前言:中文期刊网精心挑选了数学建模的思想范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
数学建模的思想范文1
一、加强课堂教学,渗透建模思想
1.数学教师要有紧迫感,自觉完善自身的知识结构,提高自身数学建模能力
越来越多的数学教师已认识到数学建模教学的重要性,只有积极参与到数学建模的教学活动中,注意收集数学建模资料,钻研有关数学建模的课题,提高把握建模教学的能力,才能在课堂教学中提高应用性问题教学的质量.
2.创设生动的问题情境,激发学生情感
在应用题课堂教学中,教师要发挥多媒体技术手段的优势,根据具体教学内容,学生的认识水平、设计和应用多媒体课件创设生动的问题情境,为学生提供主动发现、主动发展的机会,激励学生积极参与建模活动.
3.重视知识产生和发展过程教学
由于知识产生和发展过程本身就蕴含着丰富的教学建模思想,因此老师既要重视实际问题背景的分析、参数的简化、假设的约定,还要重视分析数学模型建立的原理、过程,数学知识、方法的转化、应用.
4.采用启发性式和讨论式教学法,发挥学生的主体作用
在高中应用性问题的课堂教学中,教师应当采用启发式和讨论式教学法,通过多种途径、多种方式参透数学建模方法,努力拓展学生自主发展的空间,让学生独立思考,让学生动脑、动手、动口,使学生真正成为课堂教学的主体.
二、优化中数建模过程,全面实施素质教育
1.中数建模教学要突出学生的主体地位
学生主体地位是指学生应是教学活动的中心,教师、教材、一切的教学手段,都应为学生的学习服务;学生应积极参与到教学活动中去,充当教学活动的主角.学生的主体地位主要有以下四个方面的表现:学习的积极性、学习的主动性、学习的独立性和学习的创造性.
在中数建模教学中教师要充分运用渗透与激励的教育手段.渗透,就是教师结合教学内容与教学实际,从素质教育的角度出发,把人格教育、非智力因素、学习方法、思维方法和各种能力的培养等素质教育的内容有机地溶于教学过程当中.激励,就是教师运用适当的语言、举动、方式(设计)、内容(问题)激发学生的兴趣,积极性和主动性,鼓舞学生的思维、行动和意志.
2.中数建模教学要分别要求,分层次推进
中数建模方法是解决应用问题的重要方法,但因为长期受传统应试教育的影响,造成学生动手操作能力差,应用意识薄弱.在中数建模教学中,根据素质教育面向全体学生,促进学生全面发展的目标,教师要重视学生的个性差异,对学生分别要求,个别指导,分层次教学,对每个学生确定不同的数学建模教学要求和素质发展目标.对优生要多指导,提高较高的数学建模目标,鼓励他们大胆使用计算机等现代教育技术手段,多给予独立建模的机会,能独立完成高质量的建模论文;对中等程度的学生要多引导,多给予启发和有效的帮助,使中等程度的学生提高建模的水平,争取独立完成数学建模小论文;对差生要多辅导,重点渗透数学建模的思想,只需完成难度较低的建模习题,不要求独立完成数学建模小论文.当学生遇到困难时,教师应多用鼓励的方式激励学生,通过师生融洽的情感交流,帮助学生增强信心,提高自信,进而克服困难,取得建模成功.只要教师本着热爱学生关注学生成长的出发点,就能充分挖掘学生的潜能,调动学生的积极性和主动性,让学生在建模教学中体会到学习的收获与进步.
3.中数建模教学要全方位渗透数学思想方法
数学思想方法是数学知识的精髓,是知识、技能转化为能力的桥梁,是数学结构中强有力的支柱.由于中数建模教学面对的是千变万化的灵活的实际问题,建模过程应该是渗透数学思想方法的过程,首先是数学建模化归思想方法,还可根据不同的实际问题渗透函数的思想、方程的思想、数形结合的思想、逻辑划分的思想、等价转化思想、类比归纳和类比联想思想及探索思想,还可向学生介绍消元法、换元法、待定系数法、配方法、反证法、解析法、归纳法等数学方法.只要我们在中数建模教学中注重全方位渗透数学思想方法,就可以让学生从本质上理解数学建模的思想,就可以把数学建模知识内化为学生的心智素质.
