量子化学的发展范例6篇

前言:中文期刊网精心挑选了量子化学的发展范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

量子化学的发展

量子化学的发展范文1

【关键词】中学 化学教学 量子空间论

【中图分类号】G633.8 【文献标识码】A 【文章编号】2095-3089(2013)10-0154-01

(小叙):课篇第一章节细读、研读、探透性知识点。

1.寻找研究方法 2.课题的研究内容

3.课题研究的一些成果 4.巩固建筑语录

【序言】

化学是在分子、原子层次上研究物质性质、组成、结构与变化规律的科学。化学不断地发展着,目前,人们发现和合成的物质已有几千万种,其中很多是自然界中原本不存在的;这极大地改善了人类的生存和发展条件,丰富了人们的生活。

例如:

1.纳米铜(1nm=10?9m )具有超塑延展性,在室温下可拉长50多倍而不出现裂纹。

2.用隔水透气的高分子薄膜做的鸟笼。

3.单晶硅为信息技术和新能源开发提供了基础材料。

4.用玻璃钢制成的船体。

总之,作为实用的、富于创造性的中心学科,化学在能源、材料、医药、信息、环境和生命科学等研究领域以及工农业生产中发挥着其他学科所不能替代的重要潜质作用。近年来,“绿色化学”的提出,使更多的化学生产工艺和产品向着环境友好的方向发展,化学必将使世界变得更加绚丽光彩。

【寻找研究方法】

第一单元 走进化学世界;

1.物质的变化和性质

2.化学是一门以实验为基础的科学

3.走进化学实验室

第二、三单元 我们周围的空气与自然界的水;空气、氧气(氧气的制取)、水的组成、分子和原子、水的净化。“爱护水资源”。

第四、五单元 物质构成的奥妙、简单统计应用;原子的构成、元素、离子、化学式与化合价 :

如何正确书写化学方程式”?利用化学方程式的简单计算?

第六、七单元 C与C的氧化物燃料及其利用;

分析:金刚石、石墨和C60 (1.CO2 的制取? 2.CO2 与CO的区别、联系?)

应用:燃烧和灭火?燃料和热量?

环保问题:“燃料对环境的影响”

自留田地:“石油和煤的综合利用?”

第八、九单元 金属与溶液的问题;

熟记、认识:金属、金属材料、金属的化学性质;

金属资源的利用和保护、溶液的形成;

溶解度、溶质的质量分数。

第十、十一、十二单元 酸与碱 、盐与化肥 、“化学与生活”。

生活中常见的:1.酸与碱

2.酸与碱之间会发生什么反应

3.盐

4.化学肥料

人体:1.人类重要的营养物质

2.化学元素与人体健康

3.有机合成材料

学生自认化学常用仪器。学习“附录”相关记录 。

【课题的研究内容】

无机化学中量子(分子、原子)力学论

量子化学(Quantum chemistry)是理论化学的一个分支学科,是应用量子力学的基础原理和方法研究化学问题的一门基础科学。研究范围包括稳定和不稳定分子的结构、性能及其结构与性能之间的关系;分子与分子之间的相互碰撞和相互反应等问题。

量子化学是理论化学的一个分支学科,是应用量子力学的基本原理和方法,研究化学问题的一门基础科学。

1927年海特勒和伦敦用量子力学基础原理讨论氢分子结构问题,说明了两个氢原子能够结合成一个稳定的氢分子的原因,并且利用相当近似的计算方法,算出其结合能。由此,使人们认识到可以用量子力学原理讨论分子结构问题,从而逐渐形成了量子化学这一分支学科。

【课题研究的一些成果】

生物大分子体系的量子化学计算一直是一个具有挑战性的研究领域,尤其是生物大分子体系的理论研究具有重要意义。由于量子化学可以在分子、电子水平上对体系进行精细的理论研究,是其它理论研究方法所难以替代的。因此要深入理解有关酶的催化作用、基因的复制与突变、药物与受体之间的识别与结合过程及作用方式等,都很有必要运用量子化学的方法对这些生物大分子体系进行研究。毫无疑问,这种研究可以帮助人们有目的地调控酶的催化作用,甚至可以有目的地修饰酶的结构,设计并合成人工酶;可以揭示遗传与变异的奥妙,进而调控基因的复制与突变,使之造福于人类;可以根据药物与受体的结合过程和作用特点设计高效低毒的新药等等,可见运用量子化学的手段来研究生命现象是十分有意义的。

【巩固建筑语录】

化学中常见“离子反应”包括:“酸、碱、盐在水溶液中的电离”和“离子反应及其发生的条件”两部分。

无机化学中最关键的是要有实观性:基础高层次的“化学方程式”们。

其次,稀土元素中的各种化学量变、质变及各种物理、化学性反应。

再次,金属的利用、及高等积存用途。

还有,就是气体的大力层存在行式。如同:水、陆、空,人类的生活方式。

参考文献:

