前言:中文期刊网精心挑选了流体力学基本原理范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
流体力学基本原理范文1
论文关键词:流体力学;制冷与低温工程;教学改革
目前,郑州轻工业学院(以下简称“我院”)的制冷与低温工程专业已被评为国家级特色专业。为了加强制冷与低温工程专业学生能力的培养,造就人才,有必要对制冷与低温工程专业的教学进行全面的改革。
“流体力学”是制冷与低温工程专业的一门重要的专业基础课,主要分为流体静力学和流体动力学,研究流体平衡、运动规律、流体和周围物体之间的相互作用力及其实际应用的科学。由于流动现象和流动规律及其影响因素十分复杂,故其具有理论性强、概念抽象和公式较多、实际工程应用广、对学生的综合分析处理问题的能力要求较高等特点。加上学生对流体流动机理普遍缺乏感性认识,导致“流体力学”课程历来被公认为是教师难教、学生难学难懂的课程之一。因此,迫切需要进行“流体力学”课程教学改革,使学生学好本门课程,提高课程教学质量,使学生能更深刻地理解和掌握专业理论知识,培养学生的综合分析应用能力和创新能力,全面提高专业素质。
分析目前我院制冷与低温工程专业“流体力学”课程教学的现状,发现存在以下主要问题:首先,“流体力学”理论性强,概念多而抽象,难以理解,学生普遍缺乏对流体力学问题的感性认识,学习兴趣不高;其次,课程中公式繁多,推导过程复杂,且大多涉及到“高等数学”的偏微分方程,另还涉及到“大学物理”、“理论力学”、“材料力学”等方面的知识,学生理解困难;另外,学生对所学的知识不能灵活应用。因此怎样激发学生的学习兴趣,选择合适的教学模式组织教学,全面实现该课程教学目标,提高教学质量,是该课程教学亟待解决的问题。
一、改革教学方法
学好“流体力学”这门课对于制冷与低温工程专业的学生来说至关重要。让学生理解流体静止和运动的规律及其影响因素,不仅能为学生学习后续的专业课程提供必要的理论基础,也能为学生以后分析解决实际工程中的实际问题提供理论指导。怎样才能让学生学好这门课,笔者结合自己的教学经验,认为可以从以下几方面着手。
1.激发学生学习兴趣
学生是学习的主体,而“流体力学”又是大家公认难学的课程,因此学生的学习积极性高低决定着“流体力学”这门课教学的成败。
要提高学生学习“流体力学”的积极性,首先要上好“绪论”课。“绪论”课是学生接触和了解“流体力学”这门课的窗口,也是教师的教学水平和教学方式的第一次展示,“绪论”课上得好不好直接影响到“流体力学”课程教学的成功与否。通过“绪论”课让学生对“流体力学”的发展及其广泛的工程实际应用有一个大致的了解,使他们充分意识到“流体力学”知识和我们的生活及国家的建设密切相关,深刻理解“流体力学”知识在今后的学习和解决实际工程问题中的重要作用。
教师在讲授一些理论知识之前,可先举出很多贴近生活的有趣实例或者先提一些问题来激发学生的学习兴趣,启发引导学生积极地思考。例如在讲液体的粘性之前,可以先问学生:在水中游得快还是在油中游得快?为什么?又如在描述流体运动有两种方式——拉格朗日法和欧拉法时,可以将在座的学生和教室里的每个座位作为研究对象来进行类比,从而让学生很容易的理解两种方式。通过举例和提问的方式,让学生带着问题去学习,让学生亲身感受到参与教学活动是一件乐事、趣事,由愿学到爱学再到乐学。实践表明:列举事例或提问的方式可以避免学生学习的枯燥感,活跃课堂气氛,不仅可以吸引学生的注意力,激发学生学习的主观能动性,还可以使学生充分意识到本课程对今后学习和工作的重要意义,并且能加深学生对所学知识的理解和记忆,使学生分析问题和解决问题的能力得以提高。
另外,还应充分利用多媒体,通过图片、动画让学生直观了解各种流动现象,而不是停留在抽象层面,从而提高学生学习“流体力学”的兴趣。
2.巧妙讲解公式
为了定量地描述流动现象和分析流动机理,需要应用数学工具。学生要真正理解基本概念、重要公式,首先就要读懂数学,然而读懂了数学不一定意味着明白了数学符号背后所代表的物理意义。“流体力学”教学实践表明,学生从读懂数学到理解流动问题的物理本质有一个过程。教师的一个重要任务就是做好各方面的工作,帮助学生完成从读懂数学到理解流动的物理本质这一过程的转变,进一步建立起科学的思维方式。
“流体力学”在分析介绍欧拉平衡微分方程、欧拉运动方程、连续方程、动量方程、伯努利方程等理论知识时都有大量的公式,这些公式涉及一些高数、物理、力学方面的知识,特别是大量的偏微分方程,加上“流体力学”的公式推导采用欧拉法,与物理及其他力学不同,学生的观念不易改变,而且推导过程复杂,学生理解掌握很困难。如果过分强调“流体力学”知识的严密性和完整性,对每个公式的每个推导细节都逐一介绍,推导过程将会枯燥无味,学生只会被弄得糊里糊涂,兴趣全无。而如果直接给出公式,让学生死记硬背,只能让学生不知其所以然,当然也就不能真正用所学知识来解决实际问题了。
根据多年的教学经验,笔者认为:“流体力学”中公式的讲解应将重点放在概念引入、理论模型建立的思想、基本原理和主要步骤以及公式的物理意义与应用限制上。首先对基本概念力争讲透,概念清楚了,公式的讲解推演才有意义。然后重点使学生明确公式的物理意义及公式中各项参数的物理意义和几何意义,只有真正理解了公式的物理意义,才能灵活使用公式解决实际工程问题。最后应强调公式的应用范围及应用注意事项。由于流动的多样性,“流体力学”中的很多方程都是在一定的条件下得到的,如伯努利方程就有多种形式(理想流体、实际流体、流体是否可压等),在具体运用时,要根据具体情况选用正确的形式。