数学建模的思想范文2
关键词:数学建模;思想;应用;方法;分析
0引言
随着自然科学的发展,利用数学等思想来解决实际问题,越来越受到人们的重视,数学作为一门历史悠久的自然科学,是在实际应用的基础上发展起来,但是随着理论研究的深入,现在数学理论已经非常先进,很多理论都无法付诸实践,在这种背景下,如何利用现有的数学理论来解决实际问题,成为了很多专家和学者研究的问题。通过实际的调查发现,要想利用数学来解决实际问题,首先要建立相应的数学模型,将实际的问题转化成数学符号的表达方式,这样才能够通过数学计算,来解决一些实际问题,从某种意义上来说,计算机就是由若干个数学模型组成的,计算机软件之所以能够解决实际问题,就是根据实际应用的需要,建立了一个相应的数学模型,这样才能够让计算机来解决。
1数学建模思想分析
1.1数学建模思想的概念
数学是一门历史悠久的自然科学,在古时候,由于实际应用的需要,人们就已经开始使用数学来解决实际问题,但是受到当时技术条件的限制,数学理论的水平比较低,只是利用数学来进行计数等,随着经济和科技水平的提高,尤其是在工业革命之后,自然科学得到了极大的发展,对于利用自然科学来解决实际问题,也成为了人们研究的重点,在市场经济的推动下,人们将这些理论知识转化成为产品。计算机就是在这种背景下产生的,在数学理论的基础上,将电路的通和不通两种状态,与数学的二进制相结合,这样就能够让计算机来处理实际问题,从本质上来说,这就是数学建模思想的范畴,但是在计算机出现的早期,数学建模的理论还没有形成,随着计算机软件技术的发展,人们逐渐的意识到数学建模的重要性,发现利用数学建模思想,可以解决很多实际的问题,而数学建模的概念,就是将遇到的实际问题,利用特定的数学符号进行描述,这样实际问题就转化为数学问题,可以利用数学的计算方法来解决。
1.2数学建模思想的特点
如何解决实际问题,从有人类文明开始,就成为了人们研究的重点,随着自然科学的发展,出现了很多具体的学科,利用这些不同的学科,可以解决不同的实际问题,而数学就是其中最重要的一门学科,而且是其他学科的基础,如物理学科中,数学就是一个计算的工具,由此可以看出数学的重要性,进入到信息时代后,计算机得到了普及应用,无论是日常生活中还是工作中,计算机都有非常重要的应用,而在信息时代,注重的是解决问题的效率。与其他解决问题的方式相比,数学建模显然更加科学,现在数学建模已经成为了一门独立的学科,很多高校中都开设了这门课程,为了培养学生们利用数学解决实际问题的能力,我国每年都会举办全国性的数学建模大赛,采用开放式的参赛方式,对学生们的数学建模能力进行考验,而大赛的题目,很多都是一些实际问题,对于比赛的结果,每个参赛队伍的建模方式都有一定的差异,其中选出一个最有效的方式成为冠军。由此可以看出,对于一个实际的问题,可以建立多个数学模型进行解决,但是执行的效率具有一定的差异,如有些计算的步骤较少,而有些计算的过程比较简单,而如何评价一个模型的效率,必须从各个方面进行综合的考虑。
2数学建模思想的应用
2.1计算机软件中数学建模思想的应用
通过深入的分析可以知道,计算机之所以能够解决实际问题,很大程度上依赖与计算机软件,而计算机软件自身就是一个或几个数学模型,在软件开发的过程中,首先要进行需求的分析,这其实就是数学建模的第一个环节,对问题进行分析,在了解到问题之后,就要通过计算机语言,对问题进行描述,而计算机语言是人与计算机进行沟通的语言,最终这些语言都要转化成0和1二进制的方式,这样计算机才能够进行具体的计算。由此可以看出,计算机就是依靠数学来解决实际问题,而每个计算机软件,都可以认为是一个数学模型,如在早期的计算机程序设计中,受到当时计算机技术水平的限制,采用的还是低级语言,由于低级语言人们很难理解,因此在程序编写之前,都会先建立一个数学模型,然后将这个模型转化成相应的计算机语言,这样计算机就可以解决实际的问题,由于计算机能够自行计算的特点,只要输入相应的参数后,就可以直接得到结果,不再需要人为的计算。
2.2数学建模思想直接解决实际问题
经过了多年的发展,现在数学建模自身已经非常完善,为了培养我国的数学建模人才,从1992年开始,每年我国都会举办一届全国数学建模大赛,所有的高校学生都可以参加,大赛采用了开放性的参赛方式,通常情况下,对于题目设置的也比较灵活,会有多个题目提供给队员选择,学生可以根据自己的实际情况,来选择一个最适合自己的问题。而数学建模大赛举办的主要目的,就是让学生们掌握如何利用数学理论,来解决实际问题,在学习数学知识的过程中,很多学生会认为,数学与实践的距离很远,学习的都是纯理论的知识,学习的兴趣很低,与一些实践密切相关的学科相比,选择数学专业的学生很少,而数学建模的出现,在很大程度上改善了这种情况,让人们真正的了解数学,并利用数学来解决复杂的问题。受到特殊的历史因素影响,我国自然科学发展的起步较晚,在建国后经历了很长一段时间封,闭发展,与西方发达国家之间的交流比较少,因此对于数学建模等现代科学,研究的时间比较短,导致目前我国很少会利用数学建模来解决实际问题,相比之下,发达国家在很多领域中,经常会用到数学建模的知识,如在企业日常运营中,需要进行市场调研等工作,而对于这些调研工作的处理,在进行之前都会建立一个数学模型,然后按照这个建立的模型来处理。
