量子化学的应用范例6篇

前言:中文期刊网精心挑选了量子化学的应用范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

量子化学的应用

量子化学的应用范文1

论文摘要:将量子化学原理及方法引入材料科学、能源以及生物大分子体系研究领域中无疑将从更高的理论起点来认识微观尺度上的各种参数、性能和规律,这将对材料科学、能源以及生物大分子体系的发展有着重要的意义。

量子化学是将量子力学的原理应用到化学中而产生的一门学科,经过化学家们的努力,量子化学理论和计算方法在近几十年来取得了很大的发展,在定性和定量地阐明许多分子、原子和电子尺度级问题上已经受到足够的重视。目前,量子化学已被广泛应用于化学的各个分支以及生物、医药、材料、环境、能源、军事等领域,取得了丰富的理论成果,并对实际工作起到了很好的指导作用。本文仅对量子化学原理及方法在材料、能源和生物大分子体系研究领域做一简要介绍。

一、在材料科学中的应用

(一)在建筑材料方面的应用

水泥是重要的建筑材料之一。1993年,计算量子化学开始广泛地应用于许多水泥熟料矿物和水化产物体系的研究中,解决了很多实际问题。

钙矾石相是许多水泥品种的主要水化产物相之一,它对水泥石的强度起着关键作用。程新等[1,2]在假设材料的力学强度决定于化学键强度的前提下,研究了几种钙矾石相力学强度的大小差异。计算发现,含Ca钙矾石、含Ba钙矾石和含Sr钙矾石的Al-O键级基本一致,而含Sr钙矾石、含Ba钙矾石中的Sr,Ba原子键级与Sr-O,Ba-O共价键级都分别大于含Ca钙矾石中的Ca原子键级和Ca-O共价键级,由此认为,含Sr、Ba硫铝酸盐的胶凝强度高于硫铝酸钙的胶凝强度[3]。

将量子化学理论与方法引入水泥化学领域,是一门前景广阔的研究课题,它将有助于人们直接将分子的微观结构与宏观性能联系起来,也为水泥材料的设计提供了一条新的途径[3]。

(二)在金属及合金材料方面的应用

过渡金属(Fe、Co、Ni)中氢杂质的超精细场和电子结构,通过量子化学计算表明,含有杂质石原子的磁矩要降低,这与实验结果非常一致。闵新民等[4]通过量子化学方法研究了镧系三氟化物。结果表明,在LnF3中Ln原子轨道参与成键的次序是:d>f>p>s,其结合能计算值与实验值定性趋势一致。此方法还广泛用于金属氧化物固体的电子结构及光谱的计算[5]。再比如说,NbO2是一个在810℃具有相变的物质(由金红石型变成四方体心),其高温相的NbO2的电子结构和光谱也是通过量子化学方法进行的计算和讨论,并通过计算指出它和低温NbO2及其等电子化合物VO2在性质方面存在的差异[6]。

量子化学方法因其精确度高,计算机时少而广泛应用于材料科学中,并取得了许多有意义的结果。随着量子化学方法的不断完善,同时由于电子计算机的飞速发展和普及,量子化学在材料科学中的应用范围将不断得到拓展,将为材料科学的发展提供一条非常有意义的途径[5]。

二、在能源研究中的应用

(一)在煤裂解的反应机理和动力学性质方面的应用

煤是重要的能源之一。近年来随着量子化学理论的发展和量子化学计算方法以及计算技术的进步,量子化学方法对于深入探索煤的结构和反应性之间的关系成为可能。

量子化学计算在研究煤的模型分子裂解反应机理和预测反应方向方面有许多成功的例子,如低级芳香烃作为碳/碳复合材料碳前驱体热解机理方面的研究已经取得了比较明确的研究结果。由化学知识对所研究的低级芳香烃设想可能的自由基裂解路径,由Guassian98程序中的半经验方法UAM1、在UHF/3-21G*水平的从头计算方法和考虑了电子相关效应的密度泛函UB3LYP/3-21G*方法对设计路径的热力学和动力学进行了计算。由理论计算方法所得到的主反应路径、热力学变量和表观活化能等结果与实验数据对比有较好的一致性,对煤热解的量子化学基础的研究有重要意义[7]。

(二)在锂离子电池研究中的应用

锂离子二次电池因为具有电容量大、工作电压高、循环寿命长、安全可靠、无记忆效应、重量轻等优点,被人们称之为“最有前途的化学电源”,被广泛应用于便携式电器等小型设备,并已开始向电动汽车、军用潜水艇、飞机、航空等领域发展。

