工程热力学”教学方法探究[J].中国电力教育,2014,(2):141-142.
工程热力学研究范文2
关键词:工程材料与热处理;任务驱动;教学
1 前言
《工程材料及热处理》是高等学校工程机械类及近机械类专业的一门技术基础课,通过对该课程的学习,学生能够掌握机械工程材料和热处理的相关知识,并且为后续的专业课程打下良好的基础。但是《机械工程材料及热处理》课程内容相对复杂、抽象,学生学起来难度较大,教学效果不理想。课程任务驱动法是将课程任务与课程教学相结合,从而提升教学效果的教学方式。机械专业主要是为社会提供专业性人才,将课程任务驱动法应用于《工程材料及热处理》教学中,根据其特点和应用型本科教育“培养高素质复合型应用性人才”培养目标的要求,实现教、学、做一体的任务驱动教学模式,提升学生的学习积极性。
2 任务驱动式教学法概述
任务驱动教学法是基于构架主义学习理论的教学方法,在学习过程中,围绕着一个共同的任务中心,在问题动机、实践任务等驱动下开展教学的方式。任务驱动式教学法是基于建构主义学习理论的教学法,以知识的构建为基础,通过以提出问题、提出任务目标以及完成任务目标的教学方式。将任务驱动法教学导入《工程材料及热处理》教学中,在总体教学目标的框架下,将总体目标分为一个个小目标,根据学科的特点明确教学任务,在任务驱动下完成教学安排。
3 基于任务驱动法的《机械工程材料及热处理》教学方法
3.1 根据职业特点确定能力培养目标
《工程材料及热处理》教学的目标主要是为机械专业类学生未来的学习打下基础,通过将材料的加工与热处理和学生的职业生涯联系起来,根据专业和职业的特点确定培养目标,能够提升学生的职业素质,让学生更加重视课程的学习。在任务驱动法教学中,为了让学生获得机械工程材料以及热处理工艺的相关知识,让学生了解实际工件加工的全过程、了解热处理工艺的特点、根据零件要求合理选择热处理方式,实现工作过程中的学习与课堂上的学习的整合,在教导学生知识的同时培养学生的职业精神。
3.2根据岗位需求调整课程教学内容
《工程材料及热处理》是一门综合性技术基础课,对于未来机械人才的培养与学生的未来发展具有重要的意义。通过对相关行业与仓业人才需求进行调研,将《工程材料及热处理》教学与学生的岗位发展结合起来,能够更好的开展教学。本校所开《机械工程材料及热处理》课程总学时为63学时,其中的教学内容包括金属学的基本知识、机械工程常用金属材料、陶瓷材料与复合材料等内容。采用任务驱动法进行教学,对其中一些理论性强、岗位实用性较差的内容进行压缩,为了满足现代岗位的需求,及时补充新知识,确保教学的时效性。
3.3 以任务过程为导向的组织教学
任务引导型的《工程材料及热处理》的教学组织,需要采取问题教学的方式,通过教学导入,让学生的职业发展与课程组织相结合,从而激发学生的主动性,引导学生科学的思考问题,加深对课程的认识。《工程材料及热处理》教学组织中,以专业课程教学与课程教学相结合,将教育行动整合到教学过程中,改变传统的“知识传授型”的教学方式,将课程分为相应的项目组,从而完成教学。在《工程材料及热处理》教学中,在原有课程的基础上,优化课程体系,突出职业能力培养,以任务驱动与项目导向的教学方式,根据项目布置的方式完成教学任务。
3.4 针对不同基础的学生进行分组教学
学生的基础与学习能力并不相同,在《工程材料及热处理》教学过程中,应该开展差异化教学,以异质小组教学的方式,因材施教,促进学生的整体提升。任务导向式教学需要以学生的情况为基础,采取分层教学的方式,布置不同的教学任务与教学安排,有意识的让学生能够了解自己,明确发展方向,同时相应的教学难度能够激发学生的学习积极性,促进学生的全面提升。
3.5 以任务为导向的实验教学