2.3数学建模思想应用的发展
从本质上来说,数学是在实际应用的基础上,逐渐形成的一门学科,但是受到当时技术水平的限制,虽然人们已经懂得去计算,却并知道自己使用的是数学知识,随着自然科学的发展,对数学的应用越来越多,而数学自身理论的发展速度很快,远远超过了实际应用的范围,同时随着其他学科的发展,数学变成了一种计算的工具,因此数学应用的第一个阶段中,主要是作为一种工具。随着电子计算机的出现,对数学的应用达到了一个极限,人们在数学和物理的基础上,制作出了能够自动计算的机器,在计算机出现的早期,受到性能和体积上的限制,只能进行一些简单的数学计算,还不能解决实际的问题,但是计算机语言和软件技术的发展,使其在很多领域得到了应用,在计算的基础上,能够解决很多问题,而软件程序的开发,其实就是建立数学模型的过程,由此可以看出,数学建模思想应用的第二阶段中,主要是以现代计算机等电子设备的方式,来解决实际的问题。
3数学建模思想应用的方法
3.1分析问题
数学模型的应用都是为了解决实际问题,虽然很多问题都可以通过建模的方式来解决,但是并不是所有的问题,因此在遇到实际问题时,首先要对问题进行具体的分析,首先就是看是否能够转化成数学符号,如果能够直接用数学语言来进行描述,那么就可以容易的建立相应的数学模型,但是通过实际的调查发现,随着经济和科技的发展,遇到的问题越来越复杂,其中很多都无法直接用数学语言来描述,这就增加了数学建模的难度。由此可以看出,分析问题作为数学建模的第一个环节,也是最重要的一个环节,如果问题分析的不够具体,那么将无法建立出数学模型,同时对数学模型的建立也具有非常重要的影响,通过实际的调查发现,能够建立高效率的数学模型,都是对问题分析的比较彻底,甚至有些独特的理解,只有这样才能够采用建立一个最简单的模型,而随着数学建模自身的发展,现在建立模型的过程中,对于一个实际的问题,经常需要建立多个模型,这样通过多个数学模型协同来解决一个问题。
3.2数学模型的建立
在分析实际问题后,就要用数学符号来描述要解决的问题,这是建立数学模型的准备环节,要想利用数学来解决实际问题,无论采用哪种方式,都要转化成数学语言,然后才能够通过计算的方式解决,而数学模型的过程,就是在描述完成后,建立相应的数学表达式,通常情况下,在分析问题时,都能够发现某种内在的规律,这个规律是数学建模的基础。如果无法找到这个规律,显然就不能利用现有的一些数学定律,从而建立相应的表达式,最后解决相应的问题,由此可以看出,分析问题的内在规律,是影响数学建模的重要因素,而这个规律的发现,除了在现有的数学知识外,也可以结合其他学科的知识,尤其是现在遇到的问题越来越复杂,对于以往简单的问题,只需要建立一个简单的模型即可解决,而现在复杂的问题,经常需要建立多个模型。因此现在数学建模的难度越来越大,从近些年全国数学建模大赛的题目就可以看出,对于问题的描述越来越模糊,甚至出现了一些历史上的难题,而不同学生根据自己的理解,建立的模型也具有很大的差异,其中一些模型非常新颖,为实际问题的解决提供了良好的参考,目前我国对数学建模的研究有限,尤其是与西方发达国家相比,实践的机会还比较少。
3.3数学模型的校验
在数学模型建立之后,对于这个模型是否能够解决实际问题,具体的执行效率如何,都需要进行校验,因此检验是数学模型建立最后的一个环节,也是非常重要的一个步骤,通常情况下,经过校验都能够发现模型中存在的一些问题,从而进行完善,这样才能够保证严谨性,在实际校验的过程中,要对数学模型的每个部分进行验证,通过输入特定的数据,看得到的结果是否符合理论值,如果没有问题,就说明该模型可以解决实际问题。除了检验模型的准确外,校验还有另外一个作用,就是优化模型,在选定数据后,能够看到数学模型计算的整个过程,这时就可以对具体的细节进行优化,如哪部分可以减少计算的步骤,或者简化计算的方式等,这样可以使整个模型更加科学、合理,由此可以看出,校验工作对于数学模型的建立,具有非常重要的意义。
4 结语
通过全文的分析可以知道,对于数学理论的应用,从很久之前就已经开始了,但是数学建模思想的出现,却是随着计算机技术的发展,逐渐形成的一门学科,电子计算机的出现,在很大程度上改变了处理事情的方式,利用计算机软件,只要输入相应的参数,就可以直接得到结果,这正是数学模型完成的任务,只是计算机的出现,省略了中间的计算过程,因此计算机软件的方式,是数学建模思想最好的应用方法,要想解决不同的问题,只要建立不同的模型,然后编写相应的程序。
参考文献:
[1] 吴俊,劳家仁.高校师资管理中数学建模的应用研究[J],南京工业职业技术学院学报,2009(02):84-86
[2] 温清芳,最优化方法在数学建模中的应用[J],宁德师专学报(自然科学版),2007(02):151-153
[3] 张绍艳,浅谈数学建模思想的应用[J],科技咨询导报,2007(20):233
数学建模的思想范文3
【关键词】数学思想思考
文章来源:江西省教育厅教改课题《将数学实验与数学建模的思想方法融入线性代数的构想与设计》编号JXJG-10-80-3