锂离子电池又称摇椅型电池,电池的工作过程实际上是Li+离子在正负两电极之间来回嵌入和脱嵌的过程。因此,深入锂的嵌入-脱嵌机理对进一步改善锂离子电池的性能至关重要。Ago等[8]用半经验分子轨道法以C32H14作为模型碳结构研究了锂原子在碳层间的插入反应。认为锂最有可能掺杂在碳环中心的上方位置。Ago等[9]用abinitio分子轨道法对掺锂的芳香族碳化合物的研究表明,随着锂含量的增加,锂的离子性减少,预示在较高的掺锂状态下有可能存在一种Li-C和具有共价性的Li-Li的混合物。Satoru等[10]用分子轨道计算法,对低结晶度的炭素材料的掺锂反应进行了研究,研究表明,锂优先插入到石墨层间反应,然后掺杂在石墨层中不同部位里[11]。

随着人们对材料晶体结构的进一步认识和计算机水平的更高发展,相信量子化学原理在锂离子电池中的应用领域会更广泛、更深入、更具指导性。

三、在生物大分子体系研究中的应用

生物大分子体系的量子化学计算一直是一个具有挑战性的研究领域,尤其是生物大分子体系的理论研究具有重要意义。由于量子化学可以在分子、电子水平上对体系进行精细的理论研究,是其它理论研究方法所难以替代的。因此要深入理解有关酶的催化作用、基因的复制与突变、药物与受体之间的识别与结合过程及作用方式等,都很有必要运用量子化学的方法对这些生物大分子体系进行研究。毫无疑问,这种研究可以帮助人们有目的地调控酶的催化作用,甚至可以有目的地修饰酶的结构、设计并合成人工酶;可以揭示遗传与变异的奥秘,进而调控基因的复制与突变,使之造福于人类;可以根据药物与受体的结合过程和作用特点设计高效低毒的新药等等,可见运用量子化学的手段来研究生命现象是十分有意义的。

综上所述,我们可以看出在材料、能源以及生物大分子体系研究中,量子化学发挥了重要的作用。在近十几年来,由于电子计算机的飞速发展和普及,量子化学计算变得更加迅速和方便。可以预言,在不久的将来,量子化学将在更广泛的领域发挥更加重要的作用。

参考文献:

[1]程新.[学位论文].武汉:武汉工业大学材料科学与工程学院,1994

[2]程新,冯修吉.武汉工业大学学报,1995,17(4):12

[3]李北星,程新.建筑材料学报,1999,2(2):147

[4]闵新民,沈尔忠,江元生等.化学学报,1990,48(10):973

[5]程新,陈亚明.山东建材学院学报,1994,8(2):1

[6]闵新民.化学学报,1992,50(5):449

[7]王宝俊,张玉贵,秦育红等.煤炭转化,2003,26(1):1

[8]AgoH,NagataK,YoshizawAK,etal.Bull.Chem.Soc.Jpn.,1997,70:1717

[9]AgoH,KatoM,YaharaAK.etal.JournaloftheElectrochemicalSociety,1999,146(4):1262

量子化学的应用范文2

化学键是理解有机化合物结构的理论基础,有机化学中最常见的是σ键和π键,借助于GAMESS-US的计算结果可清楚地从三维空间立体显示σ键和π键的形成过程。图1是乙烷中的两个碳原子在最小基基组下相距不同距离时所对应的分子轨道的图像,从图中可明显看出当碳原子相距为3倍平衡键长(3Re)时,两个碳原子上的sp3杂化轨道不能有效重叠成键;当碳原子间距离靠近为2Re时,两个碳原子的sp3杂化轨道能够部分重叠形成弱的σ键;当碳原子间距离靠近到Re时,两个sp3杂化轨道可最大重叠形成稳定的沿键轴呈圆柱形对称的σ键。图2则显示了乙烯中两个碳原子上的2pz轨道从相距3Re逐渐靠近到Re按“肩并肩”方式形成成键π和反键π*轨道的过程。从图2可明显看出,π轨道在乙烯平面上的电子云密度为零,而通过两个位相相反的2pz轨道组合形成的反键π*轨道,原子间电子云密度明显降低。

2构象的演示

构象是有机化学中的一个基本概念,一般是在讲述烷烃的时候引入。这里以正丁烷中C2-C3单键内旋转为例来说明如何通过量子化学计算直观解释构象以及构象间的相互转换这些概念。图3是正丁烷在6-31G(d)基组下绕中心C2-C3旋转不同角度并限制性优化得到的不同构象的能量曲线。图中同时给出了各典型构象的相对能量及其立体分子结构。从图中所标示的分子结构的球棍模型可以明显看出,在二面角为180°(反交叉式)时,丁烷的两个甲基相聚最远,整个分子能量最低;而在二面角为60°(顺交叉式)时两个甲基的相互排斥使能量升高大约4.2kJ/mol,两者都处于势能曲线上的极小值点,都是较稳定的构象。从反交叉式转换到顺交叉式需要越过15.3kJ/mol的势垒。而另外的全重叠式和部分重叠式构象由于甲基相距太近,排斥能较大使得它们处于能量曲线上的极大值点,因此是不稳定构象。我们还可以利用频率计算得到的各构象相对自由能根据玻尔兹曼公式近似计算室温下各构象所占的比例。