3.充分利用作业
学习的最终目的是让学生能够独立自主地解决实际工程问题。如果基本原理掌握了,接下来就是如何用这个原理去解决实际问题。课后作业是检查学生对所学知识理解、掌握程度的一种手段,同时也是培养学生分析、解决问题能力的一种方法。
首先应由学生独立地完成一定量的课后练习题,这是“流体力学”学习过程的重要组成部分,解题过程实质就是利用“流体力学”的基本原理和基本方程分析和解决实际问题的一个训练过程,课后习题可以帮助学生加深对基本概念和基本理论知识的理解。
然后再由教师通过习题课的方式,利用具有代表性的习题和一些学生普遍认为困难、出错多的习题,讲述流体力学原理在工程实例中的应用。在讲解习题时,重在提供条理清晰的解题思路、详细具体的解题步骤,使学生在此过程中掌握解决问题的正确方法和技巧,以便在以后的学习工作中举一反三、触类旁通、学以致用。这一过程增强了学生对流动过程物理本质的理解,将物理问题与数学工具有机地结合起来,有助于学生对与专业相关联的实际工程问题进行认真思考,有效的增强了学生分析并解决实际问题的能力。
二、改革教学手段
多媒体教学以其形象、直观、生动、具体、易于理解的教学特点,丰富的教学内容,被高等院校广泛采用,并深受广大师生的欢迎。
多媒体教学在“流体力学”教学过程中发挥着重要的作用。利用多媒体,可将“流体力学”中那些难以用语言描述的流动图像、抽象难懂的知识点,如拉格朗日和欧拉法的描述,流线与迹线、层流、湍流等,通过图片、动画和视频资料直观形象地展现给学生,使其从感性认识开始建立清晰的物理概念,较容易地掌握相关内容,并使学生的逻辑思维、综合分析能力得以提升。另外一些需占用大量时间写板书表述的和不易通过板书表述的内容也可利用多媒体制作Power Point课件。如莫迪图、水头线、各种流场和一些典型的例题习题等。采用多媒体教学,授课的信息量增多了,教学内容更丰富了,学生在有限的时间内接收的知识更多了,学生的学习兴趣提高了,学生的思路拓宽了,教学质量也提高了。
多媒体教学的发展并不意味着要摒弃传统的板书教学。有很多学生认为板书能让他们有更多的时间去思考消化一些抽象的东西,更有利于对基础知识的理解和掌握。根据“流体力学”既有抽象复杂的流动机理又有大量的基本概念、基本方程的特点,在教学过程中应将多媒体教学与板书教学相结合,扬长避短,发挥各自的优势,为教学工作更好地服务。如对某些特定的流动现象,可以通过多媒体教学,加深学生对流动现象和机理的理解。而对于较重要的公式及一些重点难点内容还是采用板书教学,例如流体力学基本方程的推导过程依然使用传统教学中的板书,有利于学生集中注意力,让学生更清楚地看清步骤、方法和解题思路。这样既可留给学生足够的思考时间,又可加深学生对重要知识的理解,从而获得良好的教学效果。
流体力学基本原理范文2
【关键词】专业认证流体力学教学改革考核方式
1.教学现状及分析
流体力学是一门专业基础课,其主要的先修课程有高等数学、大学物理、理论力学、材料力学等。由于流体力学对知识储备要求高,研究对象又是不具固定形状的流体,其理论教学比较抽象,因此教学现状有以下几个特点。课堂教学尽管采用多媒体方式,但流体力学的理论性太强,使得现有的多媒体教学课件形式单一,内容不够丰富,导致教学仍以口授与板书为主,课堂互动性明显不足,学生学习缺乏主动性、积极性;缺乏实践性教学环节;缺少有效的师生沟通平台。由于师生交流少,容易造成“教”、“学”分离,给课程的教学效果大打折扣。
2.考核现状及分析
现阶段流体力学的考核方式,大部分仍然采取30%的平时成绩和70%期末考试成绩。本课程包含大量的经验公式及公式推导过程,对比近两年的学生成绩,目前该课程的考核方式并不理想。
3.改革措施
3.1教学改革措施
流体力学课程需要掌握的概念多、公式多,学生学习积极性不高,需要教师对课程不断开展改革探索。为解决目前流体力学课堂教学中存在的问题,针对教学环节提出以下几个改革方案。
3.1.1完善教学大纲
根据工程教育认证标准,应进一步修订和完善教学大纲和教学计划,优化学时分配。在保证《流体力学》基本概念、基本原理以及基本理论授课时间的基础上对课程设计进行改革。比如,适当增加数学知识基础;导入课程最好用动画或者试验吸引学生的注意力,提高学生学习的兴趣;适当增加学生课后的作业,以讨论性的分析和推导公式为主。
3.1.2增设案例及课堂讨论环节
增加相关内容的案例,设置科学问题,然后分组讨论,引导学生分析问题。以流体静力学的基本公式为例,通过电视节目中模拟的桶裂实验为引导,提出问题,留有悬念。然后通过公式推导理论验证,最后给同学们讨论的时间。另外,有条件的还可以专门设置一堂实验课,课上分组展示并讲解学生在课下自行设计的桶裂实验。
3.2考核评价改革措施
增加平时考核的占比是课程改革的趋势。根据专业认证的要求,增加平时的教学工作量,为学生准备与重点知识相关的小课题,增加课堂讨论环节是一个新思路。根据课堂表现进行部分考核,提高学生平时考核成绩。从而去除纯记忆类题目,只考核综合理解类和综合应用类试题,适当增加期末考核难度,以督促学生平时注意积累。
3.3自编应用型教材