实验教学是《工程材料及热处理》教学的重要内容,在理论教学的基础上,开展任务导向的实验教学,能够将理论与实践相结合,提升学生的实验动手能力与团队协作能力。《工程材料及热处理》课程的原有实验主要为简单的验证性实验,对于学生的提升有效,在原有实验的基础上加入以任务为导向的实验教学内容,与生产实践结合紧密,让学生能够了解实验方案,熟悉实验材料,提升学生的主观能动性,培养学生的创新精神。以企业典型应用为载体, 实现以实例项目为导向的教学模式,并借助教师的引导、 学生的动手实践和课堂讨论,以将学习过程转化为 “企业现场情景的再现”, 实现 “将理论知识转化为专业技能” 的学习目标。
3.6 以学生创造力为主的考核方式
任务驱动式教学主要是以学生的能力提升为主,为了确保学生得到提升,取消传统的书面考核,而取代以综合性应用知识的考核,能够深化教学环节,促进学生的发展。采用项目报告的方式取代传统的考试,能够让学生在任务的基础上,对任务进行思考与分析,并且就此开展资料搜集,以小组的方式完成任务,对于学生的发展具有重要的意义。
4 结语
通过“工程材料与热处理工艺选择”课程教学模式创新与学习方式转变的研究,打破了传统的课程结构。本校近年来开展《工程材料及热处理》的任务教学,从教学的准备、教学的组织、教学的开展等方面开始,结合学生的未来职业发展情况开展教学,让学生能够掌握理论知识与应用知识,对提升教学效果具有重要的意义。
参考文献:
[1] 韩树明.基于项目驱动的教学过程设计--以“机械工程基础”课程为例[期刊论文]-苏州市职业大学学报2014(4)
[2] 李蓉.陈志平.张巨勇 工程材料及热处理课堂教学改革[期刊论文]-教育教学论坛2014(19)
作者简介:
工程热力学研究范文3
[关键词] 化工热力学 概念 化学工程 教学
化工热力学课程是在本科三年级开设的,在此之前学生接触的课程都属于基础课,与中学课程的学习方法相差不大,而化工热力学等专业基础课讲授的是化工生产中的一般规律。由于工程问题复杂多变,采用的是实验研究方法和数学模型法,与基础课中严密的数学分析或逻辑推理有所不同。这是工程学科和基础学科的重要区别,也是学生不能很好的掌握化工热力学课程学习方法的关键。因此要想提高化工热力学的学习效果,使学生树立工程观点,并培养其独立解决实际问题的能力,我们认为在化工热力学的教学过程中应紧紧把握以下几点。
一、精心组织教学内容,注意与相关课程的联系
化工热力学的主要内容是平衡状态下热力学性质的计算,相平衡与化学平衡的计算,化工过程的能量分析和能量有效利用等方面。只有将热力学原理与反映体系特征的模型相结合,才能应用解决实际问题。原理、模型及应用是化工热力学内容的基本组成部分,教学内容的组织要紧密围绕原理、模型及应用三个部分来展开。原理是基础,模型是工具,应用是目的。尤其是目前节能工作的深入开展,更要求学生掌握能量利用过程的原理,并对实际过程中的能量利用情况作出合理的评价。
化工热力学与化学工程与工艺专业的许多其它课程密切相关,它在课程链中起着承上启下的作用,又担负着由基础课到专业课过渡的特殊使命。物理化学是本课程的基础,而本课程又是分离过程、化学反应工程及化工设计等课程的基础。在课堂教学内容组织上要注意前后内容的相互联系,化工热力学公式较多,其推导过程需要高等数学的基本知识,进行结果计算需要用到数值分析的知识,因此对课程中用到的数学知识进行必要的准备有助于新内容的学习。而计算机是方便的计算工具,可以解决热力学复杂的计算问题,可使计算结果更加准确。物理化学中的热力学内容是以建立基本概念为主要目的,而化工热力学是在完善概念的基础上以应用为主要目的,所以化工热力学的教学内容主要体现以应用为目的的特点,因此在教学过程中要特别注意避免与物理化学课程在内容上的重复。同时注意从物理化学到化工热力学课程的几个转变,即:从理想体系、二元体系向非理想体系、多元体系的转变,从隔离体系、封闭体系向敞开稳流体系的转变,而热力学性质的计算从以公式为主转向以热力学图表为主。让学生明确这些转变,可帮助学生掌握经典热力学解决问题的方法,并培养学生应用热力学原理和方法解决实际问题的能力。
