超高层结构设计要点范例6篇

前言:中文期刊网精心挑选了超高层结构设计要点范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

超高层结构设计要点

超高层结构设计要点范文1

关键词:复杂高层;超高咏ㄖ;结构设计;设计要点

中图分类号:TU97 文献标识码:A

在建筑行业发展中,越来越多新技术、新工艺和新材料应用其中,这就对工程结构设计提出了更高的要求。尤其是在当前复杂高层和超高层建筑的结构设计中,可能受到一系列客观因素影响,为工程结构埋下安全隐患,影响工程结构设计质量。尤其是在高层建筑结构设计中,相较于普通的建筑而言,结构设计要求更高,需要充分结合建筑特性,把握复杂高层和超高层建筑设计技术要点,提升设计合理性,为后续施工活动有序开展打下坚实的基础。

一、复杂高层和超高层建筑结构设计

某建筑工程总高度78.5m,高22层,主楼地下两层,地面20层。建筑结构为框剪结构,通过多方设计方案论证,桩基工程选择后压浆钻孔灌注桩,选择端承-摩擦桩的装荷载形式,压浆钻孔灌注桩295根,φ700桩252根,有效桩长18m~19m。采用标号C25的混凝土,关注前0.5m?~0.5m?碎石置于空洞地步。关注过程中,导管同孔底之间的距离为0.5m,连续灌注混凝土。

复杂高层和超高层建筑结构设计中,相较于普通的建筑结构设计而言存在明显的差异。一般其概况下,普通建筑的高度是在200m以下,复杂高层和超高层建筑的高度则超过了200m,这就对建筑工程稳定性提出了更高的要求。普通建筑多为钢筋混凝土结构,而复杂高层和超高层建筑结构则是多为钢结构或是混合结构,设计技术含量较高,结构更为复杂。此外,在复杂高层和超高层建筑结构设计中,需要充分考虑到建筑抗震要求、环境因素、自重以及风荷载等因素的影响,设计内容较为复杂,所以复杂高层和超高层建筑结构设计难度更大。

二、复杂高层和超高层建筑概念设计

(一)提升对概念设计的重视程度

近些年来,在复杂高层和超高层建筑结构设计中,设计理念不断创新,积累了丰富的结构设计经验,其中最具代表性的就是概念设计。在概念设计中,提升结构设计规则性和均匀性;结构中作用力传递更为清晰;结构设计中应该充分体现高标准的要求;结构设计中融入节能减排理念,促使结构设计更为科学合理;设计中,提升建筑材料利用效率,在满足建筑结构整体设计要求的同时,迎合可持续发展要求。基于此,为了满足上述设计要求,设计人员应该同建筑工程师进行密切的交流,在充分交流基础上,提升建筑结构设计合理性。

(二)选择合理的结构抗侧力体系

在复杂高层和超高层建筑结构设计中,为了可以有效提升结构设计安全性,选择抗侧力体系是尤为必要的。在选择结构抗侧力体系中,应该根据建筑具体高度来选择,明确结构抗侧力体系和建筑物高度之间的关系,如果建筑高度在100m以下,可以选择框架、框架剪力墙和剪力墙体系;如果建筑高度在100m~200m以内,则选择框架核心筒、框架核心筒伸臂;建筑高度在600m左右时,选择筒中筒伸臂、桁架、斜撑组合体;在结构设计中,需要充分考虑到结构内部各个部件之间的关系,形成一个整体;如果建筑工程结构中存在多个抗侧力结构体系,应该分别对这些抗侧力结构体系进行分析,在此基础上科学分析和判断。

(三)提高建筑抗震设计重视程度

提高建筑抗震设计重视程度是尤为必要的,尤其是在复杂高层和超高层建筑结构设计中,抗震设计对于建筑安全影响较大。在选择抗震方案中,需要选择合理的施工材料,质量符合建筑要求;尽可能降低地震过程中能量的扩大,对建筑构件的承载力进行验收,计算地震下建筑结构位移数值;高层建筑工程设计中,结构抗震手段的应用需要在得到位移数据基础上实现,设计更加合理的建筑工程结构设计方案,一旦建筑结构发生变形可以起到有效的保护作用;结构设计中体现出建筑构件的生产要求和界面变化情况,提升结构设计稳定性和牢固性。

(四)复杂高层和超高层建筑结构设计融合经济理念

在复杂高层和超高层建筑结构设计中,由于工程项目较为庞大,在具体的结构设计中,可能受到客观因素影响出现一系列成本问题。故此,在建筑结构设计中,需要充分融合经济型设计理念,对结构设计方案优化处理,避免建筑工程结构冗长带来的资源和资金浪费,提升资金利用效率。

三、复杂高层和超高层建筑结构设计精准性

(一)选择合理的结构设计软件,提升设计结果精准性

在复杂高层和超高层建筑结构设计中,设计工程师需要充分掌握前沿的设计手段和方法,能够选择合理的分析软件,提升计算结果准确性。当前我国复杂高层和超高层建筑结构计算软件种类繁多,但是不同软件侧重点存在明显的差异,这就需要在结构设计中,设计人员可以了解到不同软件的具体功能和应用范围,结合工程结构设计要求来选择合理的计算机软件。此外,在复杂高层和超高层建筑结构设计中,还应该对力学理念合理判断和分析,结合自身丰富的设计经验,提升计算结果精准性。