[1]初中九年级化学上、下册课本,人民出版社出版,2011年版。

量子化学的发展范文2

矿产资源开发利用中,矿物分离与富集的依据是有用矿物与脉石矿物之间的物理化学性质差异。这种物理化学性质指的是矿物比重、磁性、电性、表面化学性质等,与这些性质对应的矿物分离与富集方法分别是重力选矿、磁电选矿、浮选等。利用重力选矿和磁电选矿分离与富集矿物的方法受到矿物比重、磁性和电性难以改变的限制,应用范围相对较窄,而矿物表面性质可以通过人为改变,对应的浮选在矿物加工工程得到广泛的应用。可以说,所有的矿物都可以通过浮选方法进行分离与富集。正是由于浮选成为矿物分离与富集应用最为广泛的方法,而浮选的理论基础又是化学,所以化学是矿物加工工程学科的重要基础成为公认的事实,浮选作为矿物加工的主要方法,本身就是化学在矿物加工工程学科中的一种应用,因此,化学教育在矿物加工工程学科的基础理论教育中占有非常重要的地位。矿物和岩石是自然界中天然形成的,具有固定组成的固体化合物,由于成分不同、成矿条件不同,不同的矿物表面性质是不同的,即使相同组成的矿物,由于成矿地点和成矿条件不同也会具有不同的表面性质。对于浮选分离矿物而言,不同的矿物表面性质又有相似之处,矿物与岩石之间、矿物与矿物之间、岩石与岩石之间的表面性质异同,成为浮选分离与富集这些矿物的根本依据。浮选工程中,矿物与岩石的表面性质可以根据需要人为调节和改变,从而扩大需要分离的矿物之间的表面性质差异,实现矿物之间的有效分离。化学是学生需要学习的基础课程,从初中开始,就涉及到化学的学习,直到博士研究生,化学仍然是矿物加工工程学科学生需要继续学习的课程。甚至作为高层次的矿物加工工程学科的教授专家,仍在不间断的学习化学。化学与浮选是不可分的,可以说,无论多么深厚的化学知识,都不能说对于浮选已经足够了。化学有多深奥,浮选就有多深奥。矿物加工工程学科人才培养过程中,化学教育是根本之一,不同层次的人才对应不同程度的化学教育。只有重视化学教育,才能做好矿物加工学科的人才培养。

1浮选是化学在矿物加工工程中的应用

无机化学研究元素、单质和无机化合物的来源、制备、结构、性质、变化和应用的一门化学,是化学中最古老的化学分支学科。浮选的对象为矿物岩石,本身就是无机物,矿物的表面性质决定于矿物本身的结构和性质,矿物表面性质的研究离不开矿物内部组成、结构及性质的研究。矿物与岩石的研究将涉及无机化学的所有领域与内容,无机化学成为矿物加工工程学科学生的必修课程。有机化学又称为碳化合物的化学,是研究有机化合物的结构、性质、制备的学科,是化学中极重要的一个分支。含碳化合物被称为有机化合物是因为以往的化学家们认为含碳物质一定要由生物(有机体)才能制造;然而在1828年的时候,德国化学家弗里德里希•维勒,在实验室中成功合成尿素(一种生物分子),自此以后有机化学便脱离传统所定义的范围,扩大为含碳物质的化学。矿物浮选是通过改变矿物表面的疏水性来实现的,而增加矿物表面疏水性的方法是采用含烃基的异极性分子在矿物表面吸附,含烃基的异极性分子就是典型的有机物质分子,研究捕收剂、起泡剂等浮选药剂,将涉及广泛的有机化学。有机化学也是矿物加工工程学科学生的必修课程。物理化学的内容大致可以概括为三个方面:化学体系的宏观平衡性质,以热力学的三个基本定律为理论基础,研究宏观化学体系在气态、液态、固态、溶解态以及高分散状态的平衡物理化学性质及其规律性。属于这方面的物理化学分支学科有化学热力学。溶液、胶体和表面化学。化学体系的微观结构和性质以量子理论为理论基础,研究原子和分子的结构,物体的体相中原子和分子的空间结构、表面相的结构,以及结构与物性的规律性。属于这方面的物理化学分支学科有结构化学和量子化学。化学体系的动态性质研究由于化学或物理因素的扰动而引起体系中发生的化学变化过程的速率和变化机理。属于这方面的物理化学分支学科有化学动力学、催化、光化学和电化学。物理化学是一门内容丰富,外延广阔的化学,浮选涉及的矿物岩石、矿浆溶液、有机分子以及泡沫浮选气体介质与矿物之间的相互作用等等,都涉及到物理化学。物理化学在矿物加工工程本科课程设置,占有最多的学时数,分两学期学习,是矿物加工工程学科至关重要的一门化学课程。物理化学学习好坏直接关系到浮选学习。物理化学也是矿物加工工程学科研究生入学考试的必考课程。分析化学的内容主要是:物质中元素、基团的定性分析;每种成分的数量或物质纯度的定量分析;物质中原子彼此联结而成分子和在空间排列的结构和立体分析。研究对象从单质到复杂的混合物和大分子化合物,从无机物到有机物,从低分子量到高分子量。样品可以是气态、液态和固态。称样重量可由100克以上以至毫克以下。1931年E.威森伯格提出的残渣测定,只取10微克样品,便属于超微量分析。所用仪器从试管直到附自动化设备并用电子计算机程序控制、记录和储存等的高级仪器。分析化学以化学基本理论和实验技术为基础,并吸收物理、生物、统计、电子计算机、自动化等方面的知识以充实本身的内容,从而解决科学、技术所提出的各种分析问题。矿物加工工程学科涉及的矿物岩石、溶液、有机和无机药剂、矿物加工原料及产品都需要通过分析检测得以定性或定量的描述,理论研究过程中的仪器分析检测,对矿物加工过程中的行为机理也才能进行研究和了解,所以矿物加工也与分析化学密切相关。矿物加工工程学科课程设置中,在本科阶段或者在研究生阶段需要对分析化学进行系统学习。结构化学、高分子化学、络合物化学、电化学、量子化学等是比以上四大化学更加细化的化学分支方向,在进行矿物浮选研究中,针对具体的研究内容和目的,不同程度地将涉及到这些更加深入和细化的内容。为了使化学与矿物加工工程学科结合的更加紧密,在研究生阶段还开设了浮选表面化学、浮选药剂化学、浮选电化学、浮选溶液化学等。尽管在矿物加工工程学科不同阶段开设了大量的化学课程,涉及的化学内容几乎涵盖了化学领域的所有内容,但对浮选的深入研究和理解仍然不够。矿物浮选发展至今,还有大量的浮选理论问题没有解决,浮选工艺的水平还有待提升,进一步强化化学教育和矿物浮选化学研究对矿物浮选的发展具有重要的基础作用。