3反应机理的演示

有机反应机理是有机化学的重要组成部分,也可以说是理解和掌握基本有机反应的基础。但是有机反应机理普遍较为抽象,对于刚接触到有机反应的学生而言显得难以掌握。若能够以动画的形式来直观化整个反应过程,显然有助于学生对反应机理的理解。这里我们以有机化学里常见的双分子亲核取代(SN2)反应和(氢迁移反应来说明如何通过计算化学来动画图示整个反应历程。3.1SN2反应图4显示的是6-31+G(d)基组下由内禀内坐标(IRC)方法计算得到的SN2反应F-+CH3ClCH3F+Cl-整个反应历程[6]。从IRC计算得到的反应路径可以很直观地阐明整个反应过程:F-从C-Cl键背面进攻C原子,随着反应的进行,F-和中心C原子的距离逐渐接近;与此同时,原来的C-Cl键的键长逐渐拉长;在反应的过渡态,C原子近似采用sp2杂化,和三个氢原子形成一个近似平面的结构,F-和Cl-分别位于这个平面的两侧,F和C以及C和Cl均是靠弱的σ键联系在一起,随后F-进一步靠近和C形成F-C键,Cl-离去最后形成自由的Cl-。整个反应过程可以制作成一个动画进行直观演示,活化能的数据也可直接从反应混合物和过渡态的相对能量差得到。3.2σ迁移反应σ迁移反应属于周环反应的一种,和有机化学中大多数离子型或者自由基反应机理不同,σ迁移反应一般是通过环状过渡态协同完成。这里我们以1,3-戊二烯的[1,5]σ氢迁移反应为例,说明通过量子化学计算结果所展示的整个协同反应历程(图5)。从IRC计算得到的结果可以直观重现整个反应过程:甲基上的氢逐渐向端基的烯基碳原子靠近,形成一个六元环过渡态结构,随后旧的碳氢键逐渐断裂、新碳氢键生成,最后形成产物。

4红外光谱的指认

量子化学的应用范文3

物理化学是化学类专业的重要基础课程,其基本原理被广泛地应用于其它分支学科。因而学好本课程,可以加深对无机化学、有机化学、分析化学等先行课程的理解。物理化学也是一门理论性很强的交叉学科,涉及一定的数学和物理学知识,推演出的公示很多,使初学者感到抽象难懂,普遍反映是比较难学的一门课程[1]。随着人们对物理化学现象本质的认识以及计算机技术的飞速发展,近些年来许多物理化学原理和方法得到了进一步的发展和完善。为了促使大学教师及时更新知识、丰富教学内容、提高教学水平,非常有必要在课程教学中融入相关学科领域的最新科研成果,最终达到科研促进教学的目的。鉴于此,作者将反应焓的量子化学计算研究融入到物理化学课程的热化学教学中,这极大地提高了物理化学的教学水平和教学效果,同时有助于培养学生的科研兴趣、增强学生的思维创新性。

1.物理化学教材中关于反应焓的计算

众所周知,化工生产离不开化学反应,而化学反应常常伴随着热量的交换与传递。测定或计算一个化学反应的热对于实际生产是非常重要的。由于实际生产经常是在等压或者等容条件下进行的,因此很有必要对这两种情况下的热即Qp和Qv展开学习和研究。又因为Qp和Qv之间存在直接的定量关系,所以只需要获得其中一种热效应值就可以了,一般倾向于讨论Qp。在非体积功为零的条件下,Qp与反应焓变H在数值上是相等的,故恒压反应热又可称之为反应焓。目前,物理化学教材[1]中关于化学反应焓的计算,主要是利用标准摩尔生成焓和标准摩尔燃烧焓这两种基础热数据计算标准摩尔反应焓。通过标准摩尔反应焓可以进一步计算化学反应过程的Qp、Qv以及体系的rH和rU等。因此,标准摩尔反应焓的计算是物理化学课程的一个重要知识点,所涉及的相关内容也是物理化学课程的教学难点。

对于298.15 K下的反应cC + dD yY + zZ,其标准摩尔反应焓等于:

也就是说,298.15 K下的标准摩尔反应焓等于相同温度下参加反应的各个组分的标准摩尔生成焓与其化学计量系数乘积的代数和。结合νB的取值情况,其实质是:一个化学反应的标准摩尔反应焓等于各产物的标准摩尔生成焓之和减去各反应物的标准摩尔生成焓之和。

如果利用标准摩尔燃烧焓计算上述化学反应的标准摩尔反应焓,那么相应的计算公式为:

显然,一个化学反应的标准摩尔反应焓等于参加反应的各个组分的标准摩尔燃烧焓与其化学计量系数乘积的代数和的负值。

2.反应焓的量子化学计算方法

根据文献“Thermochemistry in Gaussian”白皮书[2]可知,对于一个化学反应来说,如果反应物和生成物中各种原子的个数均相等,那么在计算该化学反应过程的反应热时,有关原子的信息就可以抵消,其反应热的计算只需要分子的数据。具体的计算公式如下:

其中Em表示分子总能量,Hc表示热焓校正,二者之和可以直接从Gaussian程序的输出文件中读取。此处量子计算化学研究的对象一般是单个气态分子,因此上述公式中的Em准确地说是气态单分子的总能量,Hc是气态单分子的热焓校正值。由此可见,这里所说的化学反应都是在气相中进行的,即参与反应的各个组分均为气态。这也正是该理论计算方法的局限性和不足之处。但是,对于某些液相或者固相反应来说,同样可以利用该方法粗略地估算其标准摩尔反应焓。

3.乙醇脱水制取乙烯的化学反应焓

以乙醇脱水制取乙烯的气相化学反应为例,介绍量子化学方法计算标准摩尔反应焓的步骤和具体过程。首先,利用GaussView软件分别绘制乙醇、水和乙烯的分子结构,编辑各自的输入文件。然后,采用Gaussian03程序优化它们的分子结构,并且进行振动分析以判断它们为势能面上的稳定点。图1给出了乙醇、水和乙烯在B3LYP/6-311++G?鄢?鄢理论水平下的优化分子结构。

此外,通过查阅物理化学教材[1]的附录获得乙醇、水和乙烯的气相标准摩尔生成焓分别为-235.10kJ/mol、-241.82kJ/mol和52.26kJ/mol,进而采用公式(1)计算乙醇脱水制取乙烯的标准摩尔反应焓等于45.54kJ/mol。其次,打开它们的Gaussian输出文件,得到每个组分的分子总能量Em与其热焓校正值Hc之和,再利用公式(3)计算该反应在298.15 K时的标准摩尔反应焓。在此基础上,计算各种理论水平下的误差,相关热化学数据的理论值及其误差列于表1。

量子化学的应用范文4

什么是多尺度模型

20世纪70年代,瓦谢尔从理论上提出,可以用计算机模拟、以量子力学和分子力学结合的方式描述化学过程,后来被称为“多尺度模型”。这一理论得到了广泛的应用。

其实,多尺度模型就是我们常用的MM/QM模型。我们知道,原子是化学反应的基本微粒,它由原子核和核外电子共同构成。我们在做分子模拟时,分子力学(MM)算起来比较快,但只能处理到原子、基团这个层面,而量子力学(QM)虽然考虑到了电子和原子核,但计算起来相当复杂。

三位科学家的开创性,在于打开了“势不两立”的分子力学与量子力学之间的一扇窗,将两者结合起来。如今,当科学家在模拟分子反应的过程时,他们会在必要时借助计算机的力量。化学反应系统核心的计算基于量子物理学,而在远离反应核心区域的地方,模型计算则基于经典物理学,在最外的几层,原子和分子甚至混合在一起,形成同质的物体。通过这些理论简化,我们可以对大型的化学系统进行模拟计算。

多尺度模型的应用与前景

“分而治之”描述化学反应

化学反应是一个微观过程,许多化学反应的发生极为迅速,我们肉眼难以快速捕捉到。比如,生命体中的核糖从无规则的多肽链发展到稳定的蛋白质结构所用时间为微秒级。如果扫描这一过程,耗费的时间将是天文数字。

因此,传统上用实验手段描述出反应过程的每一个步骤几乎是不可能实现的。量子力学的描述小而精,分子力学的描述宽泛但精度不高。如果都用高精度的方法来描述化学过程,计算将难以进行。所以,多尺度组合的方法便成了研究者最好的选择,这与中国古代“分而治之”的哲学思想类似。

掀起科学研究新篇章

化学是一门以实验为基础的学科,三位科学家基于量子力学、经典力学以及混合量子—经典力学提出的理论模型对化学的定量化研究、化学理论研究以及实验研究都有非常重要的指导作用。例如,通过计算机模拟的方法来研究蛋白质分子的运动和酶的催化反应机理,发展分子动力学模拟方法,研究复杂化学体系的运动规律等。

同时,该模型还被应用于计算化学、生物化学、生物物理学以及物理学与应用数学,是典型的跨学科成果。这一模型的提出与应用,对化学学科的推进、化学与生物学科交叉发展都发挥了相当大的作用,具有里程碑式的意义。

研究前景可观

对于该领域的研究,我国的起步相对较晚,但自2000年之后,随着国家科研实力的增强,这一领域研究已经取得了较大进步。例如,2012年9月,北京师范大学化学系教授方维海带领的课题组便采用高精度的量子化学计算对萤火虫发光机理进行了进一步探索,提出了渐进可逆电荷转移引发荧光的新理论,首次在电子态的水平阐明了萤火虫生物发光的化学起源。

