前言:中文期刊网精心挑选了光电一体化技术范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
光电一体化技术范文1
Abstract: this paper introduces the components and building solar photovoltaic combining ways, using ecotect software to solar radiation analysis to determine the best components of solar photovoltaic installation Angle and best array spacing, perfect solar photovoltaic
keywords: solar; Photovoltaic power generation technology; Integration design
中图分类号:S611文献标识码:A文章编号:
光伏组件的布置方式直接影响到其发电的效果,所以在节能建筑概念设计或者初步设计阶段,要充分考虑太阳能的最大限度利用,从而确定有利于光伏组件布置的建筑造型。同时,光伏构件本身也有着丰富多变的美学特征,不同颜色,不同大小尺寸光伏板通过一定规律组合运用在建筑的围护结构上,不仅满足了建筑的能源供给,同时具有韵律感,成为立面的活泼元素,丰富立面形态。
1.光伏组件与建筑的结合方式
1.1光伏组件结合屋顶设计
就光伏材料的发电效率而言,坡屋面是比较理想的屋面形式,他能够自然形成倾斜角,比平屋面的布置方式更有利。在设计中可考虑协调建筑的功能,在屋顶造型上设计出南向倾斜的坡屋面。在我国城市住宅和公共建筑更多采用的是平屋面,平屋面光伏构件的布置方式同样分两种:支架式和嵌入式。支架式布置光伏构件以倾斜面接收太阳辐射,布置的自由度和灵活性较大,光伏阵列可以调整倾斜角、方位角以及前后组光伏构件的间距,以此避免阴影,最大效率的发电。支架式构造简单,适用于各类平屋面建筑,比较容易普及。但支架式布置的情况下光伏和建筑二者的关系比较松散,融合的程度低,同时支架式布置光伏构件对提升建筑美观的作用较小。嵌入式的布置方式是在屋面系统集成光伏材料。光伏构件的使用可以与被动式利用太阳能、自然采光相互协调,有利于降低建筑能耗。但水平的光伏构件由于难以利用雨水自洁,灰尘和树叶往往会影响其发电效率,因而需要定期清扫。平屋顶的建筑也可以同时使用两种布置方式,不需要天窗的部分屋面采用支架式,需要设置天窗的部分采用嵌入式光伏屋面。公共建筑的屋顶也可做成锯齿形高侧窗,南面为斜坡用来铺设光电板,北向玻璃窗用来采光。
中庭上铺设光伏构件的构造处理方式,同嵌入式的墙面或屋面类似。在办公楼、商场展览建筑中往往设有中庭,夏季大量的太阳辐射往往使中庭成为建筑节能的薄弱环节。在中庭上布置光伏构件,一方面可获得电能;另一方面,调节光伏电池的间距和不透明度,可有效控制室内照度,避免室内热负荷过大。
1.2光伏组件结合立面设计
在竖直的墙面上布置光伏构件是较直接的方式。考虑到建筑立面效果,光伏的颜色需要与其他建筑材料协调。光伏构件的构造方式可根据不同墙面系统(实墙,窗户与窗间墙,玻璃幕墙)来确定,总体上可分为外挂和内嵌两种方式。考虑到采光和视线的因素.在竖向高度上要区分光伏材料的不透明度,如视线上下范围内采用透明玻璃窗或半透明光伏材料,其他窗间墙可采用不透明光伏材料。
对于高层建筑,竖直墙面的面积较多而屋顶面面积有限,南向墙面可布置光伏材料。如果在城市中建筑物比较密集,或者建筑周围有树木环绕,太阳光收到阻挡,可以在建筑物较高部位的墙面上设置光伏板。纽约时代广场4号楼在35-48层墙上就安装了光伏板。部分地区东西向也可设置,因为低纬度地区建筑的南向墙面在夏季获得太阳直接辐射明显少于水平屋面和东西墙面。
建筑平面布局有时不能面向太阳光辐射最优的朝向,局部采用水平向锯齿状布置方式,是巧妙化整为零的处理手法,以此优化光伏构件布置的方向,趣味变化的造型也改变了建筑的视线和景观。
1.3光伏组件结合遮阳设计
光伏组件可布置在遮阳板上,成为建筑的附属构件,如图1为荷兰能源研究中心31号建筑的光伏遮阳构架。建筑外遮阳常常具有一定的倾斜角,为光伏板的设置提供了合适的条件。夏季阳光照射到光伏组件,采用光伏发电遮挡阳光直射到室内,减少建筑物制冷负荷,在冬季通过调节光伏组件不影响阳光照射到室内。且光伏遮阳板与建筑表皮独立,不影响外墙的保温.防水和防噪。对于新建或改建的情况都比较适用,建造成本也较低。
图1 荷兰能源研究中心31号建筑的光伏遮阳构架 图2 光伏活动遮阳工作原理
2.最佳倾角分析
安装倾角是太阳能电池阵列平面与水平地面的夹角。确定安装倾角需综合考虑多种因素,如可实现装机容量、发电效率、安装成本、上网电价等,有降雪的地区还要特别考虑积雪滑落的倾斜角(斜率大于50%~60%)。目前已安装的光伏发电系统,安装倾角大多参照安装所在地的纬度并综合考虑多方面因素进行确定,方阵从垂直放置到10°~20°倾角放置的都有。
图3 不同倾角阵列的太阳能辐射量
本文利用Autodesk Ecotect Analisys的太阳能辐射量分析,输入沈阳市的地理坐标及气候参数,并绘制正南朝向、不同倾角的光伏阵列进行太阳辐射量分析,倾角范围选在10°~90°,每隔5°度放置一个模型。图3是沈阳地区8:00~10:00不同倾角的的全年累计辐射量分析,由于辐射量差别不是很多,所以颜色差别不大,通过表1数据分析,可以很清楚的看出,模型旋转角度在50°时,即安装倾角在40°时,全年9:00~15:00的太阳能辐射量最大,同时看出此处的每平方米累计辐射量约为1169657.875Wh/㎡。
表1 不同角度的光伏组件全年累计太阳辐射量