(二)加强荷载和作用力的考量

在复杂高层和超高层建筑结构设计中,设计工程师需要充分结合复杂高层和超高层建筑结构特性,明确结构自身的竖向荷载力大小和风荷载的影响因素,将其融入到后续的结构设计中,提升设计合理性。复杂高层和超高层建筑结构设计中,除了需要考虑到结构稳定性问题以外,还可以组织风洞试验,测试建筑的抗风能力。在后续的实验中,可以设计模型来模拟在不同风场环境下,建筑物的抗风能力和受力情况,有针对性提升建筑物结构的稳定性。

建筑工程结构设计中,还需要考虑到倒塌水准,主要表现在以下几个方面:其一,复杂高层和超高层建筑的延性结构构件,构件的弹性变形能力高低同结构抗震能力存在密切联系;其二,对于复杂高层和超高层建筑中的构件,满足各项技术要求;就复杂高层和超高层建筑结构设计要求,对于建筑物中的控制构件,满足建筑结构抗震设计要求,能够在不同环境下保持相应的弹性。

(三)科学计算自振周期

复杂高层和超高层建筑结构设计中,需要充分把握震动规律,提升设计合理性。但是不同的振幅和频率,可能出现大幅度震动现象,进而影响到建筑结构稳定性。故此,在建筑结构设计中,需要科学计算出自震周期,结合抗震强度、建筑高度进行科学计算,确保自振结果精准性。

(四)建筑的垂直交通设计

复杂高层和超高层建筑的结构形式主要为框架―剪力墙和核心筒结构,此种建筑结构形式可以有效提升结构稳定性,同时垂直交通体系结构可以产生较大的水平在和抵抗力。除了需要考虑到楼梯、电梯和卫生间等区域以外,向平面中央集中,可以有效减少空间占地面积,赋予建筑更好的交通环境和采光效果。垂直交通结构体系设计中,需要充分协调采光和节能之间的关系,便于后续的维护工作开展。

结论

综上所述,复杂高层和超高层建筑由于自身特性,建筑物高度较高,在结构设计中需要充分考虑到建筑抗震性能、垂直交通设计和载荷计算等问题,确保建筑工程结构稳定性和安全性,满足高层建筑使用要求,维护人们的生命财产安全。同时,对于建筑行业长远发展具有更加突出的促进作用。

超高层结构设计要点范文2

针对当前复杂高层与超高层建筑结构设计中存在的问题,阐述了建筑结构设计方案的选择,包括结构方案的选择和结构类型的选择,并分析了建筑结构设计要点,以期为复杂高层与超高层建筑的建设提供一定的理论依据。

关键词:

复杂高层建筑;超高层建筑;结构设计;结构类型

随着我国市场经济发展进程的不断加快,复杂高层与超高层建筑工程的项目建设需求越来越大。然而,其建设设计过程的复杂程度也在不断加深,尤其是结构设计。做好结构设计工作是保障建筑物使用安全性和经济性的关键。对于复杂高层建筑或者是超高层建筑,要根据它们所承受的不同强度来开展抗震设防烈度的设计工作。

1建筑结构设计方案的选择

1.1结构方案和结构类型的选择在设计复杂高层与超高层建筑结构的过程中,结构方案选择的合理性是决定其建设质量的关键。对于复杂高层与超高层建筑结构方案的选择,如果没有根据实际工程情况进行,就很容易导致建设后期中的调整。这就在一定程度上增加了复杂高层与超高层建筑结构的设计难度,从而为建筑设计单位带来较大的修改工作量和经济损失。因而,复杂高层与超高层建筑的设计单位在结构方案的选择过程中,应充分结合相关的建筑结构专业知识,并将其应用到设计当中。对于结构类型的选择,设计人员不仅要将工程建设地的岩土工程地质条件考虑在内,还要将抗震设防烈度的要求考虑在内。这样才能降低工程建设企业复杂高层与超高层建筑工程的造价。由此可以看出,在选择结构设计类型时,需要认真考虑工程的造价和施工的合理性。

1.2结构方案和结构类型的选择要点结构方案和结构类型的选择应注重复杂高层与超高层建筑的概念设计。由大量的设计实践经验得出,在复杂高层与超高层建筑的结构设计过程中,要尽可能地提升建筑结构的均匀性和规则性,保证建筑工程结构的传力途径直接而清晰,尤其是结构竖向和抗侧力的传力途径。随着建筑行业的快速发展和科学技术的不断进步,如何实现可持续发展的建设目标已经成为研究人员重点关注的问题。

2建筑结构设计要点

2.1抗震设防烈度复杂高层与超高层建筑抗震设防烈度的设计是保证建筑物使用安全的重要设计内容。对于复杂高层与超高层建筑的结构设计要求,设计人员要根据其承受的不同强度来开展抗震设防烈度的设计工作。然而,由于建筑物高度是不同的,这就意味着在进行结构设计时,要依据实际工程情况进行有针对性的设计。一般情况下,复杂高层与超高层建筑高度均超过300m,那么在结构设计时,就不适合将其设计在抗震设防烈度为“八”的区域,而更适合设计在抗震设防烈度为“六”的区域。由此可以看出,在设计复杂高层与超高层建筑结构时,要综合考虑抗震设防烈度的具体情况。这样做,不仅可以有效减少建设误差,还可以保障居民的生命财产安全。此外,提高复杂高层与超高层建筑结构设计中的抗震技术水平,能够在一定程度上增强建筑物的经济性和安全性。因此,设计人员应从细节出发,秉承“以人为本”的设计理念。只有这样,才能有效保障人民群众的生命财产安全。

