数控机床故障诊断方法范例6篇

前言:中文期刊网精心挑选了数控机床故障诊断方法范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

数控机床故障诊断方法

数控机床故障诊断方法范文1

根据实际维修过程中出现的故障,根据自己的经验总结出数控机床故障诊断方法,并阐述数控机床故障诊断原则、方法、分类,为以后的数控机床维修提供一些方法。

【关键词】

数控机床;故障诊断;方法

由于现代数控系统的可靠性越来越高,数控系统本身的故障越来越低,而大部分故障的发生则是非系统本身原因引起的。不同的数控系统虽然在结构和性能上有所区别,但随着微电子技术的发展,在故障诊断上有它的共性。

一、数控机床故障诊断原则

(一)先外部后内部

数控机床是集机械、液压、电气为一体的机床,故其故障的发生也会由这三者综合反映出来。维修人员应先由外向内逐一进行排查。尽量避免随意地启封、拆卸,否则会扩大故障,使机床大伤元气,丧失精度,降低性能。

(二)先机械后电气

一般来说,机械故障较易发觉,而数控系统故障的诊断则难度较大些。在故障检修之前,首先注意排除机械性的故障,往往可达到事半功倍的效果。

(三)先静后动

先在机床断电的静止状态,通过了解、观察测试、分析确认为非破坏性故障后,方可给机床通电。在运行工况下,进行动态的观察、检验和测试,查找故障。而对破坏性故障,必须先排除危险后,方可通电。

(四)先简单后复杂

当出现多种故障互相交织掩盖,一时无从下手时,应先解决容易的问题,后解决难度较大的问题。往往简单问题解决后,难度大的问题也可能变得容易。

二、常见故障分类

(一)按故障发生的部位分类

1.主机故障数控机床的主机通常指组成数控机床的机械、、冷却、排屑、液压、气动与防护等部分。主机常见的故障主要有:因机械部件安装、调试、操作使用不当等原因引起的机械传动故障;因导轨、主轴等运动部件的干涉、摩擦过大等原因引起的故障;因机械零件的损坏、联结不良等原因引起的故障,等等。

2.电气控制系统故障从所使用的元器件类型上。根据通常习惯,电气控制系统故障通常分为“弱电”故障和“强电”故障两大类,“弱电”部分是指控制系统中以电子元器件、集成电路为主的控制部分。数控机床的弱电部分包括CNC、PLC、MDI/CRT以及伺服驱动单元、输为输出单元等。

(二)按故障的性质分类

1.确定性故障是指控制系统主机中的硬件损坏或只要满足一定的条件,数控机床必然会发生的故障。

2.随机性故障是指数控机床在工作过程中偶然发生的故障此类故障的发生原因较隐蔽,故障的发生往往与部件的安装质量、参数的设定、元器件的品质、软件设计不完善、工作环境的影响等诸多因素有关。

三、数控机床的故障诊断方法

由于数控机床故障比较复杂。同时,数控系统自诊断能力还不能对系统的所有部件进行测试,往往是一个报警号指示出众多的故障原因,使人难以下手。下面介绍维修人员在生产实践中常用的排除故障方法。

(一)直观法

直观法是一种最基本的方法,也是一种最简单的方法。维修人员通过对故障发生时产生的各种光、声、味等异常现象的观察.以及认真检查系统的每处,观察有尤烧毁和损伤痕迹,往往可将故障范围缩小到一个模块,甚至一块印制线路板,但这要求维修人员具有丰富的实践经验以及综合判断的能力。

例:XHK716立式加工中心,在安装调试时,CRT显示器突然出现无显示故障,而机床还可继续运转。停机后再开,又一切正常。观察发现,设备运转过程中,每当车间上方的门式起重机经过时,往往会出现故障,由此初步判断是元件接触不良。检查显示板,用手触动板上元件,当触动某一集成块管脚时,CRT上显示就会消失。细查发现该脚没有完全插入插座中。另外,发现此集成块旁边的晶振有一个引脚没有焊锡。将这两种原因排除后,故障消除。