3.最佳阵列间距分析
图4 光伏组件阴影范围模拟
在组件排布方案中,电池阵列间距也需要计算分析。两阵列的垂直距离过小,前面的阵列对后面的阵列形成遮挡;距离过大,又会造成安装面积的浪费。两阵列之间的垂直距离一般以冬至日当天9:00~15:00光伏电池阵列不被遮挡为最佳。建筑师在进行光伏系统方案设计时,一般采用计算方法得出光伏阵列间距D,计算公式如下:
D=0.707H/tan[arcsin(0.648cosψ-0.399sin﹞]
式中: ψ为纬度(在北半球为正、南半球为负)
H为光伏方阵阵列或遮挡物与可能被遮挡组件底边高度差。
我们同样取沈阳地区纬度ψ=41.7°,H=964mm,计算得D=2252.6mm。接下来,我们运
用Autodesk Ecotect Analisys软件对阵列间距进行直观地分析设计。设置纬度ψ=41.7°,H=964mm,时间为冬至日9:00~15:00。分析结果如图4,图中现实了高度964mm的阵列在冬至日9:00~15:00产生阴影范围,阴影长度为2553mm,考虑测量误差和计算误差,软件模拟结果和公式计算结果基本一致。
参考文献:
徐燊,李保峰.光伏建筑的整体造型和细部设计[J].建筑学报,2010,1
陈维,沈辉,刘勇. BIPV中光伏阵列朝向和倾角对性能影响理论研究[J] .太阳能学报,2009,30(2)
光电一体化技术范文2
关键词:机电一体化系统;机械工程;应用分析
目前,信息化社会为经济发展注入了新的活力,国民生活水平逐渐提高,使其日常需要也明显增多。科学技术作为现代生产制造的依托,可通过对现有技术进行创新并开发新技术来提高社会生产力。其中,机电一体化技术的发展使其代替传统机电技术成为机械工程及石油企业关注的焦点。其可以对复杂性强的工程进行处理,并能在一定程度上提高机械生产、石油加工效率,其所特有的科学化与自动化对于机械工程行业及石油企业等都发挥着重要的作用,并且对社会经济建设具有非常现实的意义。
1现代化技术在机电一体化系统中的应用分析
1.1自律分配化系统的应用
机电一体化系统是在科学信息技术发展的潮流下,对传统机电模式进行创新再开发的一种新型机电模式,其对机械工程、石油企业作业质量的提高具有一定的影响[1]。因信息技术普及比例相对较高,所以机电一体化系统也开始显现出其特有的自律性,主要是指机电一体化系统在开展工作过程中,每部分都是属于独立存在的,当运行过程中某一点出现了故障,只有故障点会停止运行,其他的部分仍旧可进行正常的工作,且其在工作过程中不受任何外界因素影响。机电一体化这种特别的自律分配对减少重大事故发生的可能性具有非常重要的意义,其能够在正常开展工作的同时,对工程本身安全性做出一定的防护。
1.2全息技术的应用
为保证机械工程中进行顺利,且能够对每一个环节都进行实时监控及管理,掌握机电一体化系统每一时段的运行情况,全息系统开始逐渐被机械工程专业工作人员所追捧,其对于机电一体化实现了其向自动化及智能化的高水平发展,为机械工程专业水平的提高提供了一定的奉献意义,将成为未来机械工程技术发展中的潮流。
1.3光学技术的应用
目前,高新技术普及下,信息化社会成为了我国未来发展的一大趋势,其通过光学技术及机械电子技术的结合发展,从而生成机电一体化系统的过程。之后,机电一体化带动了机械工程中电子工程的开发与建立。其中,光电一体化系统在机械工程中的应用可在一定程度上对机械工程过程进行规范,提高专业机械设备的使用效率,保障相关工作人员的人身财产安全。除此之外,光电一体化系统中应用了光电技术,其对机械工程信息传输方面有着重要作用,可利用光电技术,对光电一体化系统进行有力地开发与创新,且能为光电一体化系统进行一定的技术支持,这对完善光电一体化系统具有深远的意义。
2机电一体化系统在机械工程中的应用
2.1实现监控功能技术
机电一体化系统可对机械工程实行实时监控,监控范围包括了对机械作业、设备以及机械群运动等。当进行机械作业时,电子监控设备会对机械运转情况或者突发状况实施监测,发生事故时会发出警报声以提醒工作人员尽快停止使用,并将具体信息反馈给实施监控的上级工作人员,使其能够在最短的时间内完成对故障机械的修理与维护,并且保护了机械使用工作人员的安全。对于减小了机械故障造成重大事故的可能性,并从根本上降低了机械维修成本,这对提高机械工作的效率具有非常重要的意义。
2.2提高机械生产效率
机电一体化系统能够有效改善机械工程资源利用问题,可实现资源浪费现象,这对降低机械作业成本非常重要,并且能够在机械工作过程中,利用高新电子设备对资源使用情况进行实时调节,提高资源利用率。
2.3提升施工作业精准度
在机电一体化系统中,运用电子控制系统对机械设备精准度加以限制,可帮助其能够实现机械工程设备自动化。并且用电子自动化代替传统的人为称量步骤时,可提高机械作业中称量的精准度,这对机械工程完成质量提供了有力的保障。
2.4实现机械作业自动化完成
机电一体化应用于机械工程中时,可推动其向半自动化或自动化方面发展,利用设备自动化技术减少工作人员工作压力,并且可以代替传统人工测量等工作,可提高工程效率[3]。并且能够在自动化工作同时,减少事故对工作人员安全造成的影响,提高了机械工程设备及整个作业过程的安全性。因此,机电一体化系统所实现的机械作业自动化完成为机械工程行业的发展奠定了坚实的基础。
3结语
机电一体化系统作为科技信息发展下的产物,一直在不断地进行完善与改进,将其应用于机械工程或石油企业中时,可推动作业过程向自动化发展,并在一定程度上提高了工程作业精准度,这对机械工程及石油行业工作效率及质量都有非常重要的作用,对我国社会经济建设也具有深远的意义。
参考文献:
[1]黄囧.机电一体化系统在机械工程中的应用[J].江西建材,2017(09):275-276.