教材是学习的依据,作为机械类流体力学教材要体现理论与实际相结合,突出应用性。对于有经验的教师,可以在总结多年知识积累和教学、科研成果的基础上,结合相关流体力学书籍,撰写属于自己的机械类教材《流体力学》。自编教材对学生而言更实用,体现在以下几点。一是自编教材主要以教学大纲为依据,整体上与课堂教学具备较高的统一性。内容编排按课堂教学节次循序渐进,学生自学时,逻辑和思路清晰,课上课下的自然衔接,更具有启发性;二是可以根据课上学生的反应精简方程式数学推导内容和过程,尽量将抽象概念形象化、简单化和透彻化,使之通俗易懂。或者在课堂上减少推导过程,而在书中将推导过程编写的更加详细,甚至添加多种推导方法,便于自学;三是理论联系实际,集教学与科研成果于一体,使得课堂内容具有较高的客观性、有效性和科学性,如此更有利于解决实际问题,指导工程实践和生产活动;四是丰富例题和习题,除计算题外还设有简答题、选择题等多种题型,并给出参考答案。
流体力学基本原理范文3
关键词:流体力学;多元化;课堂教学模式
作者简介:张明辉(1972-),女,河北沧州人,山东科技大学机械电子工程学院,副教授;陈庆光(1969-),男,山东临沂人,山东科技大学机械电子工程学院,教授。(山东 青岛 266590)
基金项目:本文系山东科技大学省级机械电子工程品牌专业建设项目的研究成果。
中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2013)01-0064-02
“流体力学”课程是我国高等院校工科各专业的一门主干专业基础课。该课程是联系前期“高等数学”、“理论力学”等基础课程和后续专业课程的桥梁和纽带,在学生能力培养和知识体系构建过程中起着“承上启下”的作用。[1]当前的“流体力学”主要以经典理论或实验内容为主,教材中包含大量的计算公式及理论推导,这就要求学生具备一定的高等数学知识及较高的综合分析和处理问题能力。但由于大多工科学生数学知识相对薄弱,再加上学生自主学习的能力较差,导致教师难教、学生厌学成为较普遍的现象。如何提高学生的学习兴趣,让学生正确理解和掌握流体力学知识,使“流体力学”课程的教学水平迈上一个新台阶,是教育工作者的责任和使命。许多文献[2][3]为了提高流体力学的教学效果,在课堂教学模式、教学手段、实验教学等方面进行了探讨和研究。通过多年来在“流体力学”教学中的若干思考和实践,笔者提出了构建多元化教学模式的教学理念,即将启发式教学、对比分析法教学贯穿课堂教学中,以加深学生对理论知识的感性认识。同时,为了适应个性化发展和高素质教育,培养学生创新能力,在引导他们熟练掌握基本分析方法的同时,还要教会学生多视角、多层次的分析问题和解决问题。另外,为了提高教学效果,课堂教学中还运用多媒体技术作为辅助教学手段,工程图片、计算机动画和视频素材等各种教育信息使得教学更加生动、直观和多样化,开阔了学生的视野,激发了学习兴趣。
一、启发式教学模式
启发式教学就是让学生充分运用他们拥有的知识和能力去正确比较、分析、综合、判断、概括、归纳和解决问题,探索结论。一方面可以使学生开动脑筋,积极思维,另一方面也能够开发学生的智力,培养学生的能力。笔者在教学过程中将启发式教学贯穿始终。例如,流体微团运动分析是流体力学中的一个难点问题,很多学生对微团运动过程中发生的角变形很困惑。为了让学生更好地理解角变形的原因,笔者将矩形流体微团四个角点的速度全部写出,如图1所示。然后分别用红笔标出C、D点和A、B两点X方向速度的第三项,让学生观察两者的差别,学生很快发现D点比C点、A点比B点在X方向的速度大,这势必产生一个与垂直方向的夹角。接着,笔者又用蓝色笔标出,C、B点和D、A两点Y方向速度的第二项,让学生观察两者的差别,学生很快发现B点比C点、A点比D点在Y方向的速度大,这势必产生一个与水平方向的夹角。这样,学生很自然就画出了流体微团的角变形图,如图2所示。最后,笔者又把问题引申到三维,让学生写出其他两个方向上的角变形公式。这样学生在学习过程中,在理解和接受理论知识的基础上,学会了发现、解决和总结。除了在分析问题时采用启发式教学外,也可以启发学生对所学的概念、理论、公式进行对比,在加深理解的同时找出它们的内在联系和区别。譬如,在推导伯努利积分方程时先让学生回忆流体静力学基本方程。这样学生很快发现两者之间仅相差动能项。从而明白在流体静力学中满足势能守恒,而在动力学中转换为机械能守恒。通过对比分析,学生不但很容易地理解了伯努利方程的物理意义,也对静力学基本方程加深了印象。
二、对比分析法教学
由于“流体力学”课程涉及的知识比较广,如材料力学、大学物理、线性代数、工程热力学、高等数学等多学科的知识,再加上“流体力学”比较抽象,理解起来相当困难。在教学中“流体力学”这门课教师难教,学生难学。为了便于学生掌握流体力学的概念和基本原理,在讲授流体力学知识时,笔者经常采用对比分析教学法,让学生通过思考与对比增强所学知识的连贯性,提高学习效果。由于流体力学是力学的分支,因此力学的定律也适用流体力学,但流体的特性决定了流体力学在与固体力学有千丝万缕联系的同时,又有它独有的一些特性。所以,笔者在授课时会让学生先回忆相关的固体力学知识,再将固体力学定律引申到流体力学当中,让学生轻松地理解和掌握流体力学中的概念和原理。例如在讲授流体静平衡微分方程这一章节时,笔者就会问学生:在理论力学中,如果物体处于平衡状态应满足什么样的条件?学生很自然地想到要所有的合外力为零。然后笔者又会引导学生流体力学的研究对象为流体质点,而流体质点在空间上是很小的,需要对微元体建立平衡方程。换句话说就是微元体要保持平衡,其所受的合外力也需要为零,由此就可得到流体静平衡微分方程。这样静平衡微分方程的物理意义就很直观地展现在学生面前。除了将流体力学和固体力学进行对比分析外,笔者还会将流体力学中的一些概念通过列表的方式进行对比,让学生了解这些概念的异同点。比如,笔者在讲到流体运动学这一章节时讲解两种描述流体运动的方法,就给出了表1。学生借助表格一目了然地看到了拉格朗日法和欧拉法各自的特点。通过对比分析法不但有助于学生理解和掌握流体力学知识,还能让学生将所学知识融会贯通,提高分析问题、解决问题的能力。