2.2结构舒适度确保复杂高层与超高层建筑水平振动舒适度是树立“以人为本”重要结构设计理念的基础。从结构设计的一般方法来说,复杂高层与超高层建筑的结构是相对柔软的。因而,在进行结构设计的过程中,不仅要保证结构设计的安全性,更要满足建筑物使用人群对舒适度的要求。这就意味着要对高层建筑的高钢规程和混凝土规程作出明确的设计要求。这一过程是使高层建筑物的结构设计达到顺风向和横风向顶点的最大加速度的重要设计内容。结构舒适度分析是复杂高层与超高层建筑结构设计的重要组成部分。具体内容包括以下两方面:①对混凝土结构的建筑来说,其设计的阻尼比最好取0.05;②对于钢结构以及混合结构的建筑来说,其设计的阻尼比要根据工程项目的实际情况控制在0.01~0.02之间。此外,从复杂高层与超高层建筑的建设用途来看,公共建筑的水平振动指标限值与公寓类建筑的指标限制存在较大的差异,因此,设计人员要根据建筑使用功能的不同进行差异性设计,比如可以通过优化TMD技术或TLD技术来实现。这样一来,就可以在复杂高层与超高层建筑水平振动舒适度不合格的情况下,进一步提升建筑物的舒适度水平。

2.3施工过程可行性是对复杂高层与超高层建筑结构进行设计时必须要考虑的问题,否则,即使设计得再合理、先进技术应用得再多,也无法满足实际建设要求。因此,设计人员在设计的过程中,要充分考虑钢材的传力效果以及复杂节点部位钢筋的可靠性、施工建设的可操作性。这也是设计人员在对复杂高层与超高层建筑进行结构设计的过程中必将会涉及到的问题。要想解决型钢与其混凝土梁柱节点处主筋相交的问题,可采用以下四种设计方法对其进行有针对性的设计:①将钢筋与其表面的加劲板进行焊接处理;②将钢筋绕过型钢;③通过在钢板上开洞的方式来穿钢筋;④在型钢与其混凝土梁柱节点表面焊接钢筋、连接套筒。由于复杂高层与超高层建筑的建设要求越来越高,因此,可以采取一些特殊的施工工艺,这也是保证建筑结构稳定的有效措施。

3结束语

总而言之,复杂高层与超高层建筑的结构设计要点是将结构方案和结构类型、抗震设防烈度、结构舒适度以及施工的具体过程考虑在内,同时,还要将提高建筑构件的材料利用效率和结构设计的可行性作为设计重点。这是因为上述内容是提升复杂高层与超高层建筑质量的重要保障。由此可以看出,复杂高层与超高层建筑结构设计所有过程的实现都离不开设计人员对工程建设项目的全面了解。

参考文献

[1]刘军进,肖从真,王翠坤,等.复杂高层与超高层建筑结构设计要点[J].建筑结构,2011(11):34-40.

[2]黄鹤.复杂高层与超高层建筑结构设计要点探讨[J].才智,2012(04):24-25.

超高层结构设计要点范文3

关键字: 深基坑支护;超高层建筑;安全质量

Abstract:Deep foundation pit safety directly related to super high-rise building safety, stability and long. Combining author's work experience, this article on high-rise building deep foundation pit support technology of existing problems were analyzed, and on this basis, put forward the corresponding countermeasures, in order to ensure the safety and quality of deep foundation pit.

Key words:Deep foundation pit support; Super high-rise building; Safety and quality

中图分类号: TV551.4 文献标识码: A 文章编号:

随着我国高层建筑、超高层建筑的蓬勃发展和人们对地下空间的开发和利用日益增多,基础设计越来越深,基坑施工的开挖深度越来越深,目前最深可发展到20m以上。随之而来,尤其对于超高层建筑而言,由于其层数多,体量大,建筑地基必须达到足够的强度才能承受上部结构的荷载,深基坑的施工安全技术的重要性日益凸显出来。尤其是对深基坑支护技术要求更加提高,不仅需要确保基坑边坡的稳定,满足基坑内的正常作业安全,同时还必须防止防止坑外土体移动,以免对周围建筑物的影响。在我国超高层建筑工程中,由于土体性质、荷载条件、施工环境的复杂性以及深基坑向着更大、更深的方向发展,使得超高层建筑深基坑支护设计和施工存在着一些问题,因此,结合作者多年的工作经验,本文对超高层建筑深基坑支护技术存在的若干个问题进行总结分析,并在此基础上提出相应的应对措施,以保证深基坑安全质量。

1超高层建筑深基坑支护概述

与一般基坑支护相比,超高层建筑深基坑支护也是为了保证地下结构施工以及基坑周边环境的安全,对基坑侧壁及周边环境采用的支档、加固与保护措施,主要包括土层锚杆(土钉墙)、深层搅拌桩(悬臂支护)、钻孔灌注桩、SMW工法、地下连续墙等,但是由于超高层建筑的层数多,体量大,建筑地基必须达到足够的强度才能承受上部结构的荷载,使得深基坑施工向着更大深度、更大广度的方向发展。超高层建筑深基坑的施工特点对深基坑支护设计和施工支护过程存在以下要求:

(1)应采用先进可靠的施工技术以确保基坑受力可靠及支护的保护作用完全体现,保证基坑四周边坡的稳定性,满足地下室具有足够的空间;(2)由于超高层建筑通常是在城市的繁华地段建造,其周围的建筑繁多复杂,且地下市政管线重点,应充分考虑到对周围相邻建筑物的安全和稳定、以及其周围地下管线的影响,即施工期间控制土体的变形,以使得基坑周围的地面沉降和水平位移控制在允许范围内;(3)对地下水的控制也是基坑支护的一个重要部分,需合理运用明排、降水、截水和回灌等形式控制地下水,保证基坑工程施工作业在地下水位以上。