[2]肖远见.机电一体化系统在机械工程中的应用[J].科技创新与应用,2017(05):139.
光电一体化技术范文3
关键词:太阳能;能源;建筑一体化
1.太阳能与建筑一体化的背景
当今世界,全球气候不断恶化,温室效应日益突出, 为了阻止全球气候继续变化及其带来的显著效应,不得不解决能源问题。我们迫切需要进一步发展独立的,可持续发展的能源系统。基于可再生能源的小型化和分布式能源产品在整个能源系统中有着关键性的作用。如何将这些能源产品与建筑有机的结合起来,尽可能地利用太阳能等新能源和可再生能源替代常规能源以减少建筑能耗对常规能源的依赖关系,降低建筑能耗在我国总能耗中的比例, 实现高效的能源利用效率和能源的重复利用成为建筑一体化中的主要目标。所以无论从经济角度和环境角度,追求建筑与能源利用的一体化都具有重大的现实意义。
2.西方国家的建筑一体化
美国在世界上建筑一体化方面是领先的【1】,在20世纪40年代,麻省理工学院开始利用太阳能集热器来供暖,应用于空调系统的研究。到了70年代,华盛顿和科罗拉多州已经建成最早的太阳房示范建筑。遗憾的是,早期的这些建筑由于投资过大,以及太阳能利用率过低,难以达到大规模推广,但是在另一方面,我们看到了太阳能供热系统和空调系统与建筑一体化的初步雏形已经形成。80年代,美国建成的新一批太阳房进行了改进,这些新一批的太阳房采用了壁炉或者电散热器作为辅助热源,使太阳能供暖率突破了75%,甚至到了100%。
日本在这个领域也处于世界前列。1974年日本通产省制定了“阳光计划”,并按此计划建造了数幢典型太阳能采暖空调试验建筑,如矢崎实验太阳房。而且多年来日本的太阳能采暖、空调建筑一直稳步发展,并已应用于大型建筑物上。
此外,法国、德国、澳大利亚、英国等发达国家也拥有相当先进的太阳能建筑应用技术。著名的集热蓄热墙采暖方式即是法国人菲利克斯?特朗勃的专利,法国的奥代洛太阳房是该采暖理论转化为实际应用的第一个样板房。英国利物浦附近的沃拉西的圣乔治郡中学,则是直接受益式太阳房最大和最早的样板之一。尽管英国的太阳能资源并不丰富,该所中学安装的常规采暖系统却从未使用过。
德国是世界上太阳能光伏发电最多的国家【2】,也是绿色建筑技术发展走在世界最前列的国家。德国在1999年为了施行欧洲的“百万太阳能房屋”计划,提出了自己的“十万太阳能屋顶”计划,到2006年,德国已经有了大概30万的屋顶太阳能系统。德国柏林中央火车站、议会大厦、慕尼黑贸易展览中心、宝马世界中心等等建筑广泛应用太阳能太阳能光伏发电,其光伏组件与建筑相结合的形式各不相同,创造了许多光伏发电与建筑一体化应用的经典案例。
近几年来在发达国家已有相当发展水平的“零能房屋”,即完全由太阳能光电转换装置提供建筑物所需要的全部能源消耗,真正做到清洁、无污染,它代表了21世纪太阳能建筑的发展趋势。
3.太阳能光伏发电在建筑一体化中的优势
1)太阳能作为一种可持续能源,具有清洁、无污染、用之不竭的优势 。
2)我国太阳能资源极为丰富,年太阳能辐照总量大于502万k J/m2、年日照时数超过2 200h 的地区占国土面积2/3以上,所以太阳能的利用有着巨大的潜力。
3)太阳能光伏阵列一般安装在屋顶或者墙壁,有的在建筑过程中直接使用光伏材料,实现空间占有率最小。
4)夏天时用电高峰期,并且阳光充足,太阳能建筑并入电网,能对大大减轻电网负担,起到调峰作用。
4.怎样实现太阳能与建筑一体化
太阳能在建筑中的应用一般分为两种方式【3】,一种是把太阳能转化为热能供住宅用热,一种是将太阳能转化为电能,供住宅用电,两者相结合,形成新一代的绿色建筑。
(一)太阳能在热水系统中的实现
传统的真空管太阳能热水系统已不能满足日益变化的住宅布局和造型的需要,其安装困难, 容易破坏屋面防水层, 导致屋面渗漏,影响房屋的美观。;真空管属于易损件,产品维修率高,尖顶楼房维修困难, 还很不安全;高寒地区为防止结冰炸管冬季不得不停止使用,因此从性能和环境因素来考虑传统的真空管太阳能热水系统不适宜在新一代的热水系统中使用。
新一代平板式太阳能集热系统(定义),太阳能集热器的安装能比较好地与建筑实现完美结合。这种系统有如下特点:
1)以分体式双循环承压运行为主, 将储热水箱设在地下室、阳台等部位隐藏放置, 不占室内空间,避免屋顶、阳台和外墙承重。
2)可以采用单水箱、双水箱、甚至是多水箱, 能够取得比较大的保温水箱容积,相应的集热器安装面积也较大,从而满足热水需求。
3)平板集热器板芯采用真空溅射选择性涂层,吸收率高, 性能指标好。
(二)太阳能在光电系统中的实现
将光伏发电与建筑相结合,为住宅提供生活用电。太阳能光伏建筑一体化BIPV (Building Integrated Photovoltaic),一般分为两种方式:
一类是光伏方阵与建筑的结合。将光伏方阵依附于建筑物上,建筑物作为光伏方阵载体,起支承作用。另一类是光伏方阵与建筑的集成。光伏组件以一种建筑材料的形式出现,光伏方阵成为建筑不可分割的一部分。如光电瓦屋顶、光电幕墙和光电采光顶等
5.太阳能与建筑一体化的问题
太阳能与建筑一体化目前来看还存在着许多问题,具体来看分为下面几个方面。
1)太阳能与建筑一体化的实现成本较高,整体设计时需要将太阳能系统与建筑相结合,投入大量的高科技设备,因此整体造价较高。