2各层次人才培养中的化学教育

以技术工人为培养目标的中专和职业教育,由于生源大多是初中和高中毕业生,化学知识非常有限,仅对一些化学基础知识有所了解,特别是初中文化水平的学生,只能了解一些初步的化学现象,因此,在进行矿物加工专业知识教学的过程中,必须补充一些学习浮选技术必要的化学知识。这种化学知识的补充,可以贯穿在专业知识的学习过程中,也可以单独开设简单的化学课程。只有在学生初步了解和掌握了浮选技术必备的基本化学知识以后,浮选技术专业课程的教学才能有效开展,学生也才能真正理解矿物浮选的技术知识。对于以生产技术管理和技术应为目标的专科和本科教育,系统的课程设置已经考虑了化学对矿物加工工程的重要性,无机化学、有机化学、物理化学都是必修课程,学时数占到专业基础课程学时数很大的比例,经过系统的化学知识的学习,学生在学习浮选专业课程时,已经能够较深入理解矿物浮选中的化学问题,也能较好掌握浮选理论和浮选工艺专业知识。在生产技术管理和技术应用过程中,也基本能根据矿石性质的变化,应用所学到的化学知识和浮选理论,分析解决生产过程中出现的一般性的技术问题。以科学研究为目标的研究生教育,为了使学生能够从生产中发现和解决生产技术问题,具备独立从事矿物加工工程领域科学研究的能力,在大学期间学习无机化学、有机化学、物理化学的基础上,还需要进一步学习分析化学。通过分析化学的学习,可以让研究生掌握常规的分析检测技术,了解和掌握科学研究过程中所要使用的现代检测手段,发现、分析和研究试验过程中获得的数据、结果,从而解决科学技术问题。对于博士研究生,是要让他们更深层次理解矿物浮选的机理,培养其创新精神和意识,为此,从电子、原子、分子层面上理解矿物浮选理论是必要的,所以,在已经较好掌握了无机化学、有机化学、物理化学、分析化学的基础上,量子化学的学习和了解对于博士研究生来说是需要的。从以上的分析可知,浮选跟化学是不可分的,浮选实际上就是应用化学的一部分。无论是技术操作工人,还是从而浮选理论研究的博士研究生,不同程度都必须将化学作为基础,没有相应的化学基础,从事浮选技术应用、技术开发及浮选理论研究都是难以想象的。化学是浮选的基础,浮选是矿物加工工程最重要的方法,因而矿物加工工程学科的化学教育是极端重要的。

3重视矿物加工工程学科的化学教育

矿产资源是不可再生的,随着矿产资源的不断开发利用,资源枯竭已经成为制约社会和经济发展的重要问题之一,资源高效利用成为矿产资源开发与利用必须坚持的原则。如何实现资源的高效利用,显然矿物加工先进技术的开发与利用是实现资源高效的重要支撑。矿物加工工程中,浮选是最为主要的方法,而化学优势浮选的基础,通过浮选回收和利用矿产资源,实际上就是利用化学或者表面化学方法回收和利用矿产资源。重视矿物加工工程学科的化学教育问题,才可能从根本上提高人才质量,才能从源头上解决矿产资源高效利用的根本问题。矿产资源开采出来以后,多种资源共伴生,性质复杂,给资源中各种矿物的分离与富集带来了很多困难,为了实现资源的综合利用,只要有价值的矿物,都要进行回收,此时,这种矿物的物理化学性质研究,通过化学的方式改变各种矿物的性质,扩大彼此间性质的差异就成为矿物加工工程学科的重要课题,而所使用的方法基本上都是化学的方法,所以,矿物加工工程学科中的化学,决定着矿产资源的综合利用,也只有重视矿物加工工程学科的化学教育问题,才可能从根本上提高人才质量,才能从源头上解决矿产资源综合利用的根本问题。矿产资源天然形成的,其中的组分有的是对人类社会有益的,但同样存在对人类社会有害的组分,在矿产资源回收利用过程中,高效、综合回收有益组分的同时,处理好有害成分也是矿物加工工程学科的任务。只有解决了有害组分的处理,使得矿物加工过程中和矿物加工以后剩下来无用组分无害于人类和社会,矿产资源才能实现清洁利用。矿产资源中有害组分的处理,首先也必须掌握这些组分的性质,然后通过化学的、物理的方法对其进行分离、无害化处理等,而这些过程也与化学密切相关,所以,矿产资源的清洁利用也离不开化学。矿物加工工程学科的化学教育也是矿产资源清洁利用所要求的。矿物加工过程大都需要将矿石磨细,使矿石中的有用矿物与脉石矿物解离,而有用矿物与脉石矿物的分离大多是在水中进行的,矿物加工工程废水排放成为影响环境的重要问题。当今的矿物加工工程领域,要求选矿废水零排放,确保废水对环境不造成影响。废水零排放意味着废水必须回用,而废水回用将带来对选矿技术指标产生影响的问题,为了尽可能不是回水影响选矿技术指标,必须对回水进行性质研究,有的还要进行适当的化学处理,无论是回水性质的研究和回水的化学处理,都需要涉及化学知识,所以,矿物加工过程中废水对环境的影响、废水回用的处理等都直接与化学相关。矿物加工的环境问题也要求矿物加工工程学科重视化学教育。矿物加工过程中,做好了资源高效、综合、清洁利用,做好了废水的循环利用和实现了废水的零排放,就能实现矿产资源开发利用的可持续发展,而矿产资源高效、综合、清洁利用与废水处理均与化学密切相关,由此看出化学在矿物加工工程领域的重要性,重视化学教育是矿物加工工程学科的必然要求。