二、把握课程内容体系与问题分析方法
化工热力学系统介绍了将热力学原理应用于化学工程技术领域的研究方法,它以热力学第一、第二定律为基础,研究化工过程中各种能量的相互转化及其有效利用,深刻阐述了各种物理和化学变化过程达到平衡的理论极限、条件、状态及组成变化,是化工过程研究、开发和设计的理论基础。课程教学内容包括流体的p-V-T关系及热力学性质、化工过程的能量分析、蒸汽动力循环与制冷循环、流体的相平衡以及化学反应平衡等方面。其中流体的p-V-T关系及热力学性质是其它内容的基础,流体的相平衡及化学反应平衡内容是热力学和传质、分离、反应工程之间联系的纽带。要让学生正确理解化工热力学所研究和阐述的内容之间不是孤立的,而是相互联系的,理清化工热力学的内容体系与结构层次(见图1),这样才能更好地理解和掌握课程内容及其实际应用。
图1 热力学各内容之间的相互联系
每个学科都有自己的知识体系和独特的解决问题的方法,热力学课程与学生之前接触的课程特点不同,为了使学生能够尽快地掌握热力学,首先要学生清楚热力学研究问题的方法,即理想化的方法、状态函数法和元过程方法,然后指出解决热力学问题的思路,即对于一个热力学问题如何得到需要的结果,具体的步骤见图2,这样就可使学生尽快的适应热力学处理问题的特点,掌握热力学解决实际问题的方法。
三、重视热力学概念教学和思路的引导
化工热力学的最终目的是应用,但是只有理解了热力学的基本概念,以及这些概念的来源、背景和意义,才能够确实掌握热力学课程的基本内容,也才能够更好的应用于实际中。热力学中重要的基本概念很多,如体系、状态函数、广度性质、强度性质、隔离体系、封闭体系、敞开体系、可逆循环、热力学能、焓、熵、Gibbs自由能、偏摩尔性质、化学位、逸度、活度、理想气体、理想溶液、理想功、损失功、火用等等,只有深刻理解其内涵,才能掌握热力学的精华。比如对平衡的两相,其平衡的条件是各组分在两相的化学位相等,或者说各组分在两相的偏摩尔Gibbs自由能相等,对纯物质而言,偏摩尔Gibbs自由能就是摩尔Gibbs自由能,也就是该物质的化学位,而对混合物而言,某组分的偏摩尔Gibbs自由能就是该组分在混合物中的化学位,如果学生对这些概念认识不清楚,常常会导致对相平衡、化学平衡等概念产生错误的理解。
引导学生思路对于教学效果有重要影响。如溶液的热力学性质一章,为找出各种物质在溶液中所“具有”的性质之间的关系,引入“偏摩尔性质”的概念。而偏摩尔性质中常用的是偏摩尔Gibbs自由能、偏摩尔焓以及偏摩尔体积。在这一章中主要讲解偏摩尔Gibbs自由能的计算问题,主要为以后相平衡和化学平衡的计算打基础,为了计算偏摩尔Gibbs自由能引入逸度和逸度系数的概念,对纯气体、气体混合物中的组分以及混合物、纯液体分别讲解逸度的计算方法。但对于液体混合物而言为了计算其偏摩尔Gibbs自由能又引入活度和活度系数,而为了得到活度系数与组成之间的关系,又引入了超额性质的概念,只要知道超额性质与组成的关系即可推导出活度系数模型。这样整个章节的内容就很清晰,使得学生对各概念的来龙去脉能够很好的了解,可以避免学生陷入公式细枝末节的包围中,使得教学效果明显提高,同时对学生搭建热力学知识框架十分有益。
总之,为了提高化工热力学的教学效果,使学生能够确实掌握工程处理问题的方法,了解化工热力学与其它学科各自的特点,以便找到适合的学习方法。这就要求教师在教学过程中不断的引导学生,使其能够尽快地适应工程学科的学习。
参考文献:
[1]夏淑倩,马沛生,陈明鸣,常贺英.让应用实例使《化工热力学》教学更加生动[J].化学工业与工程,2005,22(增刊):98-99.