三、多层次多视角分析问题
现代教育观念认为,高等教育应当融知识的传授和能力的培养于一体。[4]为了适应个性化发展和高素质教育,培养学生创新能力,在引导他们熟练掌握基本分析方法的同时,还要教会学生多视角、多层次的分析问题和解决问题。为此,笔者除了讲授基本方程、基本定理的推导,还会将问题进一步深化、演绎,将枯燥乏味的理论知识点进行归纳整合,建立学生的哲学思维观。例如,在学习静止流体对平面的总压力这一节时要求学生能够计算总压力大小、方向和作用位置。讲授首先从求解矩形水平面的总压力入手,再延伸到求解矩形垂直面总压力,再到求解矩形斜平面总压力,最后求解任意平面的总压力,如图3所示。这种层层剥茧的讲授让学生不知不觉中掌握了求解总压力的方法和技巧。逐层分析的方法教会了学生如何将一个复杂问题分解,然后再借助已有的知识进行求解,达到触类旁通的效果。同时,为了让学生更加深入、全面地了解平面所受的静压力,讲授时又分别采用了解析法和压力图法进行求解。通过这一章节的学习,学生明白了解决许多工程问题可以从多个侧面、多个视角分析,尽管采用的方法和理论不尽相同,但都可以获得正确的结果,殊途同归,增强了创新意识。
除了在教学过程中改变传统的教学方法,构建多元化的课堂教学模式以外,为了提高教学效果,运用多媒体技术为基础的立体化辅助教学手段也非常重要。随着计算机技术的发展,工程实际图片、动画和视频素材使各种教育信息的表达更加生动、直观和多样化,能很好地刺激学生的感官,激发学生学习的兴趣,开阔学生的视野,可以收到纯板书教学所无法达到的效果。因此,“流体力学”教学过程中对于难以理解的概念,如势流与旋流、流线与迹线的概念、流场的演示、流态的判别和波的传播、边界层的形成等内容均利用计算机动画给学生进行演示,起到了画龙点睛的作用。
四、结束语
多元化课堂教学模式是一个先进的教学理念。本文提出的启发式教学、对比分析和多视角教学模式将原本抽象的概念、复杂的理论推导直观地展现在学生面前,让学生在分析比较与思考中学会将固体力学遵循的原理定律融会贯通到流体力学中,寻求概念之间、知识点之间和章节之间内在的关联性,举一反三,把原本杂乱的概念形成清晰的知识体系。这种多元化的教学模式在很大程度上提高了学生的学习兴趣和学习积极性,培养了学生分析、解决工程实际问题的能力,改善了教学效果。
参考文献:
[1]王发辉,桑俊勇,等.“流体力学”立体化教学体系的构建[J].中国电力教育,2009,(12):102-103.
[2]孙恒,朱鸿梅,舒丹.“启发—联想式”教学方法在流体力学教学中的应用[J].中国电力教育,2011,(5):81-82.
流体力学基本原理范文4
[论文摘要]结合学习主体所处的时代环境变化和流体力学知识体系的学科跨度大以及对数学基础知识要求很高的特点,分析了流体力学教学中存在的问题和难点,提出大量采用实验模型和实例教学以加强流体流动现象的观察理解对提高流体力学教学效果的必要性和重要性。
前言
流体无固定形状,即使受到的剪切力再小,只要持续存在,其变形便会随时间持续增大,不像固体那样,一定的受力只能产生一定的变形。流体力学的基本理论非常严密,描述流体流动现象的数学方程非常复杂,高度非线性[1],因此学生对流体力学敬而远之的现象比较严重。此外由于因特网及电子计算机的普及,各种虚拟现象泛滥,在这样的环境下成长的学生接触和感受实际发生的各种流体流动现象的机会大大减少,对自然现象的观察和理解能力很弱。很多学生在接受流体力学教育之前所受的应试教育的影响下[2],学习只是为了在短时间内对给出的试题做出接近正解的答案获得高分,这种教育具有多大的意义,近年来许多学者从教育学的角度提出了疑问[2]。只有直面实际的流体流动现象,抓住问题的本质,才能诞生真正的学问和研究。笔者基于对本科和研究生的流体学教学中存在的难点和问题,指出了重视流体流动现象的观察和理解对提高流体力学的教学效果的必要性和重要性。
一、流体力学教学面临的问题
(一)新形势下学生所处的社会环境变化
学生从小利用电脑打电子游戏的玩耍时间和机会大大超过了自己亲自动手制作道具及模型的体感玩耍时间,通过体感玩耍接触和观察自然现象的机会大大减少。
因特网的普及使得在短时间内获得大量的信息或实时获得信息成为可能,近年来出现学生过度依赖因特网的倾向,疏远了纸质图书及相关文献这些知识比较系统逻辑性也有保证的传统信息载体。但因特网上除了正确的信息外,还有很多不准确甚至错误的信息,即使是正确的信息,各信息段之间也缺乏系统性,因此学生仅通过因特网难以建立系统的知识体系的。
手机在学生中的普及也使得学生们在实际问题时,不是自己独立分析问题,找出问题发生的原因,而是直接利用手机询问他人求得答案,这样很难培养独立制定计划,对可能事态进行预测,独立进行解决问题的能力。这恰恰是对一个未来走向社会成为一个优秀的技术人员的必经的磨砺之道。
(二)流体力学教学面临的问题
流体流动的力学模型及其运动的物理意义难以理解[3]。流体粘性产生的模型与牛顿粘性定律之间的对应关系就是最好的一个例证。大多数学生虽然能够使用牛顿粘性定律进行计算,但对运动的流体为何会产生粘性却不能正确的理解。的确,对于涉及到流体力学的某些技术或产品设计,只要懂得一定的计算即可,但是对于开发和设计全新的产品,如不能准确把握所涉及到的相关流体流动的物理本质,有时会产生完全错误的设计结果。