量子化学的发展范文3

整体和局部性科学是一个复杂的知识体系,好比一块蛋糕。为了便于研究,要把它切成大、中、小块。首先切成自然科学、技术科学和社会科学三大块。在自然科学中,又有许多切法。一种传统的切法是分为物理学、化学、生物学、天文学、地理学等一级学科。近年来又有切成物质科学、生命科学、地球科学、信息科学、材料科学、能源科学、生态环境科学、纳米科学、认知科学、系统科学等的分类方法。化学是从科学整体中分割开来的一个局部,它和整体必然有千丝万缕的联系。这是它的第一个属性。

学科之间的关联和交叉如果把科学整体看成一条大河,那么按照各门科学研究的对象由简单到复杂,可以分为上游、中游和下游。数学、物理学是上游科学,化学是中游科学,生命科学、社会科学等是下游科学。上游科学研究的对象比较简单,但研究的深度很大。下游科学的研究对象比较复杂,除了用本门科学的方法以外,如果借用上游科学的理论和方法,往往可以收到事半功倍之效。所以“移上游科学之花,可以接下游科学之木”。具有上游科学的深厚基础的科学家,如果把上游科学的花,移植到下游科学,往往能取得突破性的成就。例如1994年诺贝尔经济奖授予纳什,他在1950年得数学博士学位,1951-1958年任美国麻省理工学院数学讲师、副教授,后转而研究经济学,把数学中概率论之花,移到经济学中来,提出预测经济发展趋势的博弈论,因而获得诺贝尔经济奖。

发展性化学的内涵随时代前进而改变。在19世纪,恩格斯认为化学是原子的科学(参见《自然辩证法》),因为化学是研究化学变化,即改变原子的组合和排布,而原子本身不变的科学。到了20世纪,人们认为化学是研究分子的科学,因为在这100年中,在《美国化学文摘》上登录的天然和人工合成的分子和化合物的数目已从1900年的55万种,增加到1999年12月31日的2340万种。没有别的科学能像化学那样制造出如此众多的新分子、新物质。现在世纪之交,我们大家深深感受到化学的研究对象和研究内容大大扩充了,研究方法大大深化和延伸了,所以21世纪的化学是研究泛分子的科学。

定义的多维性一门科学的定义,按照从简单到详细的程度可以分为:(1)一维定义或X-定义,X是指研究对象。(2)二维定义或XY-定义。Y是指研究的内容。(3)三维定义或XYZ-定义。Z是指研究方法。(4)四维定义或WXYZ定义,W是指研究的目的。(5)多维定义或全息定义。一门科学的全息定义还要说明它的发展趋势、与其他科学的交叉、世纪难题和突破口等等。这样才能对这门科学有全面的了解。下面以化学为例加以说明。

化学的一维定义

21世纪的化学是研究泛分子的科学。泛分子的名词是仿照泛太平洋会议等提出的。泛分子是泛指21世纪化学的研究对象。它可以分为以下十个层次:(1)原子层次,(2)分子片层次,(3)结构单元层次,(4)分子层次,(5)超分子层次,(6)高分子层次,(7)生物分子和活分子层次,(8)纳米分子和纳米聚集体层次,(9)原子和分子的宏观聚集体层次,(10)复杂分子体系及其组装体的层次。

化学的二维定义化学是研究X对象的Y内容的科学。具体地说,就是:化学是研究原子、分子片、结构单元、分子、高分子、原子分子团簇、原子分子的激发态、过渡态、吸附态、超分子、生物大分子、分子和原子的各种不同维数、不同尺度和不同复杂程度的聚集态和组装态,直到分子材料、分子器件和分子机器的合成和反应,制备、剪裁和组装,分离和分析,结构和构象,粒度和形貌,物理和化学性能,生理和生物活性及其输运和调控的作用机制,以及上述各方面的规律,相互关系和应用的自然科学。

化学的三维定义化学是用Z方法研究X对象的Y内容的科学。化学的研究方法和它的研究对象及研究内容一样,也是随时代的前进而发展的。在19世纪,化学主要是实验的科学,它的研究方法主要是实验方法。到了20世纪下半叶,随着量子化学在化学中的应用,化学不再是纯粹的实验科学了,它的研究方法有实验和理论。现在21世纪又将增加第三种方法,即模型和计算机虚拟的方法。化学的四维定义化学是用Z方法研究X对象的Y内容以达到W目的的科学。化学的目的和其他科学技术一样是认识世界和改造世界,但现在应该增加一个“保护世界”。化学和化学工业在保护世界而不是破坏地球这一伟大任务中要发挥特别重要的作用。造成污染的传统化学向绿色化学的转变是必然的趋势。21世纪的化工企业的信条是五个“为了”和五个“关心”:为了社会而关心环保;为了职工而关心安全、健康和福利;为了顾客而关心质量、声誉和商标;为了发展而关心创新;为了股东而关心效益。