此外,三位科学家的研究成果,已经应用于废气净化及植物的光合作用研究中,并将用于优化汽车催化剂、药物和太阳能电池的设计中。

经典力学与量子力学

经典力学是力学的一个分支。经典力学是以牛顿运动定律为基础,在宏观世界和低速状态下,研究物体的运动。经典力学又分为静力学(描述静止物体)、运动学(描述物体运动)和动力学(描述物体受力作用下的运动)。

量子力学是研究微观粒子的运动规律的物理学分支学科,主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质,它与相对论一起构成了现代物理学的理论基础,而且在化学等相关学科和许多近代技术中也得到了广泛的应用。

(敬瑞玲)

试一试

1. 我们知道,经典力学是以牛顿运动定律为基础,在宏观世界和低速状态下,研究物体的运动。那么你所了解的牛顿运动定律有哪些呢?

2. 量子力学主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质,根据所学的知识回答下列问题。

(1)原子是由什么构成的?

(2)氢原子呈什么电性?为什么?

(3)画出Na原子的原子结构示意图。

(4)根据核外电子排布规律,画出Fe原子的原子结构示意图。

量子化学的应用范文5

一、引言

化学在发展的前期主要运用归纳法,因此被强调为“实验的科学”。量子力学建立起来以后,化学有了坚实的物理理论基础,原则上化学变化是可以通过计算定量地说明和预测的。1929年量子力学奠基人之一Dirac就指出:“大部分物理学和全部化学的基本规律已经完全知道了,困难只是在于运用这些规律得到的数学方程太复杂,无法求解”。尽管杰出的理论化学家如凡uling、Mulliken、Fukui等运用量子力学的概念和方法定性地处理化学问题获得丰硕而且能在一定程度上预测新实验的结果。计算机模拟在实际化学问题的研究中占据重要地位,正在发展成为一种其他方法不能代替的强有力的化学研究工具,化学理论计算软件作为商品蓬勃兴起,广泛流通。当前,理论化学计算的发展趋势是研究对象力求逼近真实的化学休系,通常是复杂的大体系;力求得到明确的定量的结论。对大体系的理论计算研究,包括发展计算方法及应用,成为理论化学的前沿研究领域。下面重点对这方面的工作做简要介绍。

二、理论化学计算方法

1.从头计算(abi赫切)法量子化学从头计算法不求助可调参数求解微观粒子体系的真实的量子力学方程。为简化间题引进三个近似:非相对论近似,Bo二一oppenhei~近似,单粒子近似或轨道近似。在上述近似下导出描写电子运动的Hartree一Fock(H一F)方程或H侧rt祀e一Fock-Rooth~(H一F一R)方程。为减少计算误差,可以针对上述三个近似作校正。从头计算法有严格的量子力学和数学理论基础,原则上可以达到任意精度。缺点是计算量太大,与体系电子数目的4一7次方成比例,难于处理较大的体系。目前,高等级H一RR方法可以计算上千个电子的体系。若包括精确的相关能计算,则只能处理100个左右电子的体系。2.密度泛函理论(DP】,)方法密度泛函理论用电子密度分布函数而不是用波函数来描述体系,对于多电子体系是极大的简化。目前密度泛函理论计算方法是依靠求解近似的Koha一Sh。方程,计算量大体与体系粒子数的3次方正比例。对于大的体系,它的计算量比从头计算(H-F-R)法要小得多而计算精度可以达到MPZ方法的水平,得到广泛的应用。目前用DFI,方法可以对100一200个原子(包含几千个价电子)的体系进行高等级的计算。局限性有两点:一是由于还不知道精确的能量密度泛函形式,计算结果的精度有限制,无法系统地提高计算的精度;二是还不能很好地严格处理与电子激发态及多重态结构有关的过程和性质。3.半经脸1子化学方法从头计算法和密度泛函理论方法被统称为第一性原理方法。半经验量子化学方法实质上是在量子力学理论框架下的擂值方法,擂值函数中的特征参数通过拟合一组标样分子的实验与计算值来确定。半经验方法的计算量比第一性原理算法小2一3个数量级,用于有机分子体系比较成功,缺点是计算误差难于估计。随着计算能力的提高,第一性原理算法不断发展,半经验方法逐步退居较次要的地位。目前仍在广泛使用的半经验方法是AMI和PM3,对F扭uenheim等提出基于紧束缚近似的半经验密度泛函理论方法,其半经验参数的普适性好,有可能发展成为一种有用的计算方法。4.相对论蚤子化学计算相对论效应对重元素化合物的结构、性能均有很大影响。包含相对论效应的严格计算要求解狄拉克方程,比非相对论计算更加困难。已经提出了Di~F沈k(一cI)方法、相对论质势方法、相对论密度泛函理论方法、相对论半经验方法等。相对论计算的计算量一般比相应的非相对论计算要大一个数量级。近年来发展了近似的相对论效应计算方法,比较重要的有三种:基于狄拉克算符Pauli展开式的微扰方法、DKH方法、ZORA方法,后两种方法更好一些。用DKH或ZORA方法,可以用比非相对论计算稍多的计算量,得到与直接求解狄拉克方程相接近的结果,可望得到广泛的应用,特别是应用到比较大的含重元素的体系中。5.分子力学和分子动力学方法分子力学方法利用分子力场确定分子体系的稳定构型,模拟分子的振动光谱,计算气相热力学函数等。分子力场是分子的经验势能函数,其中包含的参数通过拟合一组标样分子的实验与计算值确定。分子力学方法的计算量比半经验方法少2一3个数量级,可以处理成万个原子的体系。缺点是:计算结果的误差难于估计,不能用来研究过渡态结构,更不能用于讨论有化学键形成或断裂的间题。分子力学方法最大的用处是研究生物大分子(或高聚物)的构型和构象变化。分子动力学方法是在给定的分子力场下用数值方法求解多原子体系的经典力学方程,模拟体系中各原子的运动过程,现在可以模拟几千个原子组成的体系的运动。可以求得体系的热力学函数,也可以寻找分子的优势构象。分子动力学计算结果依赖于采用的分子势函数。1985年Car和P恤币neno将密度泛函方法和分子动力学方法结合起来,提出C一P方法,克服了分子动力学方法中由于使用经验势函数产生的缺点,但计算量也就增大了许多。