流体的运动状态繁多,流体力学融合领域广,要求学生掌握更多的学科预备知识,尤其对数学知识的要求更高,使部分学生觉得流体力学是难以接近的一门课。同一流动现象常常可以从多个角度进行解释,容易使学生产生混乱。比如对翼型的流体力学工作原理,可以从流体流动的动量变化、伯努利方程、压力积分、流线的曲率变化等几个方面进行解释,解释方法之多反而会使学生产生混乱,但每一种解释方法都是正确的,解释的都是一个本质,只有完全理解各种解释方法所依据的理论,才可以解除认识上的混乱,将学到的知识条理化、系统化。
描述流体流动的数学方程高度非线性化,数学上求解比较困难。描述流体流动的纳维斯方程和能量方程是否可以求解以及数学解的唯一性的证明需要微分方程、偏微分方程、多元积分等很深的数学功底,但近年来学生的数学和力学基础存在下降的趋势。
学生在进入大学前所接受的应试教育的影响很大,以考试成绩自评学习效果的认识根深蒂固[4]。实际的流体流动现象往往没有单纯的标准答案,有时甚至存在多个解,重要的是抓住流动现象的物理本质,系统的理解流体力学的基本原理。
二、教学方法对应
解决上述问题的根本方法,笔者认为只有从流体力学教学上,直面涉及流体的各种现象,使学生准确的把握物理本质。为此在流体力学课堂上,广泛采用流体模型教学和实例教学,增加学生观察理解各种流动现象的机会,唤起他们对本门课的兴趣的同时,让他们形成为探究流动现象背后的物理本质进行思考的习惯,这对解决流体力学教学所面临的问题至关重要。
使用电吹风斜向上吹一个让学生事先准备好的气球模型,没经验的学生会意外的发现气球会向斜上方飘起。这一流体流动现象可从风从气球上部通过时,由于气球表面的影响风的流向会产生变化,也就是流线产生弯曲,根据风的动量变化必然产生使得气球浮起的升力得到解释,还可以从物体绕流边界层效应得到解释。从这一简单的模型教学,还可以解释飞机的机翼通过改变空气的流向进而获得升力的流体力学上的工作原理。
在一个装满水的塑料瓶内分别放入密度大于水和小于水的钢球和泡沫小球,然后放在一个可移动桌面上,使桌面等直线加速运动,可发现钢球运动较慢留在瓶底,而泡沫球运动较快停在瓶嘴附近。观察这一个现象引导学生:泡沫球运动得较快是因为等加速运动瓶内流体的静压在运动方向上递减形成压力梯度,小球的前进方向的压力大于等加速运动产生的惯性力,因此小球相对于塑料瓶向前运动;而作用于钢球的前进方向的静压力虽然与泡沫小球相同,但惯性力大于前进方向的静压力,因此钢球相对于塑料瓶向后移动。这一模型教学比一般教科书上关于流体等加速直线运动流体的静压分布的例题更容易使学生抓住问题本质,且能培养学生独立思考之习惯,使学生体会到透过流体流动现象来正确观察和理解把握流体力学基本规律的乐趣。
经常使用立式洗衣机的人都知道,洗完衣服后,衣兜总要被翻过来,假如原来兜里装有硬币等硬物,也会被掏出来[5]。把这个实例在课堂上讲出后,学生们甚有兴趣,追问其中的奥秘,当教师根据伯努利定律做出解释并介绍伯努利这位集物理学家、数学家、力学家及医学家于一身的瑞士的大科学家的基本情况后,学生们顿时对这位科学家充满了崇敬之情,通过大量这种实验模型及实例教学,学生们对学习流体力学这门课更有了兴趣和信心,教学效果的提高自不待言。
三、结语
本文详尽的分析了计算机、因特网、手机等现代化通讯工具普及后对学生产生的影响,由于流体力学课程知识体系的特点,这种影响产生的负面问题很多,尤其是教授成长在应试教育体制下走入大学的学生,更需要转换认识,改变教学观念,在课堂教学中广泛植入实验模型教学和实例教学,让学生直面实际存在的各种流体流动现象,通过实际的流体流动现象的观察和理解,达到生动及形象的把握这些流动现象背后的流体力学的基本定理,有效提升教学效果的同时,通过简单实验模型的制作还可提高学生的动手能力,这对学生走向社会成为一个具有创造性思维能力、独立思考的优秀技术人员也是一个必不可少的雏形磨砺。
[参考文献]
[1]黄卫星.工程流体力学[m].北京:化学工业出版社,2008.
[2]李丹,杨斯瑞.应试教育与创造性人才的培养[j].继续教育研究, 2009, 25(2): 180-185
[3]向文英,程光均.流体力学教学与实验创新[j].重庆大学学报(社会科学版),2003,18(4): 21-26.
流体力学基本原理范文5
关键词:计算流体力学;化学工程;应用
Abstract: in the chemical research and development of the field, play an important role in computational fluid dynamics, this paper mainly introduces the basic principles of computational fluid dynamics, and the application of computational fluid dynamics in the field of chemical engineering, application mainly through the introduction of computational fluid dynamics in the stirred tank, heat exchanger, distillation, thin film evaporator burning, etc., to reflect the fluid mechanics made in chemical engineering contribution.