化学的多维定义———21世纪化学研究的五大趋势

1、更加重视国家目标,更加重视不同学科之间的交叉和融合在世纪之交,中国和世界各国政府都更加重视国家目标,在加强基础研究的同时,要求化学更多地来改造世界,更多地渗透到与下述十个科学郡的交叉和融合:1数理科学,2生命科学,3材料科学,4能源科学,5地球和生态环境科学,6信息科学,7纳米科学技术,8工程技术科学,9系统科学,10哲学和社会科学。这是化学发展成为研究泛分子的大化学的根本原因。所以培养21世纪的化学家要有宽广的知识面,多学科的基础。

2、理论和实验更加密切结合

1998年,诺贝尔化学奖授予W.Kohn和J.A.Plple。颁奖公告说:“量子化学已经发展成为广大化学家所使用的工具,将化学带入一个新时代,在这个新时代里实验和理论能够共同协力探讨分子体系的性质。化学不再是纯粹的实验科学了。”所以在21世纪,理论和计算方法的应用将大大加强,理论和实验更加密切结合。

3、在研究方法和手段上,更加重视尺度效应

20世纪的化学已重视宏观和微观的结合,21世纪将更加重视介乎两者之间的纳米尺度,并注意到从小的原子、分子组装成大的纳米分子,以至微型分子机器。

4、合成化学的新方法层出不穷合成化学始终是化学的根本任务,21世纪的合成化学将从化合物的经典合成方法扩展到包含组装等在内的广义合成,目的在于得到能实际应用的分子器件和组装体。合成方法的十化:芯片化,组合化,模板化,定向化,设计化,基因工程化,自组装化,手性化,原子经济化,绿色化。化学实验室的微型化和超微型化:节能、节材料、节时间、减少污染。从单个化合物的合成、分离、分析及性能测试的手工操作方法,发展到成千上万个化合物的同时合成,在未分离的条件下,进行性能测试,从而筛选出我们需要的化合物(例如药物)的组合化学方法。

5、分析化学已发展成为分析科学分析化学已吸收了大量物理方法、生物学方法、电子学和信息科学的方法,发展成为分析科学,应用范围也大大拓宽了。分析方法的十化:微型化芯片化、仿生化、在线化、实时化、原位化、在体化、智能化信息化、高灵敏化、高选择性化、单原子化和单分子化。单分子光谱、单分子检测,搬运和调控的技术受到重视。分离和分析方法的连用,合成和分离方法的连用,合成、分离和分析方法的三连用。

量子化学的发展范文4

结构化学是用现代物理化学实验方法和量子力学原理,在原子―分子水平上研究物质分子构型与组成的相互关系及其结构与性能之间关系的一门科学。由于这门课数理推导多、概念抽象,好多学生在学习本课程时都有畏难情绪,学习此课程的自信心不足。随着计算机技术及互联网的进步,将计算机软件用于辅助结构化学的教学日益受到老师们的重视。美国剑桥软件公司研制的Chem 3D Ultra11.0是当前结构化学教学中常用的编辑软件。Chem 3D Ultra11.0软件可编辑各类十分复杂的结构化学中的结构式、检查分子结构的合理性以及立体化学的空间表达,还可以精确表达有机物分子中指定官能团部分的多种光谱,并且还能绘制DNA的分子螺旋结构,预测分子的某些常见分子轨道。Gaussian是化学领域进行半经验计算和从头计算中使用最广泛的量子化学软件。Gaussian可用于研究分子能量和结构、化学键和反应能量、过渡态能量和结构、原子电荷和电势、红外和拉曼光谱、分子轨道、极化率和超极化率、振动频率、核磁性质、反应路径、热力学性质等,是研究取代反应、反应机理、势能面和激发态能量的有力工具。Gaussian View是专门为Gaussian用户开发的,帮助建立输入文件和查看输出结果而设计的图形用户界面程序。

一 Chem 3D Ultra在前线分子轨道理论教学中的应用

前线分子轨道理论是日本理论化学家福井谦一成名的理论,这一理论将分子中的单电子波函数根据能量细分为不同能级的分子轨道,该理论认为有电子排布的、能量最高的分子轨道(即最高占据轨道HOMO)和没有被电子占据的、能量最低的分子轨道(即最低未占轨道LUMO)是决定一个体系发生化学反应的关键。在以往的结构化学教学过程中,分子轨道主要由教师手绘,非常费时也不严谨。Chem 3D Ultra11.0经过计算模拟后可显示全部分子轨道图像,在教学中非常明了直观。例如,在Chem 3D中首先可以方便地绘出乙烯分子的结构图,从结构图中很容易看出乙烯分子的6个原子处在同一平面上,属于D2h分子点群。通过[Calculations]计算完以后,我们就可以通过[Surfaces]显示如图1的前线分子轨道图,其中HOMO是p成键轨道,LUMO是p反键轨道。用Chem 3D软件显示出的分子轨道,学生很容易理解。用同样的方法我们也可以方便地得到其他分子的轨道图。

二 Gaussian View在分子光谱教学中的应用

分子的红外光谱起源于分子的振动基态 与振动激发态 之间的跃迁。只有在跃迁的过程中有偶极矩变化

的跃迁,即 不为零的振动才会出现红外光谱,

这称为红外活性。在振动过程中,偶极矩改变大者,其红外吸收就强;偶极矩不改变者,就不出现红外吸收,为非红外活性。用Gaussian程序,在B3LYP/6-311++g(2d,2p)水平上优化得到H2O的最小能量结构,并且