(二)功能程序测试法

所谓功能程序测试法就是将数控系统的常用功能和重要的特殊功能,如直接定位、圆弧插补、螺纹切削,固定循环、用户宏程序等用手工编程或自动编程方法编制成一个功能测试程序,骸后启动数控系统运行这个功能测试程序。

案例:数控铣床在自动加工某一曲线零件时出现爬行现象,表面粗糙度极差。在运行测试程序时,直线、圆弧插补时皆无爬行,由此确定原因在编程方面。对加工程序仔细检查后发现该曲线由很多小段圆弧组成,而编程时又使用了正确定位外检查G61指令之故。将程序中的G61取消,改用G64后,爬行现象消除。

(三)交换法

即在分析出故障大致起因的情况下,维修人员可以利用备用的印刷电路板、集成电路芯片或元器件替换有疑点的部分,从而把故障范围缩小到印刷线路板或芯片一级。

案例:XK715F型数控立铣床出现纵向拖板(Y轴)正向进给正常,反向进给失常,时动时不动,采用手摇脉冲进给时也如此。第一次交换后故障仍在纵拖板轴,第二次交换后故障转移到横拖板轴,从确定Y轴速度控制器有故障。将其拆下检查,发现板上一电容损坏。换上新电容后,故障消除。

(四)参数检查法

发生故障时应及时核对系统参数,参数一般存放在磁泡存储器或存放在需由电池保持的CMOSRAM中,一旦电池不足或由于外界的干扰等因素,使个别参数丢失或变化,发生混乱,使机床无法正常工作。此时,可通过核对、修正参数,将故障排除。

(五)测量比较法

测量法是诊断机床故障的基本方法,当然对于诊断数控机床的故障电是常用的方法,测量法就是使用万用表、示波器、逻辑测试仪等仪器对电子线路进行测量。

(六)PLC检查法

PLC检测故障的机理是通过机床厂家为特定机床编制的PLC梯形图(即程序),根据各种逻辑状态进行判断,如果发现问题就产生报警并在显示2S上产生报警信息。所以对一些PLC产生报警的故障或一些没有报警的故障,可以通过分析PLC的梯形图对故障进行诊断,利用CNC系统的梯形团显示功能或者机外编程器在线跟踪梯形图的运行,从而提高诊断故障的速度和准确性。

除以上常用的故障检测方法之外,还可以采用敲击法、自诊断功能法、原理分析法等。总之,按照不同的故障现象,可以同时选用几个方法灵活应用、综合分析,才能逐步缩小故障范围,较快地排除故障。

参考文献:

数控机床故障诊断方法范文2

关键词:数控;维修;机电;原则;方法;故障

数控机床在当今机械制造业中的重要地位和巨大效益,显示了其在国家基础工业现代化中的战略性作用,并已成为传统机械制造工业提升改造和实现自动化、柔性化、集成化生产的重要手段和标志。当前,数控机床是现代加工车间最重要的装备。由于数控机床是一种价格昂贵的精密设备,因此,其维护更是不容忽视。掌握数控机床维修技术是当前机电类专业学生必不可少的技能。下面就来谈谈数控机床维修遵循的两个原则。

一、数控机床发生故障时,维修人员应遵循以下两条原则

(1)充分调查故障现场这是维修人员取得维修第一手材料的一个重要手段。调查故障现场,首先要查看故障记录单;同时应向操作者调查、询问出现故障的全过程,充分了解发生的故障现象,以及采取过的措施等。此外,维修人员还应对现场作细致的检查,观察系统的外观内部各部分是否有异常之处:在确认数控系统通电无危险的清况下方可通电,通电后再观察系统有何异常, CRT 显示的报警内容是什么等。