2超高层建筑深基坑支护存在的常见问题

2.1超高层建筑深基坑支护在结构设计过程中存在的问题

(1)不完全基坑土体取样。深基坑支护结构物理力学性质的设计大部分取决于基坑土体取样分析。为减少勘探的工作量和降低工程造价,按国家规范的要求进行钻探取样,不可能过多地进行钻孔取样,而所取的基坑土样具有随机性和不完全性,致使所取的基坑土样不能全面地反映出复杂多变的地质构造下的土层的真实性,最终也使得深基坑的支护结构设计部符合实际地质的需求;

(2)深基坑支护结构设计中土体的物理力学参数选择不当。由于地质是复杂多变的,对土压力不能进行精确的计算,以致由于含水率、内摩擦角和粘聚力是可变值而使得无法准确计算出深基坑支护结构的实际受力,而深基坑支护结构所承担的土压力大小是与其安全度直接相关的;另外,施工工艺和支护结构形式不同,对土体的物理力学参数的选择也有很大影响;

(3)深基坑开挖存在的空间效应考虑不周。深基坑支护结构设计通常以平面应变问题处理,而实际上这种等效仅对于一些细长条基坑而言是符合实际情况的,而其他类型的深基坑而言,应是一个空间问题,却存在中空间效应考虑不周的问题;

(4)深基坑支护结构设计计算与实际受力不符。在理论上,极限平衡理论是可行的,但是深基坑支护结构的实际受力是远比该理论的假设要复杂的多,使得其结构设计远达到了理论的安全系数却发生破坏,而安全系数相对较小的情况却能在实际应用中满足要求。

2.2超高层建筑深基坑支护在施工过程中存在的问题

(1)施工过程与施工设计的差异大。如在深基坑支护施工过程中,深层搅拌的水泥掺量不足,以致使深基坑的支护强度受到影响,甚至可能引起裂缝发生等;

(2)边坡修理达不到设计、规范要求。由于施工管理人员不到位以及机械操作水平等多种因素的影响致使不能进行深度挖掘,而出现了超挖欠挖的现象;

(3)由于施工过程与设计的差异太大、工程监理不到位、施工监测不力、对基坑土样的研究不完全、注浆时配料随意性大、注浆管不插到位、注浆压力不够等原因,致使土钉或锚杆的抗拔力达不到设计要求,影响工程质量;

(4)由于超高层建筑通常处于城市繁华地段,其周围的建筑物和地下管线往往限制了深基坑的施工,而常常相关工程部门未考虑对周围设施的影响,甚至破坏了其正常的运转;

(5)深基坑由于其深度较大,势必会受地下水的影响,如地下水会渗流人基

坑内,给施工带来困难,且有产生流砂的危险导致边坡失稳和地基承载力下降等。

3超高层建筑深基坑支护应对措施

3.1超高层建筑深基坑支护在结构设计过程中应对措施

(1)深基坑支护结构的设计不应再采用传统的“结构荷载法”,而应彻底改变传统的设计观念,逐步建立以施工监测为主导的信息反馈动态设计体系;(2)在建立新的变形控制设计法时,应着重研究支护结构变形控制的标准、空间效应转化为平面应变和地面超载的确定及其对支护结构的影响等问题;(3)在深基坑支护结构设计方面,应对大量的科学测试数据进行科学分析,使得其能建立在大量的试验研究基础之上,以满足复杂多变的工程需求;(4)

深基坑支护结构应向着综合性方向发展,即受力结构与水结构相结合、临时支护结构与永久支护结构相结合、基坑开挖方式与支护结构型式相结合,以探索新型准确的支护结构的计算方法。

3.2超高层建筑深基坑支护在施工过程中应对措施

(1)深基坑支护施工时应严格按照深基坑结构设计文件进行,若出现任何异议应提交设计部门进行核实更改,不能私自任意改动设计需求;

(2)施工单位要严格按照施工规程、经批准的施工组织设计及相关的技术规范组织施工,对各施工要点要制定具体措施,并加强过程控制;

(3)深基坑支护施工方案应适合施工场地周围建筑物和地下管线的分布,充分考虑工程对周围设施的影响,尽量不要影响这些设施的正常运转,尽可能把影响降低;另外,要尽量减少支护工程施工产生的环境污染;

(4)根据地质勘察部门提供的地质资料,深入分析地下水的成因,了解深基坑周围环境,对周边有建筑基坑,宜采用以堵为主,抽水为辅;

(5)对深基坑支护结构是否会发生变形、是否会产生沉降及水平方向的位移或倾斜、是否有裂缝,以及基坑底是否产生隆起和变形进行实时监测;

4结语

深基坑工程施工成败是关系到超高建筑工程成败的关键,而深基坑支护的安全可靠直接关系到超高层建筑的安全性、稳定性和长久性。随着我国建筑业的不断发展,深基坑支护技术也在不断成长起来,但是超高层建筑地不断兴起且城市建筑间距越来越小对深基坑支护的要求也越来越高,否则将导致一些的安全事故发生,因此,对超高层建筑深基坑支护存在的问题进行分析研究,并探索相应的处理措施是非常有必要的。

参考文献

[1]黄诚,如何做好高层建筑深基坑支护的施工管理[J],科技与企业,2012,(4):13-14

[2]陈继志,确保邻近建筑安全的深基坑支护工程[J],中国建材科技,2012,(1):88-90

超高层结构设计要点范文4

关键词:超高层;结构抗震;影响因素;设计要点

中图分类号: S611 文献标识码: A

一、影响超高层建筑结构抗震效果的因素

1、超高层建筑自身结构的设计

作为影响超高层建筑结构抗震效果的最主要因素,建筑物的结构设计应是我们首要重视的问题,点式住宅、版式住宅等各种类型的建筑物要想取得理想的抗震效果,那么就必须对其进行合适的结构设计,选择最有效的抗震措施,充分的保证高层建筑结构的抗震性能,从而实现大震不倒、小震不坏的目标。