* 榆林学院精品课程项目(编号:JP1302)、榆林学院发展专项资助项目(编号:HGY2015-3)

做FREQ频率分析,然后用Gaussian View程序显示,可得图3,即H2O的红外振动光谱图。为了显示H2O的3种红外振动模式的动画形式,首先用Gaussian View打开H2O的out文件,然后点击[Results][Vibrations][Start],即可显示动画形式。从动画、图2及图3可以看出,对称伸缩偶极矩变化不大,所以它的振动强度(Intensity)就非常小,其他两个振动,振动强度比较大。非常直观明了,学生通过看动画很容易理解深奥的理论。

三 键级的计算

在结构化学教学中,我们常常通过对分子的结构进行分析来解释或预测化学反应的性质,这也是结构化学的重要应用之一。比如在结构化学教学中求解得到的电荷密度、键级、自由价和分子图等概念可以用来解释分子的活性位置、说明化学反应的过程和机理,也可以用来解释分子的动力学行为等。但如果我们要得到自由价、电荷密度和键级的值,首先要利用休克尔分子轨道理论法求解不饱和分子的薛定鄂方程,然后根据课本上的公式进行计算,整个过程非常复杂,也比较繁琐,一般在课堂上由于时间较短很难做到。而Gaussian提供了简易的计算程序,只要在优化好的分子上并加上关键词iop(6/80=1)即可得到分子的Mayer键级。如图4,就是在B3lyp/6

-311G*水平上优化好分子后得到的1,3-丁二烯的Mayer键级,从图中可以看出,C1和C2及C3和C4之间的键级较大,而C2和C3之间的键级较小,从而可以解释为什么1,3-丁二烯的加成反应发生在1,4位而不是2,3位;C1和C2的键长小于C2和C3的键长,等等。

量子化学的发展范文5

关键词:中学生 化学 发展 发展趋势

21世纪的社会主角是当代的中学生,21世纪的化学发展还要靠当代中学生的努力。要想在化学方面有所建树,中学生就应该了解化学的发展历程及未来的发展趋势。

自人类出现后,化学便与人类结下了不解之缘。远古时代的钻木取火,用火烧煮食物,制陶,冶铜和铁器等等,这些化学技术的应用极大地促进了当时社会生产力的发展,标志着人类社会的进步。今天,化学作为一门基础学科,在科学技术和社会生活的各个方面起着越来越大的作用。那么,从古至今,伴随着人类社会的进步,化学历史的发展经历了哪些时期呢?

一、化学学科发展历程的回顾

1、远古的工艺化学时期

在远古的工艺化学时期,人类的制陶、冶金、酿酒、染色等工艺,主要是凭借几千万年的实践经验摸索出来的,当时化学虽然知识还没有形成,但已经有了萌芽,这便是化学发展的萌芽时期。

2、炼丹术和炼金术时期

大约到了公元前1500年,人们开始对长生不死向往,战国时期的方士认为只有金石之类的不朽之物方能成就人们的不死之身。于是,炼丹术便由此开始。由于丝绸之路的开通,中国的炼丹术逆向传入欧洲的波斯和阿拉伯地区。这时的波斯已经伊斯兰化,伊斯兰教徒没有得道成仙、长生不老的观念,他们只有对金的崇拜,于是人们想把其他金属皆变作黄金,因此炼丹术在该地区演化成炼金术。这便是最早的化学实验,化学方法转而在医药和冶金方面得到了正当的应用。在欧洲文艺复兴时期,出版了一些有关化学的书籍,第一次有了“化学”这个名词。英语的chemistry起源于alchemy(炼金术)。

3、燃素化学时期

从1650年到1775年,随着冶金工业和实验室经验的积累,人们总结感性知识,认为可燃物能够燃烧是因为它含有燃素,燃烧的过程是可燃物中燃素放出的过程,可燃物放出燃素后成为灰烬。

4、定量化学时期

气体化学的定量方法的应用,从化学科学内部不断地冲击着陈旧的燃素学说。而在十八世纪后期的工业革命和资产阶级民主革命,推动整个自然科学进入了一个空前的发展时期。这就又在化学科学外部提供了燃素学说,建立科学燃烧理论的条件。综合这些因素,就使得化学家能够把从气体性质中推导出来的物理概念应用到传统的化学中去,建立了新的氧化学说。1775年前后,拉瓦锡用定量化学实验阐述了燃烧的氧化学说,开创了定量化学时期,实现了一场深刻的化学革命。这样,化学也就从传统的经验技术性的学科,转变为可以用数学进行定量计算的学科了。

二、化学学科发展的现状

20世纪初化学已深入到原子、分子层次,化学成为在原子、分子层次上研究物质结构和性能的科学,建立了一套物质分子的研究方法(包括理论研究和计算,分子层次上的测量,微观结构和宏观性质的研究)。这些科研成果如约里奥-居里夫妇用人工方法创造出放射性元素、在费米领导下成功地建造了第一座原子反应堆、化学键和现代量子化学理论的建立、合成化学、高分子科学的建立和发展等等使化学发生了深刻地变化。

在进入21世纪的今天,人们在谈论科学的发展时指出,“这将是一个生命科学和信息科学的世纪。”那么化学还有什么用呢?如诺贝尔获得者H.W.Kroto在回答这个问题时所述,“正是因为是生命科学和信息科学的世纪,所以化学才更为重要。”因为这是一门承上启下、渗透于各种新兴交叉学科的中心科学。化学的原理和这些研究方法广泛使用于其他学科,使化学渗透到其他学科形成许多新的交叉前沿学科,从而使化学处于中心学科的地位。