2)太阳能发电成本高,每发一度电成本大概在2.5元左右,技术上需要突破使太阳能发电成本降低到0.8元左右。
3)太阳能建筑一体化涉及到建筑领域和太阳能领域,设计时需要设计师同时具有两个领域的知识,难以做到两个方面完美结合。
6.结语
未来的太阳能技术与建筑一体化需要向着整体化、大规模方向发着。随着技术创新和开发力度的增大,太阳能技术势必会更加成熟,这种清洁、无污染的能源将会使国家能源结构发生不断变化,未来势必会逐步取代传统能源,在新能源领域占据重要地位,实现可持续发展。■
参考文献
[1] 国外太阳能建筑发展概况[OL] 省略/news/echo.php?id=5764.htm 2008.7-2010.10-2012.3
光电一体化技术范文4
关键词: 《LED封装与检测技术》 “教学做”一体化 教学模式
1.“教学做”一体化模式的内涵
教育部《关于全面提高高等职业教育教学质量的若干意见》明确提出改革教学方法和手段,融“教、学、做”为一体,强化学生能力的培养。“教学做”一体化模式是由姜大源提出的基于工作过程,以任务为驱动、以情境为依托的教学模式,是在建构主义的指导下,运用现代先进的教育技术、教学手段和教学方法,通过设计和组织,将理论教学与实践教学有机融于一体的一种教学模式。这种方法以学生为着眼点,让学生在参与项目的过程中提高自学能力和动手实践能力,在团队合作中提高协作能力和社交能力。一体化教学模式充分体现了“以学生为中心,以教师为主导,以培养学生的技能为目标”的教学理念,将专业理论课与生产实习、实践性教学环节重新分解、整合,安排在具有一体化教学功能的教学场所教学,师生双方边教、边学、边做地完成特定的教学任务。
“教学做”一体化教学模式可实现教学模式与企业生产的对接,确保技能人才质量与企业用工标准相统一,是职业教育教学模式发展的趋势。将此模式运用到《LED封装与检测技术》教学中可以克服传统教学模式的弊端,提高学生的动手实践能力,并把光电子技术专业毕业生最终培养为具有工艺整合能力、应用操作能力、团队合作能力、分析问题、解决问题能力和沟通表达能力的高技能人才,进一步提高学生的综合职业能力。
2.传统教学模式下的《LED封装与检测技术》课程教学
《LED封装与检测技术》课程是高等职业院校光电子技术专业的一门专业核心课程,是一门实践性很强的课程,理论和实践融为一体。教学改革前,我校此课程开设在第五学期,共60学时,使用谭巧主编的《LED封装与检测技术》作为教材,这本教材是按照引脚式LED封装工艺流程编写的,教材中包含LED封装与检测的理论知识和工艺操作流程及方法,基本能够满足教学要求。对学生的考核主要以期末考试成绩为主,而考试又以考理论知识点为主。
LED封装岗位要求学生既要掌握基本理论知识,又要具备较强的实践能力,掌握LED封装的各个工艺环节,使用相关封装设备对LED进行封装,并使用检测设备进行光学和电学参数测试。但由于LED封装实训条件的限制,教学过程主要以理论教学为主,工艺设备操作部分内容主要依靠视频、图片等数字资源辅助教学,学生无法真正使用封装设备学习操作,动手能力得不到锻炼,对于设备结构、动作过程、操作方法等内容语言文字描述过于抽象,无法在学生脑中生成具体图像。我们对相关封装企业进行了大量调研,结果显示毕业生虽然掌握了一定的理论知识和技能,但不能将其与实际操作有机结合。因此,为提高教学质量,培养出满足当今企业需求的人才,必须进行教学改革,将“教学做”一体化教育模式应用到《LED封装与检测技术》教学中。
3.构建适合“教学做”一体化教学的实践平台
为了提高学生LED封装与检测的实践能力,根据教学内容需要,我院建设了LED封装与检测实训基地。实训基地建有两条完整的LED封装生产线,包括光色电综合测试仪2台、LED自动固晶机1台、LED自动焊线机1台、超声波金丝球焊线机15台、LED电脑检测仪3台、晶片扩张机2台、显微镜(配固晶手座、等、支架)20台、点胶机10台、粘胶机1台、LED灌胶机2台、气动起模机1台、真空箱1套、光电烤箱3台、小烤箱1台、前切液压冲床2套、二切机(气动)2台、冰箱1台、电子秤1台、搅拌机1台、离子风机20台、10P空压机1台、LED工程一体化应用实训系统2套。能够承担LED固晶、焊线、LED灌胶、LED切筋、LED测试、LED工程一体化应用的实训教学任务。
该实训基地实现了理论学习与实践操作的“无缝对接”,真正达到了实践教学应有的效果。通过企业化管理,创设企业真实的工作情境,体现实训的“真实化”,使学生在真实的生产环境、企业文化氛围中进行职业体验,在基地的全真工程环境中得到职业道德、综合素质等方面的培养与锻炼,真正实现毕业生“零距离上岗”。
4.“教学做”一体化模式的具体实施
4.1通过“教学做”一体化改革实现人才培养目标
我们根据企业职业岗位群的工作任务,分析本专业毕业生将来就业要面向的LED封装与检测的职业岗位职责和职业能力,确定本课程在专业中的定位;根据专业人才培养目标,制定课程教学目标,通过完成典型工作任务实现教学目标;以工作过程系统化为导向。构建课程内容结构和知识序列,形成以工作过程为导向的知识与技能训练和能力培养体系;设计学习载体、课堂教学及实施方案,制定考核、评价体系,在教学实施中建设课程教学及学习资源,通过教与学的多元评价形成对课程建设的闭环反馈,使课程教学持续改进。