有些超高层建筑结构对平面的布置十分复杂,刚心与质心可能不一致,而一旦地震来临,那么其作用影响力和破坏力就会大大的增强。因此,在布置超高层建筑结构的平面时,应尽可能的保证刚心和质心是重合的,从而保证超高层建筑结构的抗震性能。在对建筑的结构进行设计的过程中,应保证建筑有合适的出屋面部分,这样当地震来临时才能降低其鞭梢的影响,如果房屋结构的平面布置是不规则的,在偏离建筑结构刚心的位置处建议设立抗震墙。

2、超高层建筑结构的施工材料和施工过程

超高层建筑结构的施工原材料对其抗震效果也是有着直接的影响的,因此,在施工建设的过程中,应明确施工材料的重要性,通常情况下,建筑物的建设质量越高,那么地震对建筑物的作用力就是越小的,而在同等的地震环境下,建筑施工建设中使用了性能越好的材料,其受到的地震作用力也就越小,而如果无法保证材料的使用性能,那么就会受到较大的地震作用力。因此,在超高层建筑的施工建设过程中,选择建筑材料时建议采用塑料板材、空心砖以及加气混凝土板等,这些质轻的材料对于保证建筑物的抗震性能都是十分有利的。

在超高层建筑的施工过程中,为较好的保证其抗震的效果,我们还应保证施工中每一个环节和每一道工序的质量,应高度的重视施工中的各项管理工作,同时建立完善的施工监管的规范制度,保证超高层建筑结构的施工质量,以提升其抗震的效果。

3、施工现场的地质环境

当地震来临时,其对超高层建筑结构的破坏的原因是有很多方面的,最主要的原因就是地表滑坡、山体崩塌以及岩石断层等导致地表发生了运动,使建筑结构受到了破坏,而水灾和海啸等地震带来的次生灾害也会破坏建筑物。在这些原因中,采取相应的工程措施是可以预防一部分原因的,因此,在施工的准备阶段,应对施工现场的地质环境进行严格的勘察,认真的研究实际的地质和地形条件,施工中尽可能选择对抗震最有力的地点。

二、超高层建筑抗震设计要点

1、结构规则性

建筑物尤其是超高层建筑物设计应符合抗震概念设计要求对建筑进行合理的布置。大量地震灾害表明平立面简单且对称的结构类型建筑物在地震时具有较好的抗震性能,因为该种结构建筑容易估计出其地震反映易于采取相应的抗震构造措施并且进行细部处理。建筑结构的规则性是指建筑物在平立面外形尺寸抗侧力构件布置、承载力分布等多方面因素要求。要求建筑物平面对称均匀体型简单结构刚度质量沿建筑物竖向变化均匀,同时应保证建筑物有足够的扭转刚度以减小结构的扭转影响,并应尽量满足建筑物在竖向上重力荷载受力均匀以尽量减小结构内应力和竖向构件间差异变形对建筑结构产生的不利影响。

2、层间位移限制

超高层建筑都具有较大的高宽比,其在风力和地震作用下往往能够产生较大的层间位移,甚至会超过结构的位移限值。而国内普遍认为该位移限值大小与结构材料、结构体系甚至装修标准以及侧向荷载等诸多因素有关,其中钢筋混凝土结构的位移限值(一般在1/400-1/700范围内)则比钢结构(1/200-1/500范围内)要求严格,风荷载作用下的限值比地震作用下的要求严格,因此在进行超高层建筑结构设计时应根据建筑物的实际情况以及所处的地理位置进行设计,既要满足其具有足够的刚度又要避免结构在水平荷载的作用下产生过大的位移而影响结构的承载力、稳定性以及正常使用功能等。

3、控制地震扭转效应

大量事实表明,当建筑结构的平面布置等不规则、不对称导致建筑层间水平荷载合力中心与建筑结构刚度中心不重合,在地震发生时建筑结构除发生水平位移外还易发生扭转性破坏甚至会导致结构整体倒塌,因此在结构设计中应充分重视扭转的影响。由于建筑物在扭转作用下各片抗侧力结构的层间变形不同,其中距刚心较远的结构边缘的抗侧力单元的层间侧移最大;同时在上下刚度不均匀变化的结构中,各层的刚度中心未能在同一轴线上,甚至会产生较大差距,以上情况都会使各层结构的偏心距和扭矩发生改变,因此,在设计过程中应对各层的扭转修正系数分别计算。

三、提高短柱抗震性能的应对措施

有抗震设防要求的超高层建筑除应满足强度、刚度要求外,还要满足延性的要求。众所周知,短柱的延性很差,尤其是超短柱几乎没有延性,在建筑遭受本地区设防烈度或高于本地区设防烈度的地震影响时,很容易发生剪切破坏而造成结构破坏甚至倒塌。混凝土短柱的延性主要受轴压比的影响,同时配箍率、箍筋的形式对混凝土短柱的影响也很大。高层混凝土结构短柱,特别是结构低层的混凝土短柱,其轴压比很大,破坏时呈脆性破坏,其塑性变形能力很小。提高混凝土短柱的抗震性能,主要也就是提高混凝土短柱的延性,可以从以下几方面着手。