三、大体系的分区计算方法

1.电子可分离性理论[s]实现对很大体系的计算是当前的前沿热点。解决问题的基本思路是分区进行计算。早在1959年Mcweeny就提出电子可分离性理论:将大体系分割为若千子体系,其波函数写成子体系波函数的全反对称积,不同子体系波函数满足强正交条件。分别求解各子体系的H一F方程,就可以得到大体系的波函数及能量。Huz还昭a、Adall阳和今比ert等后来深人研究了上述方法。1992年F班ncisc。等提出了不要求子体系间波函数强正交条件的方程。上述分区处理办法虽然解决了可以计算大分子的间题,但总计算量并未减少。2.“分而治之(divids一叨d一conquer,D&C)”方法[‘,,]1991年杨伟涛在密度泛函理论的框架下提出“分而治之”的方法。将大体系分剖为若干子体系,对各子体系进行Kohn~Sham方法的密度泛函理论计算,在子体系周围添加缓冲基函数以减少基组截断误差。电荷在各子体系间的分配由电负性均衡原理确定。各子体系间的库仑及交换相关作用包含在子体系的Kohn一sham方程中。D&C方法计算盘比整体计算小得多,并且便于实现并行计算,是一种有效的计算大体系的方法。1995•年杨伟涛等将D&C方法推广到分割一阶约化密度矩阵,整体密度矩阵分解为若干个子体系密度矩阵的迭加。由子体系的F加k矩阵求得其分子轨道,在同一费米能级下构造各子密度矩阵,迭加得到总密度矩阵。用于半经验计算,处理过几千个原子的体系。3•线性比率(linear。e‘ng,o(N))算法I。]降低计算量随体系粒子数的增长速率是很关键的问题。1991年杨伟涛在提出“分而治之”算法的基础上提出实现对大体系线性比率算法的可能性。1995年,杨伟涛等在把D&c方法用于密度矩阵的基础上,实现了半经验方法的线性比率算法。1996年Kohn指出线性比率算法的物理基础是在外场中的量子力学多粒子平衡体系,其粒子具有“近视性,即一个小区域的静态性质,对于较远距离的外场变化是不敏感的。与此相联系,体系的一阶约化密度矩阵是主对角线带状矩阵。随着体系加大,矩阵带只是成比例增长,构造密度矩阵及将其对角化的计算量只是线性增加。D&C方法构造密度矩阵的计算量比较大。提出过几种效率更高的办法:Fenni算符展开法(1994),Fe双‘算符投影法(1995),密度矩阵优化法(1993,1996)等。线性比率算法在半经验方法框架内已得到广泛应用。例如,Scuseria等用AMI计算过2O口以)个原子的体系(1998)。用大基组作精确计算的线性比率算法还难于实现,但研究在取得进展,例如提出了库仑矩阵的高效率算法,交换矩阵的线性与准线性比率算法,FOCk矩阵的线性比率算法等。线性比率算法要对大的体系才发挥作用。从小体系计算量随粒子数3一7次方增长速率到大体系实现线性比率算法,计算量随粒子数增长的速率逐渐降低,转变点大概在1以}一500个原子之间。