(2)认真分析故障的原因。数控系统虽有各种报警指示灯或自诊断程序,但不可能诊断出发生故障的确切部位。而且同一故障、同一报警可以有多种起因,在分析故障的起因时,一定要开阔思路,尽可能考虑各种因素。

二、准备好常用来进行诊断的仪器和资料

常用的仪器、仪表及工具万用表-可测电阻、交、直流电压、电流。 相序表-可检测直流驱动装置输入电流的相序。转速表-可测量伺服电动机的转速,是检查伺服调速系统的重要依据。钳形电流表-可不断线检测电流。测振仪-是振动检测中最常用、最基本的仪器。短路追踪仪-可检测电气维修中经常碰到的短路故障现象。逻辑测试笔-可测量数字电路的脉冲、电平。IC测试仪-用于数控系统集成电路元件的检测和筛选。工具-弹头钩形扳手、拉锥度平键工具、弹性手锤、拉卸工具等。

诊断用技术资料主要有:数控机床电气说明书,电气控制原理图,电气连接图,参数表,PLC程序,编程手册,数控系统安装与维修手册,伺服驱动系统使用说明书等。数控机床的技术资料非常重要,必须参照机床实物认真仔细地阅读。一旦机床发生故障,在进行分析的同时查阅相关资料。

三、分析故漳时

维修人员也不应局限于 CNC 部分,而是要对机床强电、机械、液压、气动等方面都作详细的检查,并进行综合判断,达到确珍和最终排除故障的目的。对于数控机床发生的大多数故障,总体上说可采用下述几种方法来进行故障诊断。

(1)直观法。这是一种最基本、最简单的方法。维修人员通过对故障发生时产生的各种光、声、味等异常现象的观察、检查,可将故障缩小到某个模块,甚至一块印制电路板但是,它要求维修人员具有丰富的实践经验,以及综合判断能力。

(2)系统自诊断法。充分利用数控系统的自诊断功能,根据 CRT 上显示的报警信息及各模块上的发光二极管等器件的指示,可判断出故瘴的大致起因。进一步利用系统的自诊断功能,还能显示系统与各部分之间的接口信号状态,找出故障的大致部位,它是故障诊断过程中最常用、有效的方法之一。

(3)参数检查法。数控系统的机床参数是保证机床正常运行的前提条件,它们直接影响着数控机床的性能。参数通常存放在系统存储器中,一旦电池不足或受到外界的干扰,可能导致部分参数的丢夫或变化,使机床无法正常工作。通过核对、调整参数,有时可以迅速排除故障:特别是对于机床长期不用的情况,参数丢失的现象经常发生,因此,检查和恢复机床参数是维修中行之有效的方法之一。另外,数控机床经过长期运行之后,由于机械运动部件磨损,电气元括件性能变化等原因,也需对有关参数进行重新调整。

(4)功能测试法。所谓功能测试法是通过功能测试程序,检查机床的实际动作,判别故障的一种方法功能测试可以将系统的功能(如:直线定位,圆弧插补、螺纹切靓、固定循环、用户宏程序等),用手工编程方法,编制一个功能铡试程序,并通过运行测试程序,来检查机床执行这些功能的准确性和可靠性,进而判断出故障发生的原因。对于长期不用的数控机床或是机床第一次开机不论动作是否正常,都应使用木方法进行一次检查以判断机床的上作状况。

(5)部件交换法。所谓部件交换法,就是在故障范围大致确认,并在确认外部条件完全正确的情况下,利用同样的印制电路板、模块、集成电路芯片或兀器件替换有疑点的部分的方法。部件交换法是一种简单,易行、可靠的方法,也是维修过程中最常用的故障判别方法之一。交换的部件可以是系统的备件,也可以用机床上现有的同类型部件替换通过部件交换就可以逐一排除故障可能的原因把故障范围缩小到相应的部件上。必须注意的是:在交换之前应仔细检查、确认部件的外部工作刹长在线路中存在短路、过电压等情况时,切不可以轻易更换备件此外,备件(或交换板)应完好,且与原板的各种设定状态一致。在交换CNC装置的存储器板或CPU板时,通常还要对系统进行某些特定的操作,如存储器的初始化操作等并重新设定各种参数,否则系统不能正常工作。这些操作步骤应严格按照系统的操作说明书、维修说明书进行。