1、提高短柱的受压承载力

提高短柱的受压承载力可减小柱截面、提高剪跨比,从而改善整个结构的抗震性能。减小柱截面和提高剪跨比,最直接的方法就是提高混凝土的强度等级,即采用高强混凝土来增加柱子的受压承载力,降低其轴压比;但由于高强混凝土材料本身的延性较差,采用时须慎重或与其他措施配合使用。可以采用钢骨和钢管混凝土柱以提高短柱的受压承载力。

2、采用分体柱

由于短柱的抗弯承载力比抗剪承载力要大得多,在地震作用下往往是因剪坏而失效,其抗弯强度不能完全发挥。因此,可人为地削弱短柱的抗弯强度,使抗弯强度相应于或略低于抗剪强度,这样,在地震作用下,柱子将首先达到抗弯强度,从而呈现出延性的破坏状态。分体柱方法已在实际工程中得到应用。人为削弱抗弯强度的方法,可以在柱中沿竖向设缝将短柱分为2或4个柱肢组成的分体柱,分体柱的各柱肢分开配筋。在组成分体柱的柱肢之间可以设置一些连接键,以增强它的初期刚度和后期耗能能力。

3、采用钢管混凝土柱

钢管混凝土是套箍混凝土的一种特殊形式,由混凝土填入薄壁圆形钢管内而形成的组合结构材料。由于钢管内的混凝土受到钢管的侧向约束,使得混凝土处于三向受压状态,从而使混凝土的抗压强度和极限压应变得到很大的提高,混凝土特别是高强混凝土的延性得到显著改善。同时,钢管既是纵筋,又是横向箍筋,其管径与管壁厚度的比值至少都在90以下,相当于配筋率2至少都在4.6%。当选用了高强混凝土和合适的套箍指标后,柱子的承载力可大幅度提高,通常柱截面可比普通钢筋混凝土柱减小一半以上,消除了短柱并具有良好的抗震性能。

结束语

通过以上的论述,应充分的认识到影响超高层建筑结构抗震效果的各类因素,在超高层建筑的抗震设计工作中,选择最为科学合理的设计方法,针对现阶段超高层建筑抗震设计的现状,准确的把握抗震建筑结构抗震设计工作的发展趋势,保证超高层建筑抗震设计的效果,促进我国超高层建筑行业的健康发展。

参考文献

[1]赵楠.基于菱形平面的超高层结构抗震设计[J].工程抗震与加固改造.2013(01)

超高层结构设计要点范文5

【关键词】高层建筑;结构设计;扭转;受力性能;结构方案;计算简图

中图分类号:TU208 文献标识码: A

前言

高层建筑的出现是科技发展、社会进步、建筑行业提升的重要标志,当前,国家和城市发展越迅速,高层建筑的数量和层次就越高,很多大城市已经开始了超高层建筑的设计和施工,并已经逐渐成为一种社会和行业发展的趋势。在这样的趋势下,高层建筑结构设计工作就显得尤为重要,在设计工作中要通过科学的手段、统筹的方法和高超的技巧将设计的合理性、安全性和需要的广泛性和差异性有效地统合在一起,满足从行业到社会,从个人到集体,从需要到发展等各方面的需要。当前,各界为建筑行业提出了做好高层建筑结构设计的要求,因此,在高层建筑结构设计中要了解高层建筑结构的特点,注意设计中的要点,重点对高层建筑结构的扭转和受力性能进行关注,在坚持安全、质量和经济的原则下,提升高层建筑结构设计的水平。

一、高层建筑的结构特点

1、重视对待轴向变形。高层建筑中,由于竖向负荷较大的原因,可能会引起在柱中较大程度上的变形,从而对连续梁、弯矩产生比较大的影响,该影响包括两个方面:一方面是,会增大端支座负弯矩的数值或者是增大跨中正弯矩的数值,另一方面是,减小连续梁中间支座的负弯矩值。除了这两方面的影响外,还会影响预测构件的侧移和剪力,以及影响构件的下料长度,对于对构件的侧移和剪力的影响,将其和构件竖向变形相比较,就会得出较为不安全的结果;对于对预测构件下料长度的影响,可以采取根据计算轴向变形数值,然后针对性的对下料长度进行调整分配。

2、重要的高层建筑结构设计指标是结构延性。高层建筑和低层建筑的区别之一就是:在建筑结构方面,高层建筑的结构较柔和,同时也就保障在地震作用下高层建筑的变形更大。为了避免高层建筑在遭受较大冲击后,在进人高层建筑塑性变形阶段的前提下,高层建筑仍可以具有较强的变形能力,也就是避免高层建筑的倒塌,需要在高层建筑结构设计时采取恰当合理的措施,达到保障高层建筑结构具有应对较大冲击的延性。

3、高层建筑结构设计的决定性因素是水平荷载。一方面,对于大多数的高层建筑楼房来说,竖向荷载基本上是定值,而水平荷载,比如地震作用和风负载,荷载值随着高层建筑结构动力特性的不同而发生较大程度上的浮动变化;另一方面是,由于高层建筑楼房自身的重量和楼面引起的弯矩和轴力的数值,与建筑物的高度的一次方成正比,而水平荷载产生的倾覆力矩和引起的轴力与建筑物高度的二次方成正比。

三、高层建筑结构设计的要点

1、高层建筑的构造措施

高层建筑结构设计中要重点对剪力、压力、柱体等相关结构和特性进行强化,同时要加强弯力矩的防护,提高拉力的大小,提升构造梁的性能,要注意对薄弱部位的加强,特别重点考虑的构造要点有:延性、温度应力、薄弱层厚度,钢筋锚固长度,抗震结构层次等主要环节,要达到高层建筑结构的设计合理化,就必须做好上述构造方面的设计。