四、对大体系局部的计算

对于很多大体系,性能只与其局部有关,其余部分只起到一种支撑基体的作用。在这种情况下,对体系整体进行精确计算,事倍功半;而完全忽略基体的作用,又与实际情况差距太大,计算结果不能说明间题。针对上述情况,人们提出将体系分为环境区和活性区,分区进行不同精度计算的方法。1.分区域作不同精度计算[9]最简单的比较粗略的做法是用近似的严格定域轨道(孤对、。键、二键等)堆砌出环境区的电荷分布,产生静电势,用于活性区的半经验自洽场计算。Bax-ter等(i卯6)提出se留(。e琢eonsistent卿pfield)方法。通过较小分子的计算得出分子片的密度矩阵。环境区的密度矩阵由分子片密度矩阵组合出来,用以计算环境对活性区的静电势,作自洽场计算。杨伟涛等(1998)在把D&C方法用于密度矩阵的基础上提出冻结环境分子轨道的半经验计算方法,用来研究大体系局部构型变化。Kau加阳n等(l990)提出先用较小基组对大体系作从头计算,将所得定域于环境区的分子轨道冻结,再对活性区作精确的从头计算。Morokuma等(1996)提出IMOMo方法,用模型分子代替活性区作精确从头计算,半经验地扣除模型误差。‘rt~等(1993,1996)提出局域量子化学方法,用于Hartree~FOCk计算:将环境和括性区各自的密度矩阵之和作为整个体系的起始密度矩阵,冻结环境部分,用Mcweeny提出的等幕性优化的方法,得到在环境下活性区的密度矩阵。M二等(20(犯)提出基于D&C方法的复合哈密顿方法,对精确计算的子体系用D碑哈密顿,对环境区用半经验哈密顿,两部分之间的电荷分配由电负性均衡确定。可以用半经验线性比率算法处理很大的环境。2.基体上添加外物的局部计算〔10.川对晶体中掺杂的局部进行计算,提出过多种方法,如原子簇近似、镶嵌原子簇、超晶胞法等。D~si等对镶嵌原子簇方法作了系统的研究,方法是:在杂质周围划出一个原子簇进行计算,考虑晶体环境对原子簇的作用。将体系的格林函数矩阵分割为原子簇部分Cc。、环境部分‘D。和两者相互作用部分‘cD和“。令‘DD部分与纯晶体的相同,求解格林函数矩阵方程,可以得到‘cc和Cc。以及相应的密度矩阵。固体表面吸附是另一类要求局部精确计算的间题。Head等(1996)提出的方法是:将基体表面原子的基组分为活性区及环境区,将环境区与活性区有相互作用的基函数成分吸收到活性区的基组中,冻结环境区的密度矩阵,将吸附分子的基组加人到扩充的活性区基组中去,进行精确计算。Salahub等(1998)提出计算金属表面上吸附的方法,将表面分为吸附中心、软环境区和硬环境区,冻结环境区的分子轨道,将吸附分子加到活性区作D打计算。电子在吸附区与软环境区之间可以流动,保持电负性均衡

五、量子力学/分子力学(QM/MM)方法

对于很大的分子,上述精粗结合的QM/QM方法仍然计算量太大。分子力学方法不能用于有化学键断裂或形成的研究,但在确定有机分子骨架结构方面很有成效。QM/MM方法是把大体系分为两个子体系,其一用量子力学处理,另一用分子力学处理。要解决的问题是对两个子体系边界的适当处理。当QM/MM区分界处有化学键x一Y被切开时,QM区的游离价需要饱和。提出过两类处理方法。1.等效原子法MoIDkulna等用一个氢原子模拟X一Y键中MM区的原子Y作QM计算。在作MM计算时,不考虑这个氢原子的存在。MM区边界上各Y原子间的非键作用要计算,与X原子的作用不计算。也有人用准卤素原子模拟Y原子。杨伟涛等提出准键(Pseudo-bond)方法,用一个等效边界原子BY代替Y原子并人QM区作计算。BY原子只有一个成键价电子,通过模拟具有类似X一Y键的小分子的计算选择其有效势函数参数,使得计算出的xeeBY键长、键强及对活性区的影响与X一Y键很接近。在作MM计算时,不考虑Y原子,但在计算QM/MM区的相互作用时考虑MM区其余原子与Y原子的作用。2.等效健方法凡vail等用一个严格定域的轨道(填充两个电子,由类似小分子计算得到)代替x一Y健作QM计算。高加力、Friesner等对这一方法进行改进,使计算结果更符合实际。MM计算时QM/MM区边界上的原子与MM区其余原子间的相互作用势参数要作适当调整。QM/MM方法已经得到广泛的应用,尽管还有问题没有满意地解决。显然,QM/MM方法很容易推广为QM/QM/MM方法,即对活性区和对活性区影响大的区域分别采用高精度和低精度的QM计算,对远离活性区的环境作MM计算。QM/MM方法也容易推广为QM/MD方法,QM/MD区边界以及两区的相互作用势问题采用类似的办法处理。