课程开发以岗位职业能力培养为主线、以实践教学为主体、以工学结合为基础,在LED封装与检测实训基地的情境下开展基于工作过程的教学做一体化的项目式教学。经过两年的教学改革实践,学生了解LED封装原理及LED光学电学参数分析,掌握LED封装设备的操作方法,学会封装设备日常维护,增强工程实践能力,形成严谨、求实的工作作风、尊重科学、精益求精的良好品质,培养合作意识和创新能力,提高获取信息、团结合作、社会交往等职业综合职业能力,为就业打下坚实的基础。
4.2建设适应“教学做”一体化教学模式需要的教师队伍
由于“教学做”一体化教学融汇了以往传统教学理论讲授、专业实验、技能实操、实习指导、综合考评等多种模式的教学元素,因此,应选用专业理论知识、实践动手和示范演示能力等综合素质过硬的“双师”教师担任“教学做”一体化教学课程的专职教师;加快培养理论教学和实践操作能力都很扎实的专兼职教师。据此光电子专业教师会不定期到企业挂职锻炼,了解企业的生产实际,学习企业先进生产技术,掌握企业对人才的需求。到目前为止光电子专业所有专任教师先后到大连德豪光电科技有限公司、大连美明外延片科技有限公司、大连路美芯片科技有限公司等光电企业进行挂职锻炼,并将掌握到的LED封装技术应用到“教学做”一体化教学改革当中。在此基础上积极吸引和聘请企业及行业的优秀人才加入教师队伍或成为兼职教师,让先进教育理念、先进科学技术进入课堂、融入教学。
4.3教学内容修订
教学方法设计根据专业特点,鉴于学生的基础和接受能力的差别,灵活采用项目教学、情境教学、角色互换、任务驱动等与之相适应的教学方法,创造满足理论教学和技能训练一体化的教学环境,将理论教学教室和实训场地合一,创设真实的工作情境,实现理论教学与技能训练融合,为学生创设体验实际工作过程的企业化、职业化的学习环境,实现教学过程的优化。
《LED封装与检测技术》在课程内容选取时,对大连地区进行广泛的社会调查和行业分析,充分分析LED封装工艺相关岗位所需要的知识、能力和素质。本门课共60学时,本着理论知识“必要、实用”的原则,将理论课时数定为30学时,具体学时安排如表一所示。
通过以上5个模块的学习和训练,学生可以掌握LED封装每一个工艺步骤及技术要点,但为了使学生将5个实训模块有机结合,对LED封装工艺有整体性认识,在本门课程结束后安排一整周LED封装实训,学生像在企业进行生产一样,将LED封装工艺完整操作一次,并注意各个工艺环节之间的衔接。实训课以封装岗位能力要求为核心、以培养学生综合职业能力为目标,根据LED封装和检测岗位工作过程进行设计和编排,以期更好地与企业实际生产相衔接。具体教学过程如下:
4.3.1在教学实践中边教边学,边学边教。
首先,教师提出封装工艺任务,引导学生思考该工艺在LED封装过程中的作用及功能,介绍本工艺所使用设备的结构、功能,让学生对照实物认识设备。其次,帮助学生认识用到的工具和材料,指导学生练习使用工具。再次,通过动画、视频等手段讲授工艺流程步骤,让学生对该工艺环节有整体性认识。接着,由授课教师演示如何使用相关设备完成该工艺流程操作,边演示边讲解技术要点,让学生根据老师的演示整理出工艺步骤表,并根据表格对重点和难点的工艺步骤进行讨论。最后,学生通过查找资料、互相讨论、咨询教师等方式,提出本工艺环节的工艺要求和注意事项。
4.3.2在教学实践中边学边做,边做边学。
教师引导学生按照教师的操作演示练习该工艺流程操作,教师从旁指导协助。学生可以根据自己操作完成情况,针对没有掌握的或者不熟练的工艺步骤进行多次重复练习。对于操作中出现的问题、故障及产品质量问题,在教师的协助指导下由学生自行分析解决,提高学生分析问题解决问题的能力。
“教、学、做”同步进行,学生用理论指导实践,在实践中理解理论。教师把理解快的学生和理解不深的学生组成一组,形成知识互补型团队,同时培养学生的团队合作精神。
4.3.3在教学实践中坚持理论与实践有机结合。
教师结合企业生产实际讲授LED封装工艺环节的相关理论知识,并要求学生依据老师的操作演示进行工艺操作练习。在一体化教学中,整个教学的设计和组织都以实践操作为主线,突出技能训练,围绕实践操作进行理论知识的教学,实现理论教学与实践教学一体化。教师采用讲解、演示、示范、指导、评价相结合,循序渐进地开展教学活动,并在现场巡回指导,及时发现问题、解决问题,共性问题集中讲解、个别问题个别指导,加强理论教学过程与实践教学过程的融合。教师引导学生在做中理解理论知识、掌握技能,在操作中验证理论,同时又用理论指导操作,实现理论与实践的有机结合。
5.“教学做”一体化教学改革实施效果
我们通过两年的《LED封装与检测技术》课程“教学做”一体化教学模式改革的实践,教学效果明显强化。学生不仅理论基本知识掌握得更加扎实,而且具有一定的查阅图书资料进行自学、分析解决问题能力及较强的实践动手能力,掌握LED封装工艺流程和检测方法,更快地适应企业生产环境和工作需要,满足光电子企业对人才的需求。
参考文献:
[1]徐吉成,蒋艳,徐兵,等.“化学化工应用软件”实施“教学做”一体化模式实证研究,镇江高专学报,2013,26(2):95-98.