2、高层建筑结构的计算简图

计算简图是高层建筑结构设计和高层建筑结构计算时的中要基础,因此,需要选择适宜的高层建筑结构计算简图。在计算简图中要对高层建筑结构的刚节点和铰节点进行重点把握,同时要控制计算简图的误差,使其限定在高层建筑结构设计的允许范围中。在高层建筑结构计算简图的应以中要对构造的重点防护措施进行强化,这样有利于控制高层建筑结构的稳定。

3、高层建筑结构的方案

结构方案的经济性、科学性和合理性是整个高层建筑结构设计的关键,要采用高层建筑结构的合理形式和经济形式,这样可以使高层建筑结构得主要性能和要求达到相应的设计。在方案中要注意竖向和水平向的规则,同时,要注意在同一结构单元内不能应用同样结构体系和方式,以避免高层建筑结构出现问题。

4、高层建筑的基础方案

在高层建筑结构进行基础设计师要重点考虑高层建筑结构的荷载分布、高层建筑工程的地质条件、高层建筑的施工条件。设计高层建筑结构时要重点考虑到对地基潜力的挖掘,因此,在高层建筑结构设计阶段要对工程地质勘查报告的内容和技术参数进行重点了解,以便形成具有科学性和合理性的高层建筑结构基础方案。

四、高层建筑结构设计的基本要求

1、高层建筑结构设计的规则性

高层建筑结构设计应符合抗震概念设计的要求,应采用规则的设计方案,不应采用严重不规则的结构体系。高层建筑结构设计应该具备多道抗震防线;具有合理的承载力和刚度分布的结构水平和竖向布置,避免因扭转和突变效应造成局部薄弱部位。

2、高层建筑结构设计的平面规则布置

高层建筑结构平面布置需要能抵抗竖向和水平荷载,对称均匀,明确受力,传力直接,减少扭转的影响。在地震作用下,建筑的平面要简单规则,在风力作用下可以适当放宽要求。建筑的抗震设防要求建筑的平面形状宜对称、简单、规则,才能达到减震的目的。

五、高层建筑结构设计问题的防范和处理

1、高层建筑结构设计中的扭转问题

在进行结构设计时,我们需要建筑的三心尽可能汇于一点,即三心合一。高层建筑结构设计的扭转问题就是指建筑的三心在结构设计过程中未达到统一,结构在水平荷载的作用下发生扭转振动的效应。

2、高层建筑结构的受力性能

对于高层建筑物最初的方案设计,建筑师考虑更多的是应该是它的受力性能,而不是详细地确定它的具体结构。沉降缝两侧单元层数不同时,由于高层的影响,低层的倾斜往往很大,因此沉降缝宽度可按高层单元的缝宽要求来确定。

3、高层建筑结构设计中的其它问题

一是,剪力墙的墙肢与其平面外方向的楼面梁连接时,应采取在墙与梁相交处设置扶壁柱或暗柱,或在墙内设置型钢等至少一种措施,减小梁端部弯距对墙的不利影响。二是,对各抗震等级框支梁纵向钢筋的最小配筋率提高了要求,同时增加了最小面积配箍率的要求。三是,严格要求各抗震等级剪力墙在各种情况下的厚度与层高。四是,地下室结构的楼层侧向刚度不应小于相邻上部结构楼层侧向刚度的2倍。

六、结束语

综合全文,近些年我国的高层建筑建设行业迅速发展,而高层建筑结构设计是高层建筑建设行业的关键因素,高层建筑建设行业的进一步发展,使得对高层建筑结构设计质量的要求越来越高。高层建筑结构设计质量好坏直接影响到整个高层建筑是否具有安全性,直接影响到高层建筑建设行业是否达到可持续发展。本文从高层建筑结构设计的原则人手,对高层建筑结构设计的特点进行详细的概述,进而引出高层建筑结构设计中应该注意的问题,并对这些问题进行简单的概括。

[参考文献]

[1]蒋最.浅探高层建筑设计和城市空间合理化[J].城市建设理论研究(电子版)

超高层结构设计要点范文6

【关键词】 高层建筑;结构设计;要点

引 文:当今社会,随着人们对居住空间的要求越来越高,同时对住宅的布局以及装饰也越来越高,使得目前的建筑形式向多元化发展,并且随着高层建筑的大量出现,满足了人们对居住大空间的要求,同时也使得城市用地紧张的情况得以解决,但是,随之而来的问题也出现了,因为高层建筑本身的特点决定着建筑结构的特殊性,比如结构复杂,建筑施工的工作量很大,施工的周期较长等,所以,如果在结构设计方面发生问题,不但会使得经济造成巨大的损失,而且也会危及人们的生命以及财产的安全,因此,我们要对高层建筑结构设计要点严格把握,并且对工程施工的各种相关因素全面考虑,详细的分析及把握影响建筑质量的潜在问题,从而采取有效的方法及措施进行防治。

1.高层建筑结构体系

1.1高层建筑的剪力墙体系。

在高层建筑中设计中结构体系中,其重要组成部分就是剪力墙,在高层建筑承受风荷载或高层建筑承受地震方面,剪力墙有着积极性的作用。因为其不仅对结构中水平构件所产生的竖向荷载能够承担,而且对外部因素所引起的振动作用也能够承担。

1.2高层建筑的框架―剪力墙体系。

高层建筑中常见的结构体系就是框架―剪力墙体系,垂直荷载的力量是框架所能承受的,而剪力墙所承受的则是水平剪力。剪力墙的设置不仅能够在很大程度上增强建筑的侧向刚度,使其水平位移变小,而且还能够使框架所受的力实现均匀分布。