Keywords: computational fluid mechanics; chemical engineering; application
中图分类号:TQ021.1 文献标识码:A
1 计算流体力学概述
作为流体力学的一个分支,计算流体力学主要负责,在固定的几何形状空间内,求解流体的动量方程、热量方程、质量方程以及其它的一些相关方程,然后通过进行计算机模拟,得到在特定条件下流体的有关数据。计算流体力学主要根据动量、能量、质量守恒方程,通过数值计算方法来求解出流动主控方程,并最终得到各种流动现象的规律。
计算流体力学主要包括3种计算方法:差分法、有限元法以及有限体积法。这是一个涉及到多个领域的学科,它不仅包括计算机科学、流体力学等专业学科,还有计算几何学、数值分析以及偏微分方程等数学理论知识。通过计算流体力学进行模拟,主要是为了作出预测和获得信息,来更好的控制流体流动。理论的预测主要来自于数学模型结果,并不是来源于实际的物理模型结果。
起初,计算流体力学主要用在航天事业、核工业以及汽车制造业上,解决一些涉及空气动力学方面的流体力学问题。计算流体力学的计算与实验研究相比,不仅成本低、速度快,还可以模拟真实、理想条件,所以,在各种流体现象的研究过程中,计算流体力学成为对各种流动系统和流动过程,进行设计、操作和研究的有利工具。
在上个世纪60年代末期,在流体力学各相关行业中,计算流体力学已经得到了广泛应用,直到上世纪90年代后期,才开始对于化学工程的模拟计算,现在化工领域中,计算流体力学已经成为流体流动和传质的重要研究工具。
在各种化工装置中,计算流体力学都可以进行模拟、分析、预测,比如说,可以在流体流动过程中,对于其中的传质、传热进行预测,比如在蒸馏塔中进行的两相传质流动状态的模拟,在模拟加热器里进行的传热效果的模拟;在搅拌槽混合设备可以进行模拟设计、放大;可以对化学反应及反应速率进行描述分析,并在反应器中进行模拟,比如可以在燃烧反应器、生化反应器,可以进行反应速率的模拟;另外,还可以进行一些设备的分离、过滤、干燥方面的模拟,以及一些装置内流体流动的模拟。
2 计算流体力学在化学工程中的应用
2.1 计算流体力学在搅拌槽中的应用
由于搅拌槽内部流动比较复杂,现在,搅拌混合仍然还没有形成完善的理论体系,在对一些混合设备,比如搅拌槽等,进行放大设计的时候,往往经验成分要多于理论计算。在实际的工业体系中,尤其是快速反应体系,还有高黏度非牛顿物系,不同程度的非均匀性存在于工业规模的反应器中,而且,不均匀性的严重性是随着规模的增大而增大的。所以,目前经验放大设计的可靠性,正在迎来前所未有的挑战,这就更有必要需要,更深入的对搅拌槽的内部流场展开研究。
最初,Harvey等对搅拌槽内的流场,利用计算机进行二维模拟,这些年来,通过采用计算流体力学的方法,对搅拌槽内的流场进行研究的技术,取得了较快的发展,这种方法在节省大量研究经费的同时,也可以获得实验所不能得到的数据。之后,Sun等针对搅拌槽气液两相流动,利用计算流体力学的湍流模型进行了三维模拟,实验结果显示,计算流体力学能很好地对搅拌器上部气体分布进行预测,对搅拌器底部区域的模拟却没有取得较好的效果。后来,Javed等也通过计算流体力学软件Fluent,对Rushton型涡轮搅拌槽湍流,作了与时间相关的三维数值预测,和实验结果比较显示,搅拌叶轮上下平均速域,两项结果一致,但在湍动能的结果上,计算值和实验结果还是存在一定差异的。
之后,又进行了许多类似的实验,实验证明,通过计算流体力学与数字粒子图像测速仪相结合,有益于更深入地对搅拌装置进行研究。通过数字粒子图像测速仪的测量数据,可以对计算流体力学的计算结果进行验证,另外,数字粒子图像测速仪的测定点速度,也可以作为计算流体力学的边界条件。除此之外,多普勒激光测速仪也可以与计算流体力学相结合,用于研究搅拌。
2.2 计算流体力学在换热器中的应用
在化学工程中,换热设备应用比较广泛,它可以详细、准确地对壳程的流动、传热特性做出预测,这不仅有助于设计经济和可靠的换热器,还有助于对现有管壳式换热器的性能做出评价,在工业的应用过程中起着十分重要的作用。
管壳式换热器不仅具有比较复杂的几何结构,而且流动、传热的影响因素也比较多,通过计算流体力学,利用计算机对换热器壳侧流场进行模拟,这就有助于对壳侧瞬态的温度场、速度场加以了解,这是其它方法所难以掌握的,这就方便了对换热器的机理分析以及结构优化。
其中,一些国外专家针对换热器内,流体流动的计算流体力学模拟展开过一些研究。熊智强等专家,针对换热器弓形折流板流场,利用该技术进行了数值模拟,研究结果表明,在弓形折流板的背面,存在着流动死区,导致一些区域的流速偏低,通过在弓形折流板上开孔,计算流体力学计算结果显示,其传热效率有了明显的提高,壳侧压降有了明显降低。
一般来说,管壳式换热器中流体流动为湍流,与此同时,在实际的应用过程中,管壳式换热器中管的数量又比较多,这就给计算增加了难度。现在,针对于管壳式换热器壳程流动的研究,主要采用的还是二维、三维单相研究方法,另外,三维两相还有多相的计算流体力学模拟应用的还是比较少的。
2.3 计算流体力学在其他方面的应用
在其它的一些化工领域中,计算流体力学的应用也是比较广泛的。比如说,在精馏塔中的应用,在薄膜蒸发器中的应用,在燃烧反应器中的应用,在生化反应器中的应用,如下进行简要概述。