[2]张永革,陈春霞,黄素平.《纺织品跟单检测》教学做一体化课程教学改革的研究与实践.轻纺工业与技术,2013(5):73-75.
[3]陈翔.“教学做一体化”模式在喷绘制作教学中的应用.职业,2013,10:90-91.
[4]关静岩,曹德明,赵秀梅.“教学做一体化”在微生物学检验教学中的应用.卫生职业教育,2013,31(18):51-52.
[5]李嘉明.“教、学、做”一体化模式在园林Photoshop课程的实践.中国科教创新导刊,2013(11):160.
[6]张燕.“教学做”一体化与传统高职教学模式比较研究.职业教育研究,2013:150-151.
光电一体化技术范文5
发展绿色建筑,在我国也逐渐受到了重视,政府就发展绿色建筑不仅确定了战略目标、发展规划、技术经济政策,同时也修改和完善相关法律、法规,保证绿色建筑的构建和推广。以目前广州市为例,广州市白云区、南沙区等区域新建建筑设计项目均最低需满足国家绿色建筑一星级要求。绿色建筑设计规范中,关于“合理采用可再生能源发电技术,发电量不低于建筑用电量的2%”[2],而太阳能光伏发电系统作为一种可再生能源首先被列入了考虑范围。当前,太阳能光伏发电技术与建筑物相结合研究最多的是光伏建筑一体化系统(BIPV 即Building Integrated Photovoltaic),该系统中光伏组件既要满足光伏发电的功能要求,同时也要兼顾建筑的基本功能及美学要求,光伏组件既被用作系统发电机,又被用作建筑物外墙材料。本文结合工程实例,从建筑电气设计专业的角度阐述、分析绿色建筑中光伏建筑一体化系统(BIPV)的设计思路及发展前景。
1 光伏建筑一体化系统建筑设计要求
1.1一般规定
光伏建筑一体化系统中光伏组件与建筑的集成结合方式,有光电屋顶、光电幕墙、光电采光顶和光电遮阳板等。系统设计需结合建筑、结构等相关专业要求,共同确定系统各组成部分在建筑中的安装位置。安装在建筑物上的光伏组件,满足建筑的使用功能及节能要求、结构安全及使用要求、以及电气安全等要求,并配置带电警告标识及电气安全防护设施,以免出现不必要的触电事故。
此外,光伏建筑一体化系统规划设计需进行太阳能辐射、建筑物、电网等方面的评估。在建筑物上安装该系统不能降低建筑物本身或者是周围相邻建筑物的日照标准;避免周围环境景观、绿化种植及建筑自身的构件投影遮挡投射到光伏组件上的阳光;避免光伏组件对建筑本身或者是周围建筑物群体的二次辐射造成光污染。
1.2建筑专业设计要求
安装光伏组件的建筑部位在冬至日全天日照应不低于3h;并在安装光伏组件的部位采取安全防护措施;满足其所在部位的建筑防水、排水、雨水、隔热及节能等功能要求。
除了以上技术要素之外,光伏建筑一体化系统设计另一至关重要是满足建筑的美学要求,介绍如下两点:(1)建筑物的光影效果,普通光伏组件一般为阻挡视线的布纹超白钢化玻璃,现代建筑屋顶或外墙幕墙如安装光伏组件,对采光会有一定的需求,此时可以采用光面超白钢化玻璃,外加电池板背面的采用普通光面钢化玻璃制作双面玻璃组件(节约成本),即可满足建筑物的功能。(2)光伏组件背面的接线盒及其连接线一般情况下采用明装,容易破坏建筑物的整体协调感,光伏建筑一体化系统中一般将接线盒省去或隐藏起来,此时需考虑旁路二极管保护,可将旁路二极管和所有连接线隐藏在幕墙结构中,同时需做好防雨水侵蚀和防晒措施。
1.3 结构专业设计要求
根据光伏建筑一体化系统的类型,对光伏组件的安装结构、支撑光伏系统的主体结构或结构构件及相关连接件进行相应结构设计。结构设计应与工艺和建筑专业相配合,合理确定光伏组成部分在建筑中的位置。光伏建筑结构荷载取值应符合《建筑结构荷载规范》(GB50009-2010)的规定。
2 光伏建筑一体化系统的设计过程
2.1 光伏发电系统的分类
太阳能光伏系统分类如表1所示:
2.2光伏建筑一体化系统设计原则及步骤
光伏建筑一体化系统的设计在收集当地气候参数的基础上,根据建筑物的使用功能、电网条件、负荷性质和系统运行方式等因素,确定系统为安装型、建材型或构件型。 光伏组件的倾角、数量、安装位置及阴影的设计要和建筑物设计同时进行,因其对光伏建筑一体化的外观影响校大,应尽量做到相互平衡、协调、一体化的设计。简单设计步骤如下:
(1)设计之前收集当地的太阳能辐射以及温度变化等气象数据,当地气象部门太阳能辐射量一般只有水平面的数据,需要根据理论计算换算出光伏板表面的实际辐射量。
(2)建筑设计和电力负荷的确定,决定光伏组件的类型、规格、数量、安装位置、安装方式和可安装面积的场地,同时光伏组件规格及安装面积、安装位置也决定了光伏系统的最大安装容量。
(3)系统的直流汇线箱、逆变器、测量和数据采集系统的设计。