材料化学、生命化学、环境化学、绿色化学等均属于新的交叉前沿学科。

1、材料化学

材料科学的发展十分迅速,它是物理、化学、数学、生物、工程等一级学科交叉而产生的新学科领域。材料化学处于核心地位,它的应用目的性很强。它是人类衣、住、行、用的原料,也是社会生产的最根本的物质基础。比如新型高分子薄膜材料及其多层膜形成技术的研发成功,才使得举世称誉的“水立方”游泳馆的设计得以实现,为2008年北京奥运会增添了色彩。

功能材料是新材料领域的核心,是社会发展、国民经济及国防建设的基础和先导。它不仅对高新技术的发展起着重要的推动和支撑作用,还对我国相关传统产业的改造、实现跨越式的发展起着重要的促进作用。

当前国际功能材料及其应用技术正面临着新的突破,诸如超导材料、微电子材料、光子材料、信息材料、能源转换及材料的分子、原子设计等正处于日新月异的发展之中,发展功能材料技术正在成为一些发达国家强化其经济及军事优势的重要手段。

目前已发现上千种超导材料,但是实际上只有铌基超导体[1]真正投入使用。以NbTi[2]、Nb3Sn为代表的实用超导材料已实现了商品化。以铌为基础的导体做成线材、电缆和复杂结构的导体已经成为高磁场领域必不可少的工具。

铌基超导体最突出的用途是医疗诊断上的磁性共振成像技术(MRI)。 在医疗器械领域,超导体已经开辟出约2.5 B$ 的市场。MRI的一个典型的功能例子是脑成像,因血液中氧的含量不同,因而其磁特性不同,从而可探测大脑的活动。

第二个重要用途是核磁共振(NMR)的光谱技术,NMR 光谱在化学,生物学,医学和材料研究领域已成为有力的分析工具。在NMR光谱方面,被研究的某一同位素共振线的光谱被记录下来和分析,可以得到试样中分子结构的信息。商业用NMR光谱的范围现在300 MHz(7T)和900 MHz (18.8T)之间。磁场达到400 MHz(9.4T)以上时,只能采用NbTi导体。对于500 MHz (11.8T) 和更高磁场的磁体, 其内部高磁场部分采用的是Nb3Sn导体制成, 因此是NbTi/Nb3Sn的复合体。

另一个应用领域是核熔融技术。电能不仅可以由重核分裂产生, 而且可以用氢同位素核融解来生产。熔融反应只能发生在非常高的温度下,此时必须采用加入粒子的等离子体。该等离子体必须包容在高磁场内,该高磁场必须用超导磁体产生,应用Nb3Sn材料的熔融装置具有很高的磁场。核熔融为今后电力生产提供了另一种选择。

2、生命化学

生命化学是运用化学原理及方法研究生命现象及其运动规律的学科。它是从分子水平来研究生物体的:研究其成分及它们如何按严密特定的方式组合而成;研究其各部分为什么具有其特殊的生理功能;研究生物体是如何进行物质与能量新陈代谢的;研究生物体如何繁殖,遗传的原因等等。生命化学对于改良和创造新生物品种,充分利用资源,丰衣足食,提高生活质量和健康水平以及改善环境均具有极其重要意义。

3、环境化学

环境化学是环境科学的一个分支,就其基础来看更多的属于化学范畴,它使用化学的基本原理和方法来研究环境问题。环境化学是研究环境中物质相互作用的学科。环境化学的研究任务主要指分析检测环境介质中存在的有害物质,追踪它们的来源以及在环境介质中化学物质的行为,了解有害物质对生物和人体产生不良影响的规律,由此会推动环境分析化学、大气环境化学、水环境化学、土壤环境化学等三级学科的发展。

4、绿色化学

绿色化学是指化学反应过程以“原子经济性”为基本原则,即在获取新物质的化学反应中充分利用参与反应的原料的每个原子,实现零排放。这样不仅充分利用了资源,而且不会产生污染,并采用无毒、无害的溶剂、助剂和催化剂,生产出有利于环境保护、社区安全和人身健康的环境友好产品。化学家不仅要考虑化学品生产的可行性及其用途,还要设计出不产生或减少污染的化学过程。绿色化学将会改变化学工业的面貌。

三、化学学科发展的趋势

1、化学仍是提高人类生存质量和生存安全的有效保障

不断提高生存质量和生存安全是人类进步的标志。化学研究至少可以从三方面对保证生存质量的提高做出贡献:

① 通过研究各种物质和能量的生物效应的化学基础,特别是搞清楚两面性的本质,找出最佳利用条件;

② 研究开发对环境无害的化学品和生活用品,研究对环境无害的生产方式。提供安全有防病作用的食物和食物添加剂(特别是抗氧化剂),改进食品储存加工方法,以减少不安全因素,有效防止“三聚氰胺”、“瘦肉精”、“有色馒头”、“奶茶塑胶”、“有毒黄瓜”等类似事件发生。

③ 研究大环境与小环境中不利因素的产生、转化与人体的相互作用,提出优化环境建立洁净生活空间的途径。

健康是重要的生存质量的标志,预防疾病将是21世纪医学发展的中心任务。化学可以从分子水平了解病理过程,提出预警生物标志物的检测方法,建议预防途径。

2、化学在能源和资源的合理开发和高效安全利用中起关键作用

21世纪初期,我国重点能源仍然为煤碳、石油、天然气等能源。这就要求研究高效洁净的转化技术和控制低品位燃料的化学反应,使之既能保护环境又能降低成本。此外还要开发新能源,新能源必须满足高效、经济、洁净、安全的要求。太阳能、新型的高效洁净电源与燃料电池都将成为21世纪的重要能源。

3、化学将继续推动材料科学发展

2l世纪电子信息技术将向更快、更小、功能更强的方向发展。目前正在致力于量子计算机、生物计算机、分子电路、生物蕊片等高新技术,进入分子信息技术阶段要求化学家设计、合成所需的物质和材料。

化学家还应该研究各种与电子信息有关的材料的性质和功能以及与各个层次结构的关系,特别是物质与能量的相互作用的化学特征,创造具有特殊功能的新物质和新材料。

最后希望学生们努力学习化学,将来为化学的发展作出贡献,加快社会发展,提高人们的生活质量,让化学改变整个世界!