1 引言
线性代数是数学的一个重要分支,也是高等院校一门重要的基础理论课程。传统的线性代数教学偏重于理论体系。它讲解了矩阵理论、向量空间、线性变换等,而忽略了线性代数的方法及这些方法在实践中的应用。从而导致学生对学习线性代数有什么作用,为什么学习线性代数都感到很茫然,使得他们对这门课失去了学习的兴趣和深入学习的动力。所以探索线性代数的教学改革成了近年来教师们深入思考的问题。
随着计算机技术的迅猛发展及计算机应用的普及,引进现代技术到传统的数学教学中已成为国际化趋势。近年来,国内外不少数学教材都增加了数学实验和数学软件应用的内容,线性代数也不例外。它通过引入MATLAB这款数学软件开设了数学实验这个教学环节。利用所学的理论知识构建实际生活问题中的数学模型,并结合数学软件的应用来解决所构模型的计算问题。所以目前把理论知识、生活模型、数学软件的应用这三者结合起来融入到传统的基础课程教学中刻不容缓。这样可以让学生真正体会到学有所用的快乐,激发他们学习数学的真正兴趣。
2 如何把数学实验与建模思想融入到线性代数中
结合多年的教学经年和自身的教学改革研究方向,对数学实验与数学建模如何融入到传统的线性代数教学中做了以下几方面的思考与尝试。
(1)数学实验如何融入到线性代数课程中
随着数学软件的发展,不少教材已经增加了应用数学软件的内容。许多高校也相应的增加了数学实验教学环节。针对传统的线性代数教材中,由于计算量太大,所以教材中线性代数方程组引用的例子都是自变量较少,系数为整数;都是求一些低阶矩阵的逆矩阵或者它的特征值。这就局限了线性代数应用到现实生活中,因为我们在实际生活中碰到的大部分都是大量数据所构成的线性代数方程。而MATLAB这款数学软件是矩阵计算为基础,把出色的数值计算功能和强大的图形处理功能相结合的简单易学的一款数学软件。因此大部分的高校的线性代数数学实验课中都是应用MATLAB这款软件。由于缺乏对专业老师的计算机及其软件应用的培训,部分高校老师在线性代数实验课上仅仅局限教学生简单的套程序进行方程组或者矩阵、行列式的计算,对于如何自己根据实际要求编写应用程序还是空白。特别是把线性代数应用到数学建模中时不能再简单套用程序时,许多学生就无从动手了。例如他们仅仅会利用函数“det”来求方阵的行列式:
这些简单的介绍数学软件的计算功能是很有必要的,它会大大减少花在大量简单重复计算方面的精力。而这个仅仅是“线性代数的机算”,深入探讨实验课就是把人算与机算相结合。在王泽文等人编制的《数学实验与数学建模案例》教材中就增加了MATLAB程序设计,他介绍了如何创建M文件,如何灵活应用流程控制。但是那里出现的例子绝大部分都是针对高等数学的实例讲解的,对于线性代数的实例还未进行研究。所以对于线性代数实验课的教学改革也要如高等数学一样不仅会简单的套用程序计算,而应该人机结合。
(2) 建设“线性代数中的数学建模”,培养学生的创新和应用能力
“数学建模”课程本身的特点是通过对现实生活中的实际问题的抽象、简化、确定变量和参数,并应用某些‘规律’建立起变量、参数间确定的数学问题,然后求解该数学问题,解释验证所得的解,从而确定能否用于解决问题多次循环、不断深化的过程。
在数学建模中常见的线性优化问题及非线性规划问题都既运用到了线性代数的知识又培养了建模的思想。如2000年全国大学生数学建模竞赛B题――关于钢管订购和运输的问题。内容是铺设一条从 A1到A15的天然气的主管道,经筛选后可以生产这种主管道的钢厂有S1,S2,L,S7,具体经过的路线图及钢管产量与单价表及单位钢管的铁路运价表请参考文献[1] 。需要通过数学模型的方法解决――制定一个主管道钢管的订购和运输计划,使总费用最小,并给出总费用。及分析哪个钢厂钢管的销价的变化对购运计划和总费用影响最大,哪个钢厂钢管的产量的上限的变化对购运计划和总费用的影响最大,并给出相应的数字结果。这就是一个典型的最优化模型,求最小费用。首先建立模型,钢管的订购和运输方案是影响工程费用的主要因素之一,所以需要制定合理的订购计划与选取费用最小的路线来运送钢管,以便费用最小。先确定将货物从S1,地运往Aj的最优路线,即费用最小路线;再求出每个钢管厂的订购计划,并确定出运输计划;最后计算将已经运到 处的钢管铺到管道线上的运输费用。综合以上分析来列出极小化目标函数和约束条件,再在约束条件下利用所学的数学软件MATLAB或者LINGO来求解最优值。类似的问题还有资产投资收益与风险问题,泄洪设施修建计划等问题都是属于线性或非线性优化问题。所以在线性代数的实验课上很有必要加入数学建模案例的讲解,案例可以把现学的东西现用,让学生立刻感受到线性代数在现实生活中是随处可见,也是很有作用的。这样才能把抽象的线性代数具体化,激发学生学习线性代数的兴趣。
3 总结
如何在线性代数中融入数学建模的思想,既提高了数学建模的质量,为参加全国数学建模竞赛培养了种子选手;又促使学生增加学习线性代数的浓烈兴趣,同时又培养了学生的创新意识和应用能力。
参考文献
[1] 王泽文、乐励华、颜七笙、张文等.《数学实验与数学建模案例》[M].高等教育出版社,2013年,5月.