在精馏塔气液两相流动、传质的研究过程中,计算流体力学是其中的一项重要工具,通过进行计算流体力学模拟,可以微观的检测到塔内气液两相流动状况。当然,在模拟精馏塔内流体流动上,计算流体力学模拟也存在一些不足,比如说,在规整填料塔内流体流动的模拟上,模拟结果与实验值还是存在一定偏差的。这主要因为数学模型还不够精确,这就要求无论在流体力学的理论分析上,还是实验研究,都需要进一步加强。
通过计算流体力学的应用,对薄膜蒸发器内各种场分布实现成功预测,这就在薄膜蒸发器内,进一步满足了对液膜流动、传热、传质机理的研究。但是由于在薄膜蒸发器内,蒸发过程比较复杂,无论国内还是国外,基于计算流体力学技术,针对薄膜蒸发器流体流动特性所展开的研究还是比较少的。
在各种燃烧系统中,计算流体力学的应用也是比较广泛的。通过计算流体力学,在燃烧过程中,可以对各种状态参数进行模拟,对燃烧器的燃烧过程加深理解,这不仅可以实现对燃烧反应器的优化,还可以相应的控制污染物排放量。
另外,在生化反应器模拟研究的过程中,计算流体力学也是一个重要的手段。生物反应器包括搅拌式生化反应器、气升式环流反应器等,通过对计算流体力学技术的应用,不但可以获取速度场、温度场、浓度场等方面的详细信息,还有助于对生化反应器优化、设计、放大等方面的研究。
但是,目前计算流体力学技术仍然不是很成熟,比如说,一些复杂物理、湍流、反应等现象,还不太容易找到合适的模型,在许多问题的应用上,数学模型也不够精确。这就需要工作人员要针对研究对象,做出合理的选择。即便如此,在化工过程研究中,计算流体力学技术已经成为不可缺少的工具,相信随着科学技术的发展,在化工领域中,计算流体力学技术将会得到更广泛的应用。
参考文献
[1] 张少华.化学链燃烧系统设计与计算流体力学模拟.华中科技大学硕士学位论文.2011(07).
[2] 成娟.计算流体力学中的高精度数值方法回顾[A].计算物理.2009(09).
流体力学基本原理范文6
关键词:建构主义;认知灵活性理论;热工理论
作者简介:衣晓青(1956-),女,山东青岛人,长沙理工大学能源与动力工程学院,教授;石尔(1979-),女,湖南长沙人,长沙理工大学能源与动力工程学院,讲师。(湖南 长沙 410004)
基金项目:本文系2011年湖南省普通高等学校教学改革研究立项项目的研究成果。
中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2013)16-0069-02
“工程流体力学”、“工程热力学”、“传热学”既是热工理论的三大主干课程,又是能源动力类专业(方向)的主要技术基础课。传统的教学宗旨倾向于各门基础课程自成科学体系,分别独立教学,为后续专业课程打下牢固基础。但是这种传统的教学模式死板,致使学生缺乏学习兴致,不易明确学习目的。建构主义的认知灵活性理论发现了新的教学要素——“案例教学”。按照认知灵活性理论,对以上热工理论三大基础主干课程进行优化整合,以热能动力类专业为场景,建构诸多新的知识点教学,组织全新的热工理论基础课程体系,可以使热工理论基础课教学克服以上不足。
一、打破僵化教学:认知灵活性理论的应用
建构主义教学理论冲破了传统教学模式,克服了“填鸭式”教学把学生作为小绵羊驯服的弊端。[1]作为建构主义教学理论中的一个分支,斯皮罗提出的“认知灵活性”理论很好地解决了“死记硬背”传统与极端建构主义(忽视抽象养成)之间的矛盾。认知灵活性理论的主要思想就是:通过情景(境)展现基本概念和基础理论工具,学生既可以掌握基础理论知识,又可以按抽象思维方式,放开视野寻找新的分析问题的工具。
为了解决传统与极端的冲突,斯皮罗把知识抽象为两种不同性质的结构:良构的与非良构的两种领域。[2]良构的即是指:按照抽象思维,从概念到原理的演绎解析的知识体系,符合科学意义上的正统规范。非良构的即是指:在具体场景(案例)中,隐透出的各种良性结构的知识叠合;这种叠合的基础知识能够解释或解决具体场景问题;不同的场景有不同的良性结构知识叠合的诠释。由此得出结论,良性结构知识就存在于非良性结构知识之中,“认知灵活性”教学就可以让学生通过非良性知识教学获得更加深刻的良性结构的系统知识,而且是积极主动地、生动有趣地接受之。
热工理论是研究热(能)在释放、转换和传递中的流体流动及传热传质等问题的科学,涉及流体运动规律、热(能)转换与传递规律。按照认知灵活性理论的教学观,热工理论基础课教学也可分类为良构性和非良构性。热工理论的三大主干课程“工程流体力学”、“工程热力学”和“传热学”分别作为单独体系教学的基本概念、基本理论和基本知识的层次组织结构,应属于良构性领域,其传统的教学方式就是从概念到概念、从原理到原理、从公式到公式的演绎解析,逻辑性很强,范式文本较固定,程式较稳定,测验作业较死板。
“认知灵活性”教学理论认为,这种教学方式僵化、被动,既不能启动学生的兴趣,也不能启发学生的创造想象力,学生容易落入死记硬背、教条主义的套路,缺乏广泛的知识联系和举一反三的思维训练,更缺乏给学生以另辟蹊径的想象空间。如果以流体介质为对象将热工理论三大主干课程进行优化整合(杂交),并以热工理论应用为主线,将能源动力类相关专业作为场景,构成非良构性知识结构,其所涉及的具体问题具有复杂背景和综合影响因素,能够从问题入手引出综合知识的有机联系,开阔学生发展思路,引导学生融会贯通,指导学生熟知专业背景。这种按照认知灵活性教学理论建立起来的热工理论基础课程的非良构性知识体系会冲破传统的各自为主的单科系统性的课程教学模式,有利于克服“高分低能”的应试教育倾向,培养面对知识时代和信息社会的创新型人才。