[2]郑立辉,韦一良,宋光森,高新蕾.化工热力学教学的实践与体会[J].化工高等教育,2007,93(1):77-79.
工程热力学研究范文4
关键词: 工程热力学 教学方法 模块化教学 案例教学
1.引言
工程热力学是一门重要的技术基础课,是数学、物理和专业课的桥梁。它不仅为学生以后学习有关专业课打好基础,而且是今后能源,特别是热能在各领域被深入研究、开发、创新的基础[1]。课程理论性强、内容抽象、公式繁多、实际应用复杂,并且与高等数学、物理等学科联系紧密,而学时被大量缩减,使得其成为学生公认的“难啃的硬骨头”。由Y.A.Cengel编著的热力学教材明确指出“用简单而准确的方式与明天的工程师开展直接的对话,鼓励他们的创新思维及培养他们对所学习内容的深刻理解[2]”。为了达到这样的目标,结合课程的性质、目标,广大教师一直在努力探索与研究。本文是笔者多年教学中的一些体会总结,供专家、学者批评、指正。
2.模块化教学
工程热力学课程教学中遵循“以应用为目的,以必需够用为度”的原则,注重基础知识、基本定律、基本技能的学习,提炼实用性教学模块,模块与模块之间既相互区别,又有机联系在一起。学生对于整个课程的脉络、主线非常清楚,并且清楚自己在每一阶段的学习任务与目标。
2.1基础理论模块
2.1.1基本概念:开口系、闭口系、绝热系、孤立系;平衡态与准平衡态;准静态过程、可逆过程与不可逆过程;可逆过程的功量、热量;卡诺循环、概括性卡诺循环;体积功、技术功、推动功、流动功、有用功、轴功、耗功;热力学能、焓、熵、熵流、熵产;比定压热容、比定容热容;增压比、压缩比、预胀比等等。在教学中,教师应深入浅出,用浅显而又确切的语言、生活实例,帮助学生理解这些基本概念的定义,包括外延、内涵,及其物理意义。
2.1.2基本定律:热力学第一定律和热力学第二定律。
基本定律是工程热力学课程的理论基础、精髓,贯穿课程始终。教学中须使学生深刻理解热力学第一定律的实质,“量”守恒;热力学第二定律实质,能量不但有“量”的多少,而且有“质”的高低。用能的原则应该是不同品质的能量匹配使用,避免高品质能无谓地转化为低品质能。自古以来,永动机一直有人推崇,要使学生意识到任何试图制造热效率y≥100%的机器都是徒劳的,都是违反热力学第一定律和热力学第二定律的。
2.1.3转换内外条件:工质的热力性质与热力过程。
研究热力过程的目的在于揭示过程中工质状态参数的变化规律,以及能量转化情况,进而找出影响转化的主要原因,找到节能途径。
2.2工程应用模块
重点介绍压气机、动力循环,而制冷循环则作简要介绍。对这一部分内容的学习,应着重采用讨论等方法,引导学生运用所学基础知识进行分析\计算,从而加深对课程内容系统地理解、掌握,提高其热力分析、热力计算的能力。
3.理论联系实际,案例教学
热力学是学生公认的“难啃的硬骨头”,期末考试及格率不甚理想。但是确切地说,工程热力学却是基于我们日常生活、实验观测基础之上的一门学科,并不是很难的课题。讲课中,理论联系实际,利用案例教学,既使学生感到工程热力学并非遥不可及,取得良好的教学效果,又能培养学生理论联系实际的习惯。讲授可逆过程概念时,以物理学中的单摆在真空中、空气中为例或以在气缸的活塞上移走砝码、沙子为例,阐述可逆过程的特点、实质;区分准静态过程与可逆过程、不可逆过程;进一步说明没有耗散效应的准静态过程才是可逆过程;不可逆过程并不意味着不能向相反方向进行。讲授热力学第二定律时,以航海为例,若轮船没有燃料时,试图从大海吸热,使之转化为功,实质就是从单一热源吸热使之完全转化为功,即第二类永动机,这也是不可能实现的。
4.巧妙合理地运用p-v图、T-s图
p-v图、T-s图是进行热力分析、热力计算的重要工具,应贯穿工程热力学课程始终。合理运用p-v图、T-s图教学,能准确或定性地描述基本概念、理论及工程现象;巧妙地分析、比较热力过程、热力循环;提高学生运用工程图形语言巧妙、形象、直观地分析问题、解决问题的能力。以单级活塞式压气机为例,应用p-v图、T-s图,做耗功分析及热力性能分析,进而找到省功及节能途径,既避免了数学上复杂的运算,又提高了学生灵活运用图形分析工程现象的能力。