量子化学的应用范文6

结构化学是用现代物理化学实验方法和量子力学原理,在原子―分子水平上研究物质分子构型与组成的相互关系及其结构与性能之间关系的一门科学。由于这门课数理推导多、概念抽象,好多学生在学习本课程时都有畏难情绪,学习此课程的自信心不足。随着计算机技术及互联网的进步,将计算机软件用于辅助结构化学的教学日益受到老师们的重视。美国剑桥软件公司研制的Chem 3D Ultra11.0是当前结构化学教学中常用的编辑软件。Chem 3D Ultra11.0软件可编辑各类十分复杂的结构化学中的结构式、检查分子结构的合理性以及立体化学的空间表达,还可以精确表达有机物分子中指定官能团部分的多种光谱,并且还能绘制DNA的分子螺旋结构,预测分子的某些常见分子轨道。Gaussian是化学领域进行半经验计算和从头计算中使用最广泛的量子化学软件。Gaussian可用于研究分子能量和结构、化学键和反应能量、过渡态能量和结构、原子电荷和电势、红外和拉曼光谱、分子轨道、极化率和超极化率、振动频率、核磁性质、反应路径、热力学性质等,是研究取代反应、反应机理、势能面和激发态能量的有力工具。Gaussian View是专门为Gaussian用户开发的,帮助建立输入文件和查看输出结果而设计的图形用户界面程序。

一 Chem 3D Ultra在前线分子轨道理论教学中的应用

前线分子轨道理论是日本理论化学家福井谦一成名的理论,这一理论将分子中的单电子波函数根据能量细分为不同能级的分子轨道,该理论认为有电子排布的、能量最高的分子轨道(即最高占据轨道HOMO)和没有被电子占据的、能量最低的分子轨道(即最低未占轨道LUMO)是决定一个体系发生化学反应的关键。在以往的结构化学教学过程中,分子轨道主要由教师手绘,非常费时也不严谨。Chem 3D Ultra11.0经过计算模拟后可显示全部分子轨道图像,在教学中非常明了直观。例如,在Chem 3D中首先可以方便地绘出乙烯分子的结构图,从结构图中很容易看出乙烯分子的6个原子处在同一平面上,属于D2h分子点群。通过[Calculations]计算完以后,我们就可以通过[Surfaces]显示如图1的前线分子轨道图,其中HOMO是p成键轨道,LUMO是p反键轨道。用Chem 3D软件显示出的分子轨道,学生很容易理解。用同样的方法我们也可以方便地得到其他分子的轨道图。

二 Gaussian View在分子光谱教学中的应用

分子的红外光谱起源于分子的振动基态 与振动激发态 之间的跃迁。只有在跃迁的过程中有偶极矩变化

的跃迁,即 不为零的振动才会出现红外光谱,

这称为红外活性。在振动过程中,偶极矩改变大者,其红外吸收就强;偶极矩不改变者,就不出现红外吸收,为非红外活性。用Gaussian程序,在B3LYP/6-311++g(2d,2p)水平上优化得到H2O的最小能量结构,并且

* 榆林学院精品课程项目(编号:JP1302)、榆林学院发展专项资助项目(编号:HGY2015-3)

做FREQ频率分析,然后用Gaussian View程序显示,可得图3,即H2O的红外振动光谱图。为了显示H2O的3种红外振动模式的动画形式,首先用Gaussian View打开H2O的out文件,然后点击[Results][Vibrations][Start],即可显示动画形式。从动画、图2及图3可以看出,对称伸缩偶极矩变化不大,所以它的振动强度(Intensity)就非常小,其他两个振动,振动强度比较大。非常直观明了,学生通过看动画很容易理解深奥的理论。

三 键级的计算

在结构化学教学中,我们常常通过对分子的结构进行分析来解释或预测化学反应的性质,这也是结构化学的重要应用之一。比如在结构化学教学中求解得到的电荷密度、键级、自由价和分子图等概念可以用来解释分子的活性位置、说明化学反应的过程和机理,也可以用来解释分子的动力学行为等。但如果我们要得到自由价、电荷密度和键级的值,首先要利用休克尔分子轨道理论法求解不饱和分子的薛定鄂方程,然后根据课本上的公式进行计算,整个过程非常复杂,也比较繁琐,一般在课堂上由于时间较短很难做到。而Gaussian提供了简易的计算程序,只要在优化好的分子上并加上关键词iop(6/80=1)即可得到分子的Mayer键级。如图4,就是在B3lyp/6

-311G*水平上优化好分子后得到的1,3-丁二烯的Mayer键级,从图中可以看出,C1和C2及C3和C4之间的键级较大,而C2和C3之间的键级较小,从而可以解释为什么1,3-丁二烯的加成反应发生在1,4位而不是2,3位;C1和C2的键长小于C2和C3的键长,等等。