3 光伏建筑一体化系统(BIPV)实例分析
以下通过介绍某绿色建筑项目中应用光伏建筑一体化系统的一个案例,从系统原理、主要设备技术要求、设备安装位置等方面进一步阐述光伏建筑一体化系统在建筑电气设计中的思路及技术要求。
3.1项目概况
该项目为某住宅项目中的配套会所设施,会所总建筑面积5543.23m2,高16.7m,地下室二层,地上三层,主要功能为SPA房、游泳池、办公区、模型展示区、娱乐室等。在设计阶段中,业主要求该会所需达到国家绿色建筑三星、美国leed认证的设计目标。会所负一层设一台500kVA专变变压器,按照绿色建筑优选项要求,发电量不低于建筑用电量的2%,太阳能光伏发电量为10kW设计(基于成本考虑,业主决定按5kW设计),下面光伏建筑一体化系统设计参数均以5kW为设计值。
3.2会所光伏建筑一体化系统图见图1所示。
3.3光伏建筑一体化系统概述
该项目所在地为广东省江门市,地理位置位于东经113.08°,北纬22.58°,年平均气温22.3℃,极端气温最高36.6℃,最低1.4℃,当地水平面年太阳辐射量约为1427.15kWh/m2。本方案设计选用单晶硅BIPV太阳能电池双玻组件,规格为1670mm×1100mm×50mm,单晶硅组件每块功率为235Wp(96片),组件使用寿命不低于20年。组件防护等级不低于IP65,设计安装总数量为24块,光伏组件电池板面积为44.1m2,装机总功率为5640Wp。本系统光伏组件采用可透光型BIPV双玻组件,根据当地气象资料安装角度朝向为南偏西45°,以建筑屋顶结构的方式安装在室外泳池旁休闲凉亭的结构支架上,平铺安装的双玻组件保证了建筑的美观和休闲凉亭的采光效果,同时便于后期的运营维护。
会所光伏建筑一体化系统由光伏组件、直流汇线箱、逆变器、交流配电箱、 监控系统、电缆和相关电气材料等相关附件组成。该系统发电的电力并入会所值班室公共照明箱,在用户侧并网并实现即时发电即时消化,发电提供的电能不足时由市电自行补充。会所光伏建筑一体化系统室内外设备安装如图2和图3所示。
3.4光伏建筑一体化系统中并网逆变器技术要求
光伏建筑一体化系统中并网逆变器为其重要设备。本项目光伏系统采用低压并网的方式运行,光伏阵列产生的直流电流经并网逆变器逆变变成交流电(系统选用小型组串型并网逆变器,安装于值班室内),交流电并入值班室内的公共照明配电箱接入点。
并网逆变器需满足以下主要技术要求:(1)内置电网保护装置,逆变器需具有同期控制功能:实时采集外部电网的电压、相位信号,通过闭环控制,使得系统输出电压和相位与外部电网同步;(2)防孤岛效应功能:外部电网失电后,立即停止供电;电网恢复供电时,并网逆变器并不会立即投入运行,而是需要持续检测电网信号在一段时间内完全正常(系统延时时间2~90s内可调),才重新投入运行;(3)最大功率跟踪技术(MPPT),保证转换效率始终工作在最佳状态,当日照强度和环境温度变化时,光伏电池输出电压和电流呈非线性关系变化时,其输出功率也随之改变,逆变器可以调节光伏组件的发电电流与电压,通过这种调节,使整个光伏系统始终保持在最大功率输出等。
3.5光伏建筑一体化系统防雷设计
系统防雷主要分为防直击雷和防感应雷,防直击雷设计:光伏组件的金属支架及其它金属构件均与避雷带或防雷引下线可靠连接;防感应雷设计:在直流汇线箱及交流配电柜处安装防雷保护装置(直流汇线箱。
3.6光伏建筑一体化监测系统设计
光伏建筑一体化检测系统主要由逆变器来实现,检测系统设计包括采集日照、温度、控制器及风力传感器等设备的数据,通过数据掌握系统的运行情况,自动检测系统存在的问题或故障并予以提示,方便维护人员集中管理所有逆变器及系统维护工作。
本项目在会所大门入口显眼处安装一个51寸大屏幕显示器,可将光伏建筑一体化系统发电的相关信息直观展示出来,诸如实时发电量、直流电流、直流电压、交流电压及电流、历史发电量等,将发电量转化为节能减排的数据,让业主真切感受到光伏建筑一体化系统发电的节能减排效果。
4 光伏发电系统(BIPV)的优缺点及应用前景
近年来,随着中国绿色建筑的不断发展,光伏建筑一体化系统建筑物不断的涌现,但更多只是在地标性工程或示范工程的应用比较广泛,如上海世博会主题馆、高铁上海虹桥站主站楼、深国际园林花卉博览会等等。