5.基本理论及定律的内涵渗透
“在课程的讲授中,教师非常注重从基本理论及定律的内涵渗透,原理、定律的本质内涵出发,解决各类实际问题[3]”。这是美国同行极其重视的教学方法,实践证明是行之有效的。以理想气体热力过程膨胀功的求解为例,具体公式有十多个,学生学起来,既难记又容易混淆。若从膨胀功定义式、热力学第一定律、理想气体状态方程这些基本定律、基本公式出发,结合过程特点,就可解决所有问题,并且避免学生遇到问题仅会生搬硬套,遇到复杂问题就无从下手的弊端。
6.结语
工程热力学课程博大精深,每上一次课就有一次新的体会与收获,教师应与时俱进,做到“常教常新、常教常精”。这样使明天的工程师对物理问题及其规律有一个清楚的认识与掌握,从而解决更为复杂的问题。
参考文献:
[1]童钧耕.工程热力学课程教学改革的几点看法[J].中国电力教育,2002(4).
工程热力学研究范文5
关键词:工程热力学 发电厂热力系统工程 制冷原理 课程群
中图分类号:G642 文献标识码:A 文章编号:1674-098X(2017)04(a)-0229-02
Abstract:To improve the teaching quality of courses and systemize the teaching and learning, the construction of “energy conversion course group” with “engineering thermodynamics” as the core was proposed. Three courses, namely engineering thermodynamics, thermal power plant and principles of refrigeration, were integrated in the course group. The necessity and feasibility of the course group construction were discussed, and some suggestions on how to construct the course group were proposed as well, which can guide the subsequent specific work.
Key Words:Engineering thermodynamics; Thermal power plant; Principles of refrigeration; Course group
浙江大学宁波理工学院能源与环境系统工程专业(以下简称“能环专业”)创建于2004年,重点培养具备热学、力学、电学、机械、自动化等宽厚理论基础,掌握能源与环境系统工程专业知识,能从事清洁能源生产、火力发电及其自动化、工业企业节能减排及环境保护、新能源利用、制冷与人工环境、暖通空调、资源综合利用与循环经济等领域的科学研究、工程设计、操作运行与生产管理、设备制造与维护的跨学科高级应用型人才。该校能环专业下设“能源生产”和“制冷空调”两个方向,并相应开出一系列的专业方向课程。
1 能源转换相关课程概况
《工程热力学》是高等学校能源动力类专业一门重要的专业基础课程,它在能源学科中的地位就如《物理》《数学》在工科中的地位。《工程热力学》以能量转换为研究对象,重点阐述热能与机械能之间相互转换的基本规律和方法。《工程热力学》不仅在能源专业本科教学体系中扮演着核心的重要角色,而且也是学生今后从事专业研究和工作不可或缺的理论基础[1]。《发电厂热力系统工程》和《制冷原理》分别是“能源生产”和“制冷空调”两个专业方向的课程,是学生从基础课程学习进入到后续专业课程学习的过渡桥梁。《发电厂热力系统工程》主要以热力发电厂整体为研究对象,着重研究汽轮机发电厂的热功转换理论及其热力系统和设备,在安全、经济的前提下,分析其经济效益,并进行热经济性的定性分析和定量计算[2]。《制冷原理》课程主要讲授制冷工质性质,各种制冷方法和制冷循环的理论及其应用[3]。这三门课程一直以来都是各校能源动力类专业的重点建设课程,研究报道了大量教学改革与研究方面的成果[4-9]。然而,鉴于现有教学体系下《工程热力学》《发电厂热力系统工程》和《制冷原理》三门课程之间形式上多相互独立、各自为政,因此在教研教改方面也多局限于单门课程。