二、创建问题教学:热工理论基础三大主干课程的优化整合
认知灵活性理论认为:学习者在建构知识意义的过程中,只有对知识进行多维表征,才能达到对知识的全面理解和灵活运用。这也是指导热工理论基础三大主干课程进行优化整合的基本思想。热工理论基础三大主干课程“工程热力学”、“传热学”和“工程流体力学”是主要以流体介质为研究对象而紧密联系在一起的动力类技术基础性课程,三门课程相互依存,共同构成了热工理论的主干课程体系。其中,工程流体力学是研究流体介质的位置势能、压力势能和动能之间的相互作用的关系;工程热力学是研究热能与机械能之间的相互转换的规律;传热学是研究热量从高温部分传递到低温部分的机理。由此可见,能(热)量转换与守恒定律是热工理论三大主干课程进行优化整合的内在动力。
基础课理论自身系统的完善性使任何改动需求都带有相当大的难度,只有进行优化整合,才能在不断调整和深化过程中发展新的学习要素。例如,“传热和流体流动的数值方法”课程就是将传热学、流体力学知识进行融合后加入到数值计算科学这一更为广泛的学科领域,为热工理论知识的进一步发展奠定了基础。同时,通过这一知识的优化整合,多维表征得以实现,使学生建构起在热科学和流体科学中可以直接迁移和引用的关于热物理方面的知识,超越了封闭、孤立课程所给的单一信息模式。
如果说热工理论的三大主干课程“工程流体力学”、“工程热力学”和“传热学”分别作为单独体系教学是良性结构知识的传授,那么,把“三课”拆分,再按照具体能量转换的场景问题有机组合,这种教学模式就属于非良性结构教学。乔纳生等人的研究把前者称作低阶学习阶段,把后者称作高级学习阶段。[3]高级学习阶段优于低级学习阶段的实质就是变公式学习为问题学习。问题学习对于热工基础理论教学来说,打破其三大主干课程的各自理论体系是必然的,是要针对具体的场景问题而进行知识交叉组合。值得注意的是:根据认知灵活性教学理论,这种知识体系重组,必须避免极端建构主义干扰,必须遵循“专业问题、溯本求源、知识联系”三原则,才是优化的、高级的教学模式。
三、重复多变教学:能源动力类专业问题逆向渗透于热工理论基础课程
非良构的知识体系与良构性知识体系的区别就在于:一是前者比后者建立的概念庞大、复杂,它往往是多个不同学科孤立概念的交集;二是前者比后者建立的概念有很大的多变性,这是由问题教学场景多变性所决定的。热工理论基础知识在航天、航空、热能动力、化工、核热工、低温工程、冶金热工、微电子技术、材料和建筑等各个领域都有具体的应用,从知识体系的角度来看,其展现的知识点都是非良性的。实际上,在能源动力类相关专业的不同场景下,其呈现的非良性知识结构也存在着很大的差异性。例如,工程热力学中的热经济性指标在热机循环中的应用是热效率,而在制冷循环中的应用是制冷系数。这说明热经济性概念在实际应用过程中具有复杂性。又如,流体力学在电厂中的应用以管内流动、物体绕流为主,而在建筑环境与设备工程专业中的应用以室内外环境通风、换气的流动为主。传热学中对于散热器来说需要强化传热效果,对于建筑物屏蔽掩体则要抵制传热。
在针对能源动力类专业的热工理论基础课程进行新的建构中,按照认知灵活性教学理论,必须将原有良性结构体系的知识与专业场景结合起来。这种有专业针对性的知识渗透,有学者称其为专家知识学习阶段,属于更高层次。[2]比如,把能源动力类专业(方向)的“流体力学”、“泵与风机”两门课程整合为热工理论基础课“泵与风机的流体流动”一章,以流体力学知识为基础,反映了流体力学基本原理在流体机械中的具体应用场景,通过多媒体教学课件可以使学生建构泵与风机工作原理和结构的多维图式,达到对流体力学基础理论知识全面理解和灵活运用的目的。
按照斯皮罗的认知灵活性理论规范,对应专家知识学习阶段的教学模式即“随机通达教学法”,它的主要特点就是针对专业的众多场景链,反复从不同问题视角,以不同的基本知识、基本公式、基本理论的多样组合,不断给予学习者良性知识的刺激,这会使学习者通过反复的从各种变式到抽象的过程,不断加深对良性结构知识的各种理解,而且有助于学习者历练分析问题和解决问题的能力,发挥创造性思维,为今后在专业上有所建树打下坚实的学习基础。贯穿于这一思想的新的“热工理论基础”课程体系,组织“锅炉工质流动与热交换”、“汽轮机流体流动与功能转换效率”、“热力发电厂工质循环与热效率”等章节,探讨基于专家知识学习理念的非良构知识领域的显性建构,加入热能动力类专业知识对热工理论基础课的反向渗透,有效增加课程教学的深度和广度这一结果就自然生成了。
除了书本专业知识的反向渗透以外,通过与科研、生产单位合作的科研课题的有机结合,也是专家知识学习阶段的案例来源。例如,教师通过某钢铁公司锅炉尾部烟道声学振动问题的科研活动,向学生们提出卡门涡街产生机理、影响因素以及卡门涡街产生后对设备及系统的危害和消除卡门涡街的措施等诸多学科问题,从而认知基本理论。
参考文献:
[1]朱新卓.中国高等教育管理学:从拔苗助长到建构主义[J].高等工程教育研究,2005,(2).