数学建模的思想范文4
一、引言
11世纪的数学家、物理学家和天文学家高斯曾说:“数学是科学之王。”数学贯穿于所有科学理论之中,任何科学理论如果不应用数学,它就是粗糙的,不懂数学的人是不能进行深层次的科学思维的。
在当今社会数学已经渗透向生活的各个领域,概率、比率、机会、误差、图像、逻辑、程序等等数学概念已进入日常生活;各行各业都在数量化、数字化、数学化,用到的数学知识越来越多。从科学技术的角度来看,大量与数学相关的交叉学科相继出现出现,迅速发展例如:数学化学、数学生物、数学地质学、数学心理学、数学语言学、数学社会学等。有研究者认为高科技技术本质上就是一种数学技术。例如财物、会计专业软件包都是大量应用现有的相关数学知识,开发数学模型以及应用数学技巧、方法的结果。高等数学对于培养大学生数学思维、数学意识提升逻辑思维能力有重要意义。
二、数学建模思想的重要性
传统高等数学教学注重训练学生的逻辑推理能力,而没有注意训练如何从实际问题中提炼出数学问题以及如何用数学来解决实际问题,其后果是学生们学了不少数学,但不会用,为此在高等数学的教学过程中如何提升教学效果成为教学改革的一个重要研究问题。当前高等数学教学不重视应用性,很多学生数学的学习仅仅以通过考试为目的,数学成为抽象的、枯燥的、无实际用途的科学。数学建模则以“数学的应用与模型化”为主线,重视数学建模意识和应用能力的培养。
数学建模的思想在高等数学发展的历程中很早就有,但是现代教育技术环境的发展和大学生数学建模赛事的举行为数学建模的教学发展提供了契机和更好的外部环境条件,同时也对现代高等数学的教学提出了新的要求。数学建模对于培养大学生数学能力的作用的相关研究较多,研究结果表明:数学建模能够提升大学生理论联系实际的能力、可以提升思维能力、概括能力、归纳能力、创新能力。
三、数学建模教育现状和改革思路
全国大学生数学建模竞赛创办于1992年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛,也是世界上规模最大的数学建模竞赛。2012 年,来自全国33个省/市/自治区(包括香港和澳门特区)及新加坡、美国的1284所院校、21219个队(其中本科组17741队、专科组3478队)、63600多名大学生报名参加本项竞赛。竞赛能全面反应学生解决实际问题的能力、数学创造力、计算机使用能力、书面表达写作能力,特别强调创新意识、团队精神。已经成为我国大学生创新能力培养和提升的重要大型学术赛事之一。
郑州航空工业管理学院,在2008年至2010年累计有67支队伍,共计201名学生才加了全国的大学生建模大赛,并取得了良好的成绩荣获省级一等奖6项、省级二等奖8项、省级三等奖20项,但参赛学生来自全校各个不同院系,较多集中在数理与统计学院。
综上可见:通过数学建模对提升高等数学教学效果的实践研究,可以为高等数学的教学找到一条新模式,进而提升学生综合素质,培养出能更好适应社会的应用型专业人才。另外,对于数学建模教学实践还可提升高校的数学建模竞赛成绩,提升学校知名度,并影响到更多的学生,使学生们真正热爱数学学习,全面提升个人素质。
四、数学建模教学研究的相关成果
关于数学建模与提升提升高等数学教学效果的实践研究的相关研究主要集中在以下几个方面:
(一)数学建模的教学方法研究
许多研究者对数学建模的教学从不同角度和方面进行探讨,一些比较有影响的研究有:黄世华等,针对高专院系的建模教学现状,提出从指导思想、教学理念、教学内容、教学方法、考核方式出发,课程教学应采取以问题驱动研究式为主,以知识驱动讲授式为辅的教学方法才是行之有效的。刘浩等,认为数学建模应加强数学思维的互动训练,培养创新精神;加强信息素养的训练,开拓知识面;注重团队训练,提高团队合作意识。杨小钟讨论数学建模教育对高校数学教育改革的重要意义,以及存在的问题并提出了改变教学理念的改进措施。还有研究者通过具体的模型教学,讨论了建模思想的培养和相关的教学实践心得。柴中林、王航平等针对美国大学生数学建模竞赛提出了一些培训策略。
(二)数学建模教学意义研究
对数学建模的意义研究主要集中在数学建模与大学生能力培养和非智力因素发展等方面。沙元霞等提出学校可以通过增强数学建模意识、改进数学建模思想方法、提高数学建模能力,深化教育教学改革,培养数学应用型人才。蒋莉分析了数学建模对培养大学生数学素质的作用,并提出数学建模培养了大学生的抽象思维能力,提高了大学生的创新能力。杨太文等,研究数学建模竞赛与大学数学课程间的效用发现数学建模的学习可以明显提高学生的数学学习能力。
数学建模的思想范文5
关键词: 数学模型 教学改革 高等数学 定积分
1.引言
高职院校开设公共基础课高等数学,强调数学知识的应用性.而采用传统单一的“填鸭式”的理论教学方法很难达到目的.很多高数教师可能都被学生问过这样一个问题:“学高数有什么用?”这说明通过我们的课堂教学,没有让学生感受到他们学到的东西能解决广泛的实际问题.数学建模是一种数学的思考方法,是通过抽象、简化,运用数学的语言和方法,建立数学模型,求解模型并得到结论及验证结论是否正确、合理的全过程,是解决传统教学活动中学生缺乏运用数学知识解决实际问题能力的有效途径[1].本文用数学建模的思想和方法,应用所学的高数相关的知识详细分析解答了“除雪机除雪问题”,是将数学建模思想融入高等数学教学一个案例.