与其它能源技术相比,太阳能光伏发电是一种洁净、可再生的发电形式,光伏发电的应用将为子孙后代提供可持续发展的空间;此外,太阳能光伏发电系统的组件可在任何地方快速安装,且无污染,完全干净(蓄电池除外)。当然,太阳能光伏发电系统也存在一定局限性,如受地理分布、季节变化及昼夜交替的天气、建筑成本及造价等因素影响;但光伏发电并未市场化原因,笔者认为其主要制约因素还是建筑成本较高而使开发商放弃使用。但随着国内光伏产业规模逐步扩大、技术逐步提升,光伏发电系统成本也在逐步下降;同时中国政府也就并网、电量收购、补贴、土地政策逐一细化,为分布式光伏项目、电站投资开发提供了多重保障,新能源产业也已上升为国家战略产业,未来五到十年中国光伏发电有望规模化发展。
光电一体化技术范文6
一、我国太阳能光电行业发展中存在的问题
目前,我国太阳能光电技术产业的发展现状不是特别好,一些光电产品都是国际进口,而且以出口为主,也就是说,我国生产的太阳能光电产品大部分都会出口到国外的市场中。对于一些留在国内的太阳能光电产品也都应用到了农村,实现了太阳能光电发电的独立型使用,所以说,我国太阳能光电行业中还存在着很多的问题,其中主要包括以下几方面:首先,太阳能光电行业是一个具有综合性的行业,里面包括了光学、建筑学、化学以及物理学等,因此,对人才的需求也比较大,但是,我国在人才方面比较稀缺,影响了太阳能光电技术的发展[1];其次,要想提升太阳能光电转化的效率,最重要的学科是材料学,因此,材料学的研究直接影响着太阳能光电技术的发展;再次,太阳能光电技术中的物理学以及化学的理论基础不是特别强大,没有实现突破性的发展;最后,太阳能光电行业没有实现与建筑行业的有效集合,不能符合现代建筑的发展需求。
二、太阳能光电技术在现代建筑中的应用
(一)太阳能光电技术在现代建筑节能中的应用
根据目前的情况来看,太阳能光电技术在现代建筑中的应用主要体现在建筑的光伏一体化系统,也称为BIPV系统,它能将太阳能的发电机安置在建筑的屋顶或者是墙面上,应用的原理与普通的光伏发电系统大致相似,主要的区别是太阳能的组件不仅能够作为系统的发电机使用,还能作为建筑的外墙材料,而且用在建筑光伏一体化系统的光伏组件可以是透明的也可以是半透明的,在这种情况下,外面的光线既能够通过该组件照到建筑内,还不会影响建筑内的采光情况。在建筑中应用太阳能光电技术以及建筑光伏一体化系统,能够现场发电现场使用,另外还具有大量的优点:在建筑中应用太阳能光电技术进行发电能够实现建筑的节能和环保功能;还能减少成本的投入,避免在运输的过程中出现损失;还能对建筑的外围起到保护作用,具有较强的隔音和隔热效果;优化建筑内的热环境;但是,BIPV系统具有较高的成本消耗,而且在短时间内很难在建筑中实现应用,其中成本的消耗主要体现在光电转换方面,在设计方面没有太多的要求。因此,我国太阳能光电技术在现代建筑中的应用还有待完善,从而实现现代建筑的完全节能。
(二)太阳能光热技术在现代建筑中的应用
对于太阳能技术中光热技术在现代建筑的应用来说,主要体现在太阳能热水以及被动式太阳能采暖技术。实际上,我国太阳能热水系统是在上世纪80年代左右兴起的,当时只能对日常的生活用水进行加热,而且技术的水平比较低,而一些欧美地区已经能使用太阳能的热水系统进行热源的辅助和促进常规能源的运行,并且为人们的生活提供所需要的热水以及洗浴用水等。为了能够同时满足人们的需求和城市的美化,我国的太阳能热水系统已经向着实用性强、与建筑有效结合的方向发展,这已经成为了我国发展太阳能光电技术的具体目标。在上世纪70年代我国就已经对太阳能在建筑中的应用进行了分析,一直到现在,太阳能在建筑中应用的面积已经达到了1000多万平方米。在现代的生活中,太阳能光电技术已经从建筑的群体化向着住宅小区发展,比如,在甘肃省的某些城市中就已经创建了占地面积在10万平方米左右、建筑面积在9.5万平方米左右的太阳能小区,促进太阳能光电技术在现代建筑中的广泛应用[2]。虽然给社会带来了较大的经济效益,但是,在技术方面与发达国家相比还是存在着较大的差距。
三、太阳能光电技术未来的发展
虽然现在的太阳能光电技术有着很多的优势,在现代建筑中也实现了广泛的应用,但是,太阳能光电技术所需的设备成本非常高,根据我国的资金运转情况,根本不能实现良好的发展。我国可以借鉴一些国外的太阳能光电技术,从而实现太阳能光电技术的持续发展。比如,德国在太阳能光电技术的应用方面就非常有优势,他们的研究人员专门制定了太阳能可再生的电力法,从而促进太阳能的广泛使用[3]。在德国,太阳能光电技术的使用最重要的就是绿电购买绿电,意思是德国人民在自愿的情况下进行绿色电力的购买,而且绿色电力的价钱要比普通电力的昂贵,大概每KWh贵3欧分左右,电力销售公司在卖出绿色电力之后,用获取的利润继续大量购买绿色电力。在这种规定的情况下,太阳能光电技术肯定会得到了高效的使用,电力公司不仅不会出现亏损的情况,还能实现射虎的环保,这种模式在我国以后的太阳能光电技术发展中值得推广,从而促进太阳能光电技术的良好使用。