1.3高层建筑的筒体体系。

高层建筑筒体结构体系由框架―剪力墙结构与全剪力墙结构综合演变和发展而来的。筒体结构体系是将剪力墙或密柱框架集中到建筑的内部和而形成的空间封闭式的筒体。其特点是剪力墙集中而获得较大的自由分割空间,目前在高层建筑中被广泛应用。

2.高层建筑结构设计要点分析

2.1选择合理的结构方案。

高层建筑的结构设计不仅要具有较高的经济性,更要满足使用性及合理性,因此在进行高层建筑结构设计时,首先就要选取一种既可行又满足较好经济性的结构形式及体系。其中要注意如下问题:首先在同一结构单元中,最好不要混合使用不同的结构体系,同时还要综合考虑使用要求、地理环境及施工条件等实际情况,还要协调好建筑电气及水暖等配套设施的设计,从而选择最优的建筑结构体系。

2.2选择合适的基础方案。

综合考虑高层建筑物的上层结构类型和地基的承受能力,对建筑物的结构设计。尽量充分利用地基的承受强度,建筑合理的高度,必要时要求进行地基变形的检验。根据当地的地质调查结果,对高层建筑结构基础设计。建筑设计人员在进行建筑地基基础设计的时候,必须要根据当地的设计规范标准,由于我国各个地方都会有自己地区规划制定的《地基基础设计规范》 ,各个地区制定的规范对建筑结构设计师在设计时有着非常重要的帮助。

2.3选用适当的计算方法及简图。

在高层建筑结构设计中,要注重相关计算方式的选择,从而保证强度等计算结果能够满足真实情况,从而更好的为结构设计提供依据。此外,由于建筑结构设计是在结构计算的基础上开展的,一旦计算方式不准确,导致计算结果有误,就会严重影响高层建筑的结构设计质量,更可能造成安全事故的发知,并带来巨大的损失,因此在高层建筑结构设计中,要注意相关计算方法的选择及计算简图的选取。同时,计算简图还应有相应的构造措施来保证。实际结构的节点不可能是纯粹的铰结点和刚结点,但与计算简图的误差应在设计允许范围之内。

2.4正确分析计算结果。

计算机技术是在结构设计中普遍采用的技术,但是随着目前软件种类繁多,软件的不同往往也会导致计算结果的。所以,设计师要对程序的适用范围以及条件进行全面的了解才可。设计师在拿到计算结果时一定要对其认真分析,并且慎重的校核的原因是计算机在辅助设计时常常会因为结构实际情况与程序不相符合,或人工输入有误,或软件本身有缺陷从而导致计算结果错误,这就需要设计师以此做出合理判断。

2.5采取相应的构造措施。

“强柱弱梁、强剪弱弯、强压弱拉原则”是在进行高层建筑结构设计时需要牢记的,并且一定要注意构件的延性性能;对薄弱部位加强;对钢筋的锚固长度也要注意,更要注意的就是钢筋的执行段锚固长度;同时对温度应力的影响力等也要考虑。

2.6高层建筑结构抗震设计。

由于高层建筑的楼层数较高,特别是某些超高层建筑,如果遇到如地震等灾害时,其抗震能力得不到有效的保证,就使其变形及破坏力都会远远的大于其它类型的建筑,因此要综合多方面因素,全面的提升高层建筑的抗震能力。

首先要注重地基的选择及设计,高层建筑最好应建筑在土地较硬的地区,并远离河岸,同时还要注意,不要在断层或地陷等较易发生地震的地区建造,如果地基选择不合理很可能影响到其抗震能力。其交,在设计阶段还要注重建筑材料的选取,将钢筋与混凝土结合在一起的建筑形式主要是利用钢筋与混凝土具有相似的膨胀系数,在任务环境下都不会产生过大的应力,同时这两者之间的粘结性很好,特别是将钢筋表面预置肋条或在钢筋的端部弯起弯钩,可大大的提高钢筋与混凝土之间的拉力,可以更好的提高建筑的强度及抵抗外力的能力,从而更好的满足人们的使用要求。而在高层建筑的设计施工中会在框架结构中融入一定的剪力墙结构,从而更好的实现不同建筑的功能及相应的强度要求。

3.结束语

综上所述,我国城市化建设速度的不断加快,使得提高城市土地利用率的相关问题越来越被社会所重视,与此同时,各种形式的高层建筑拔地而起,从而为缓解了城市居民住房紧张问题,但是由于高层建筑本身的结构特点,决定着其相应的结构设计必须满足一定的强度及使用要求,这对建筑设计师来说是一项艰巨的任务。要想保证高层建筑施工质量,首先在结构设计阶段就要保证其设计方案完全符合国家的相关标准,并结合其实际用途,紧抓设计要点,并对较易发生的潜在问题的设计进行及时排除,确保施工方案得以顺利的展开,从而保证整体高层建筑的施工质量,为人们的正常使用提供较高质量的保障。

参考文献

[1]吉柏锋,瞿伟廉.下击暴流作用下高层建筑物表面风压分布特性[J].华中科技大学学报(自然科学版),2012(9).

[2]张莉华,万怡秀,陈燕,严开涛,罗志国.广州珠江新城J1-1地块综合楼超高层建筑结构设计[J].建筑结构,2012(9).

[3]文勇.水平荷载在高层建筑结构设计分析中的重要作用[J].科技创新导报,2010(25).

[4] 罗国露. 浅谈高层建筑结构转换层施工技术[J]. 中小企业管理与科技(下旬刊). 2011(08)

[5] 雷宏刚. 我国高层建筑钢结构国产化的技术经济分析[J]. 太原理工大学学报. 1996(01)