2.案例分析
微积分是高数的核心内容,是解决实际问题强有力的数学工具,下面我们就尝试用学过的定积分解决一个日常生活问题.
冬天的大雪常使公路上积起厚雪影响交通,有条10公里的公路积雪有一台除雪机负责清扫.每当路面积雪平均厚度达到0.5m时,除雪机就开始工作.但问题是开始除雪后,大雪仍下个不停,使路面上积雪越来越厚,除雪机工作速度逐渐减慢,直到继续工作.降雪的大小直接影响除雪机的工作速度,那么除雪机能否完成这10km路程的除雪任务,当雪下多大时除雪机无法工作[2]?
相关情况和部分数据:
(1)降雪持续下了一个小时;
(2)降雪速度随时间变化,但下得最大时,积雪厚度的增量是每秒0.1cm;
(3)当积雪厚度达到1.5m时,除雪机将无法工作;
(4)除雪机在没有雪路上行驶速度为10m/s.
问题分析:首先考虑与除雪机除雪有关的因素,其主要因素有:下雪的速度,积雪的厚度,除雪机工作速度及下雪持续的时间.为使问题简化,假设(1)下雪速度保持不变;(2)除雪机工作速度与积雪厚度成反比.设置变量,记下雪速度为R(cm/s),积雪厚度为d(m),除雪机工作速度为v(m/s).
建立模型:
(1)下雪厚度模型.在下雪速度保持不变的情况下,积雪在t秒内厚度增量d=■Rt,因此t秒内积雪厚度为:d(t)=0.5+■(2.1)
(2)除雪机工作速度模型.由问题的假设,并注意到当d=0时,v=10;d=1.5时,v=0,可建立关系式v(t)=10(1-■d(t)),0.5≤d(t)≤1.5,将(2.1)式带入得t秒时除雪机工作速度公式v(t)=■(2-■)(2.2)
利用上述公式,可确定除雪机被迫停止工作的时间,由v(t)=0,得t■=■(2.3)
除雪机工作t秒时的行驶距离S(t)=?蘩■■v(u)du=■?蘩■■(2-■)du=■t-■t■(2.4)
情形1:大雪以每秒0.1cm的速度持续1h.
积雪新增的厚度是■=3.6(m),再加上原来雪深0.5m,已经超过1.5m.只能考虑除雪机从雪厚0.5m到雪厚1.5m时的工作时间和除雪距离.由(2.3)可得:t■=■=■=1000(s)≈16.67(min),即除雪机只能工作16.67min就得停止工作,其行驶的距离由(2.4)得:S(t■)=S(1000)=■-■≈3.3(km).
情形2:大雪以每秒0.025cm的速度持续1h.
图1 下雪速度速度变化图
积雪新增的厚度恰好是情形1的■,为0.9m,再加上原来雪深0.5m,雪深不超过1.5m,除雪机始终可以工作.除雪机除雪10km所需时间,将S=10×1000m带入(2.4)得:10000=■t-■t■,t=2000(s)≈33.33(min),即只雪33.33(min)除雪机就可以清除完10km的积雪.
模型改进:上述模型假设下雪速度保持不变,实际上,持续下1h雪,下雪的速度不可能恒定不变.现从实际出发把假设做得更合理些.假设下雪的速度在前30min均匀增大到最大值0.1cm/s,在后30min逐渐减小到零.如图1所示.
用r(t)表示t时刻的下雪速度,则
r(t)=■?摇?摇0≤t≤1800a-■?摇?摇1800≤t≤3600(2.5)
r(t)的单位为cm/s.利用在t=1800处r(t)的连续性,可知参数a=0.2.