2 组建“能源转换课程群”的可行性
课程群是由在内容上紧密相承、相互渗透、互补性较强的几门同系列课程组合而成的有机整体,各自配有相应的课程大纲,并按照大课程框架组织课程建设,以获得课程体系的整体优化,是具有学科优势的课程。相对于独立式的课程观,课程群在教学上独具特色和优势[10]。
《发电厂热力系统工程》和《制冷原理》是《工程热力学》在“能源生产”和“制冷空调”两个专业方向上的应用和延伸。《发电厂热力系统工程》在热力学基本概念的基础上,重点以水蒸气性质、蒸汽动力循环的实际应用为讲授对象;与之相似,《制冷原理》是气体性质、制冷循环等热力学相关知识点的应用,当然也离不开热力学第一定律、第二定律等基础知识。可以说,三门课程之间形成了一种“螺旋上升”的关系,通过《发电厂热力系统工程》和《制冷原理》的学习,一方面复习了《工程热力学》的相关知识,同时加深了对相关知识的理解程度。因此,将《发电厂热力系统工程》和《制冷原理》纳入到以《工程热力学》为核心的课程群中,在教学过程中兼顾前后续课程的互补性、互,有利于巩固整体的热学知识体系。
3 课程群建设措施
3.1 制定课程标准,完善教学文件,做到课程之间的大统一
组建教学团队,打破以往“各自为政”的教学文件制定方式,以集体行为研究制定组内课程的教学目标和教学标准,明确课程任务。教学团队对各课程的教案进行讨论与研究,通过集体备课,统一设计教学环节,体现课程之间承前启后的关系,增强整体教学效果,提升教学水平。
以统一标准建立课程案例库、试题库,按统一出题,统一改卷的形式,规范考核评价体系。
工程热力学研究范文6
【关键词】学习兴趣;研究性教学;能力提高
随着时代的变迁、社会的进步和高等教育的发展,我国高等教育教学改革过程中不断出现新的问题,期中课程的教学改革是核心,而改革重中之重是如何调动学生的学习积极性和促进学生综合实践能力的提高,本文结合多年的化工热力学教学改革情况,谈几点体会以共勉。
1 引用研究性教学模式,创造主动学习氛围
化工热力学课程专业性比较强,内容比较枯燥,基本原理概念抽象、公式推导多、工程计算更是繁琐,学生上课往往表现学习兴趣不高。针对这一实际情况,教师首先需要对热力学的基本知识进行梳理,按照教学计划和要求对教学内容模块进行划分,并对教学内容外延知识体系进行补充,为课堂教学创造必要条件。化工热力学的课堂教学要求教师用科学恰当的方法把自己所掌握的精确的专业知识教授给学生,为达到人才培养的目标,提高化工热力学教学的时效性,部分引入以教师为主导、学生为主体的研究性教学模式,能够充分调动学生学习的积极性。
研究性教学是指老师以课程内容和学生的知识积累为基础,引导学生创造性地运用知识和能力,自主地发现问题、研究问题和解决问题,在研讨中积累知识培养能力和锻炼思维的新型教学模式。这种教学模式带动学生积极地投入到课程学习中去发现问题、研究问题和解决问题,并在研究过程中获取知识、提高技能、培养能力[1]。为此,在热力学教学中,我们尝试了“设定内容情境-启发思考-交流探究-总结提升”教学环节,将复杂的热力学知识体系,和学生先前学过的基本物理、化学、数学等知识紧密联系起来,应用于实际,营造自主或团体进行讨论和探究,和传统的教学模式相比,大大提高了学生的学习积极性,并达到了能力培养的目的。
在实际教学过程中,曾尝试选择几节内容,采取学生进行讲课。教师布置任务范围,提出要求,学生以团队为单位首先学会读懂教材内容,查找所需资料,再设计教学课件,最终在讲台上进行展示讲解。从学生到老师角色的转变,从自己学明白到讲解清楚,激发出了学生对热力学学习的兴趣,加强了对知识的理解深度,与此同时活跃了课堂的气氛,教师也可以从中观察到学生的学习心理,寻找到教和学的突破口,对于课堂教学的创新和学生能力的培养具有重要意义。