参考文献:

[1] Helmut Krauth. FABRICATION AND APPLICATION OF NbTi AND Nb3Sn SUPERCONDUCTORS.

量子化学的发展范文6

关键词: 数学 其他学科 应用

数学是一门应用非常广泛的学科。伟大的数学家华罗庚曾说:“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生活之谜,日月之繁,无处不用数学。”这应该算得上是对数学与其他学科关系的完美阐述。马克思指出:“一种科学只有在成功地运用数学时,才算达到了真正完善的地步。”可见,任何一门自然学科的发展都离不开数学。数学的基础作用,无不在其他学科的深入研究中显示出来,因此,有人说数学是自然科学之母。当今社会,物理、化学、计算机等学科与人们的日常生活息息相关,它们影响着人类文明的进步和社会的发展,因此本文主要考察数学在物理、化学、计算机学科中的应用和影响。

1.数学在物理学科中的应用

物理要创新,不仅仅靠物理实验,还要有数学作为其理论基础。数学,尤其是微积分学,是研究近代物理的不可或缺的重要工具,数学也因此有了实际意义[1]。纵观整个物理学,任何一个分支都不能离开数学,不能离开微积分,任何一门理论都是依靠数学建立起来的,尤其是经典力学,更离不开微积分。

微积分产生于十七世纪末,是物理学奠基人牛顿在研究经典力学的过程中创立的。他的巨著《自然哲学中的数学原理》就是应用微积分这个数学工具,构建了地球和天体主要运动现象的完整力学体系。《自然哲学中的数学原理》的诞生,使整个物理学与数学的星空为之一亮,为物理学及数学的进一步发展开辟了更广阔的空间,它既是物理学巨著又是数学巨著,是应用微积分解决物理问题的经典之作。可以毫不夸张地说,离开了数学,离开了微积分,物理研究将寸步难行。

2.数学在化学学科中的应用

从学科的发展和人们的认识来看,化学家们比起物理学家们,对数学在学科发展中的重要作用的认识要来得迟一些。直到近代化学,数学才显现出其特别的基础作用来,从定量分析到量子化学,从数量分析到计量化学,数学在化学中的作用日益增强,所涉及的数学知识也越来越深奥。

数学方法在化学各分支中的应用非常多[2,3],如向量分析、常微分方程、微分与变分法、偏微分方程、有限差分计算、数值方法、矩阵、群论、过程最优化方法、概率与统计,等等。大部分的化学计算问题都编成了计算机程序。化学家和化学工作者只要学会一些简单的操作就可进行大量繁重而复杂的计算,计算机将化学家们从繁重的数学计算中解放出来了。但是,化学工作者和尤其是肩负时代重任的化学家们,应该而且必须掌握基本的数学计算方法在化学中的应用,只有深刻掌握数学知识和方法,并把它们灵活地运用到化学学科中,才能使化学学科为人类作出更大的贡献。

3.数学在计算机学科中的应用

随着计算机技术的快速发展,数学知识在计算机技术发展中,尤其是在计算机应用程序设计中处于及其重要的地位[4]。同时,用数学的思维解决各种程序设计方面的难题也是十分重要的。在程序设计中所解决的相当一部分问题都会涉及各种各样的科学计算,这需要程序员将实际问题转换为程序,要经过对问题抽象的过程,建立起完善的数学模型,才能设计出好的软件。如今形形的软件,都与数学有必然联系,它们相辅相成。

计算机程序设计解决问题都是实际应用问题,涉及各种各样的科学计算,而实际问题转换为程序,要经过一个对问题抽象的过程,建立起完善的数学模型,才能设计一个问题解决的程序。这需要程序员具有良好的数学基础。软件编程的思想最重要是算法,而算法是建立在数学思维上的,其实说白了,程序只是一件衣服,算法才是它的灵魂,算法就来自于数学,没有深厚的数学思维功底,是弄不懂算法的。所以,科学计算到信息处理,从理论计算机科学到计算机应用技术,从计算机软件到计算机硬件,从人工智能到分布式系统,无不与数学密切相关。在现代计算机科学中,如果不了解离散数学的基本内容,则在计算机科学中就寸步难行了。

以上介绍了数学在物理、化学和计算机中的应用,实际上数学在经济学、金融学等学科中也有重要的应用,数学的重要应用深深地嵌入了各个学科中。因此,全社会应大力开展数学的基础知识学习,调动人们对数学学习的积极性,让数学知识和计算方法融汇到其他各个学科中,才能使得数学在其他学科中发挥更大的作用。

参考文献:

[1]高相兰.浅谈数学方法在物理学中的应用[J].中国科教创新导刊,2011,20.

[2]邓从豪,张道民,曹阳,等.现代化学的前沿和问题[M].山东:山东大学出版社,1987.