积雪厚度函数:当0≤t≤1800时,d(t)=0.5+■?蘩■■■du=0.5+■t■(2.6)
计算得d(1800)=0.5■=0.5+0.9=1.4(m),即除雪机工作30min时,积雪厚度达到1.4m.当1800≤t≤3600时,d(t)=1.4+■?蘩■■(0.2-■)du=0.01(0.2t-■t■)-1.3(2.7)
计算得d(3600)=0.01(0.2×3600-■-1.3=2.3(m),说明雪还在下时除雪机已经停止工作.工作时间利用(2.7),取d(t)=1.5m可得t≈35(min).
若考虑更复杂些,则还可以建立与实际更接近的数学模型.
3.结语
高职院校学生的数学基础相对较弱,学习高数有些吃力,利用传统的教学方法给他们“满堂灌”抽象的理论知识只会使他们对这门课望而生畏.在教学过程中引进数学模型,渗透数学建模的思想和方法,不仅能大大激发学生学习数学的兴趣,而且能提高他们应用数学的能力,还能够提升教师的教学水平,完善现有的教学方法,从而有效提高高等数学的教学质量.
参考文献:
数学建模的思想范文6
关键词 数学建模 融入 大学数学课堂
教学作为一门重要的基础学科,它被应用在不同领域上,渗透到了社会生活的方方面面。科学技术的飞速发展,大大拉近了数学和现实生活的距离,在大学数学课堂中融入数学建模的思想不仅能激发学生学习数学的兴趣,培养学生应用数学解决问题的能力,还能帮助学生更好的理解和掌握数学中的抽象概念定理,从而起到事半功倍的作用。
1 数学建模的发展历程
数学作为一门重要的基础学科和一种精确的科学语言,是以一种抽象的形式出现的。这种极为抽象的形式有时会掩盖数学丰富的内涵,并可能对数学的实际应用形成障碍。不论用数学方法解决哪类实际问题,还是与其他学科相结合形成交叉学科,首要和关键的一步是将研究对象的内在规律用数学的语言和方法表述出来,在实际问题与数学间架设一个桥梁,这就是所谓的数学模型。
很早的时候数学便对模型有了研究,最初是对模式的研究:是所有一元二次方程的模式,把形如这样若干个具有某种共性的具体模式又可以归结为一类,形成一个模型。《九章算术》中把所讨论的数百个问题归并为若干个模型。20世纪80年代初,数学建模教学进入我国的大学课堂,经过20多年的发展,现在大多数本科院校和许多专科院校都开设了各种形式数学建模课程和讲座,为培养学生利用数学方法分析、解决实际问题的能力开辟了一条有效的途径。从1994年起,由教育部高教司和中国工业与应用数学学会共同主办的全国大学生数学建模竞赛起,十几年来,这项竞赛的规模逐年扩大,至今为止,已成为社会和学界普遍关注的一项大学生科技活动。
随着科技的发展以及数学应用的深入,数学建模越来越被人们所认同,把数学建模的思想融入到大学数学课堂也成为很多大学进行教育教学改革的着眼点。
2 大学数学教育的现状及将数学建模思想融入课堂的必要性
大学数学是大部分院校重要的基础课程,对其他专业课程起着不可或缺的支撑作用。但目前,许多高校专业课教师普遍认为学生的数学基础较差,不能满足其专业课的需要。造成这种状况的原因主要有这样几方面:首先,我们现有的大学数学教程相对日后其在专业课中的应用,它的内容偏难、理论要求高。作为基础课,数学类的课程一般在大学一二年级开设,课时量不多,刚入学的大学生还习惯中学学习数学的方法,做题练习再做题,而此时没有那么多的时间进行这样的反复训练,再加上内容抽象难理解,并且理论要求高,这就会导致自学能力较差的学生对数学产生厌恶情绪。其次,现有的大学数学教学在实际教学中实际应用少,难以激发学生学习数学的兴趣。都说理论源于实践,没有实践的理论就很空洞、难于理解,教师在授课过程中偏重理论与习题的讲解,很少涉及数学的知识背景和实际应用,使学生感觉学了数学无实际应用。再次,很多教师对数学建模思想的理解不深,缺少对学生用数学知识解决实际问题必要的引导,导致学生对于学习的数学知识不能举一反三学以致用,动手能力差,再放到其他学科的中加以应用就更加困难。
针对大学数学教学的现状,数学建模融入课堂已经是大势所趋。数学教育不能仅仅是按部就班的静态传授,更应该注重对学科精神的领会,只有这样,学生遇到实际问题才不至于束手无策,才能有所创新和发现。首先来讲,数学建模对大学数学教学改革有重要影响。传统的数学课程注重的是通过分析、推理与计算去求解已经建立的数学模型,再用相关的方法去处理,使学生形成思维定势,无法拓宽思路,从而限制了学生创造性思维的培养。数学建模针对实际问题用数学的语言及方法去抽象和概括事物的本质,构造出数学模型,侧重数学的实际应用。大学数学教学改革最终目标是要把数学真正用于生活,从某种意义上说,如果把数学建模作为数学教学的一种过程,这个过程将为大学数学教学改革提供很好的方向。其次,数学建模是调动学生学习数学积极性的驱动力。通过数学建模,能够使学生了解学习数学的用处,了解学好数学的优势,这样必将促进和提高学生学习数学基础课程的积极性。再次,数学建模的思想和方法渗透入大学数学课堂有助于提高数学教师的教学质量,特别是为年轻教师个人教学风格的培养创造了条件。