2 利用多媒体和网络教学手段,提高自主学习能力
针对化工热力学知识体系和内容的具体特点,在教学方式上,发挥多媒体优势进行教学,可以大大提高学习的时效性和增强学生学习的积极性。
多媒体技术应用文本、图象、动画、声音等运载信息的媒体结合体,以图文并茂的形式为化工热力学教学充实供了多样化、多维化的教学信息空间,使化工热力学的教学内容、教学模式得到了很大的充实和改进[2]。结合化工热力学自身的特点设计生动、立体、直观性强的教学软件,与公式推导的板书相结合,加快和加大课堂教学的信息量,吸引学生的注意力,提高了教学效果。
在多媒体内容的展现方式上,除了课堂教学外,充分利用互联网,拓展网络教学。学生反映平时在化工热力学学习中,经常会遇到疑难问题,课堂时间又极其有限,往往会造成问题堆积。针对这一情况我们建立了化工热力学网络教学辅导平台,可以师生交流、学生间交流,利用网络的开放性、交互性、共享性的特点,传递与化工热力学相关的前沿信息和资料,将教学内容在网上公开,实现资源共享,并及时为学生答疑解惑,随时提出新问题,在网上进行自由讨论,师生间共同研究,从而既迅速有效的解决了问题,又提高了学生的学习效率。
3 结合实验实践教学,培养工程实践能力
化工热力学的实验教学是对化工热力学基础知识的综合运用与实践,意在培养学生建立独立思考、观察分析、解决问题、验证结果的思维体系,培养学生灵活运用理论知识解决实际问题的能力;让学生明确化工热力学在工业生产中、科学研究和工程设计中的重要性,有一个比较完整的感性认识和理性认识,也是进行产品生产和科研开发的必要准备。在实验教学的过程中,指导教师根据教学内容,详细制订系统完整的实验过程,建立了“做什么实验-为什么做实验-怎么做实验-如何提高实验数据可靠性”思维引导方式,注重挖掘学生的内在潜能和启发学生的智慧,在巩固和深化专业理论知识的基础上,要强化实验中出现的各种现象,再把实验过程中遇到的具体问题放入化工热力学的课堂教学当中,在相互融入讲解的过程中潜移默化的传授给学生,使其印象深刻,充分理解。
化工热力学所研究和解决的都是化工生产中的实际问题,因此实践教学环节非常重要,在热力学的应用章节的教学中,指导教师可以带领学生直接参与到企业的生产之中,结合课堂教学实例,按照“装置设想-实验室开发-工程设计-生产操作运行-工艺改进”主线,在现场指导学生运用所学的化工热力学基本理论联系实际,完成一定的实习任务,同时使学生在真实的生产环境中获取初步的职业训练和积累简单的生产操作经验,逐步提升工程意识和理论联系实际的能力;在企业实习实践活动中,学生开始涉入企业的先进理念和特色文化的信息,增强了参加工程实践活动的兴趣,为将来走向工作岗位、立足企业打下良好的基础[3]。
4 完善考核方式,促进培养目标达成
为了更好地评价学习的效果,必须进一步完善公平、公正、公开的考核体系,制定适应上述教学的评分标准,准确的反映学生的学习情况和能力发展水平,使学生在为成绩而努力学习的过程中,能够完成知识体系的建立和能力的提高。为此,教师应从培养学生学习思维和提高全面创新能力出发,逐步减轻期末理论考试的分量,倾向于平时的学习态度,如课堂表现情况,作业、实验、实结情况都占一定的考核比例,坚持课内与课外相结合、考试与考评相结合的原则。评分的等级和标准要进一步细化,从激发学生的学习热情出发,科学、有效、灵活的进行化工热力学的考核评分工作。如在考核的过程中,我们不考核学生对化工热力学公式的死记硬背,而是考核学生是否掌握了公式理论的应用场合条件,理解了各种符号的含义,能否明白推导步骤和过程,考核学生的推理、演绎能力等。
总之,从以上几方面入手,对化工热力学的教学工作有了更进一步的认识,以培养高素质化工人才为目的,通过不同教学方法的体验,激发了学生的学习兴趣,灵活运用化工热力学的理论知识解决实际问题的综合实践能力。
【参考文献】
[1]郑贵华.大学研究型教学的理论构想与实践探索[D].中国优秀博硕士学位论文全文数据库(硕士),2005(07).