3 将数学建模思想融入大学课堂的几点建议
3.1 在教学中注重引入数学建模案例
数学的教学,不仅要使学生学到许多重要的数学概念、方法和结论,而且应该在传授数学知识的同时,使他们学会数学的思想方法,领会知识的精神实质,知识的来龙去脉,在数学文化熏陶中茁壮成长。为此,我们要结合数学课程,使学生了解到他们所学那些看来枯燥无味似乎又天经地义的概念、定理,并不是凭空想象创造出来的,它们有现实的来源和背景,数学建模案例的引入就是要达到这样一个目的。
数学建模思想融入大学数学课堂不是一朝一夕就能够做到的,我们要在日常的教学中一点一滴的注入。例如,在高等数学函数与极限这部分教学中,我们可以引入指数模型、蜘蛛网模型、科赫雪花模型;在线性代数中我们也可以引入投入产出数学模型、动物繁殖的规律问题、交通流量问题、世界人口预测问题、化学方程式配平问题;在概率统计中可以引入摸球问题、相遇问题、生日相同问题、合理配置问题、预测产品销售额、土地和品种对收获是有显著影响等模型。
以上是针对大学数学中几门基础课程列出的一些数学建模案例,我们会发现这些模型与我们生活息息相关,把数学知识嵌入这些有意思的实际问题中,不仅可以让学生感受所学数学知识的用处,也能活跃他们的思维。
3.2 将数学建模思想融入到课后作业中
课后作业是学生进一步理解和巩固课堂教学内容的重要环节。传统的课后作业是布置章节后的配套习题,大多是课堂例题的变式训练,很少有和实际比较接近的实际问题,根本无法培养学生的应用数学能力和创新能力。只有把理论用到实践中去,解决了实际问题才能达到理解、深化、巩固所学理论知识的效果。因此,我们要在课后作业中融入数学建模思想。
例如,在讲授连续函数的零点定理后,留下作业为在一块不平的地面上,是否可以找到一个是适当的位置而将一张凳子的四脚同时着地?这样开放性的题目,学生在课后可以通过小组讨论、试验等方式认识问题,最终以书面的形式提交作业。考虑实际问题的开放性,可以每一章或者结合几章的内容安排实际问题作为学生的作业,引导学生用数学建模的思想方法来解决。为了发挥学生的创造性,也可以在每章教学开始时就提出该作业,让学生带着问题学习知识,这样既能激发学生学习的积极性,还能培养自学能力。由于实际问题的开放性,学生们配合完成,能够培养学生的动手能力、创新思维,还可以提高他们的数学应用能力和合作意识。
3.3 将数学建模思想融入课程考核中
传统的数学考试大多是闭卷考试,主要考察学生对所学数学概念、结论和方法的掌握情况。由于考试时间的限制,试题中很少加入应用题,即使有实际问题,也是很简单的,对于学生的数学应用能力和创新能力没有合理的评价。基于这样的想法,数学建模思想应该融入课程考核中,在试题中适当设置开放性试题,采用分组提交项目报告的形式,根据每个人在小组项目中的贡献度给出考核分数。这样的考核方式和以前的闭卷考试相比,考察能力全面但不好监控。为了让课程考核更加合理,建模思想融入要循序渐进。最初,我们可以闭卷考试和数学建模项目考核相结合,等学生建立了良好的学习习惯再转向完全的项目考核。
3.4 开设数学建模的兴趣小组,鼓励参与数学建模竞赛
数学建模思想的渗透要点滴积累,用数学建模来成功解决实际问题,需要搜集资料、查阅文献、数据采集、小组讨论等等步骤,这些如果都放在课上,课时量不够,会影响正常的教学。为了平衡这样的矛盾,又要给对数学感兴趣的学生提供更多的学习机会,可以开设数学建模兴趣小组、组织数学建模竞赛。
兴趣小组的组建不必拘于某个班级或某个专业,可以在全校范围内开展,配备专门的老师进行定期指导。小组定期组织数学建模的相关活动,根据人员特点进行分工配合完成,逐渐培养和提高学生的自学能力、分工协作团队合作能力,激发他们的学习兴趣。
数学建模竞赛是学生数学方法的运用能力、逻辑思维能力、语言表达能力的综合体现。竞赛对学生的要求相对更高一些,为了使更多的学生参与其中,我们可以在本校内或几个学校之间举办小型的数学建模竞赛,鼓励广大学生踊跃参加,通过这种方式,也可以为国家级的竞赛选拔人才。