(6)测量比较法。数控系统的印制电路板制造时,为了调整_维修的便利通常都设置有检测用的测量端子。维修人员利用这些检测端子,可以侧量、比较正常的印制电路板和有故障的印制电路板之间的电压或波形的差异,进而分析、判断故障原因及故障所在位置。通过测量比较法,有时还可以纠正他人在印制电路板上的调整、设定不当而造成的“故障”。测量比较法使用的前提是:维修人员应了解或实际测量正确的印制电路板关键部位、易出故障部位的正常电压值,正确的波形,才能进行比较分析,而且这些数据应随时做好记录并作为资料积累。

(7)原理分析法。这是根据数控系统的组成及工作原理,从原理上分析各点的电平和参数,并利用万用表、示波器或逻辑分析仪等仪器对其进行侧量,分析和比较,进而对故障进行系统检查的一种方法。运用这种方法要求维修人员有较高的水平,对整个系统或各部分电路有清楚,深入的了解才能进行。对于其体的故障,也可以通过测绘部分控制线路的方法,通过绘制原理图进行维修。

(8)其它方法。除了以上介绍的故障检测方法外,还有插拔法、电压拉偏法、敲击法、局部升温法等等这些检查方法各有特点,维修人员可以根据不同的故障现象加以灵活应用,以便对故障进行综合分析,逐步缩小故障范围,排除故障。

数控机床故障诊断方法范文3

    [论文摘要]数控机床故障的诊断是数控机床维修的关键。一般来说,随着故障类型的不同,采取的故障诊断的方法也就不同。本文从数控机床故障诊断的内容、原则、方法等方面入手来简要阐述一下数控机床故障的诊断方法。

    系统可靠性是指数控系统在规定的条件和规定的时间内完成规定功能的能力。故障是指系统在规定的条件和规定的时间内失去了规定的功能。数控机床是个很复杂的大系统,它涉及光、机、电、液、气等很多技术,发生故障是难免的。机械磨损、机械锈蚀、机械失效、插件接触不良、电子元器件老化、电流电压波动、温度变化、干扰、噪声、软件丢失或本身有隐患、灰尘、操作失误等都可导致数控机床出故障。

    一、数控机床故障诊断内容

    故障诊断的内容:

    1) 动作诊断:监视机床各动作部分,判定动作不良的部位。诊断部位是ATC、APC和机床主轴。2) 状态诊断:当机床电机带动负载时,观察运行状态。3) 点检诊断:定期点检液压元件、气动元件和强电柜。4) 操作诊断:监视操作错误和程序错误。5) 数控系统故障自诊断:不同的数控系统虽然在结构和性能上有所区别,但随着微电子技术的发展,在故障诊断上有它的共性。

    二、数控机床故障诊断原则

    在故障诊断时应掌握以下原则:

    (1)先外部后内部 数控机床是集机械、液压、电气为一体的机床,故其故障的发生也会由这三者综合反映出来。维修人员应先由外向内逐一进行排查,尽量避免随意地启封、拆卸,否则会扩大故障,使机床大伤元气,丧失精度,降低性能。

    (2)先机械后电气一般来说,机械故障较易发觉,而数控系统故障的诊断则难度较大些。在故障检修之前,首先注意排除机械性的故障,往往可达到事半功倍的效果。

    (3)先静后动先在机床断电的静止状态,通过了解、观察测试、分析确认为非破坏性故障后,方可给机床通电。在运行工况下,进行动态的观察、检验和测试,查找故障。而对破坏性故障,必须先排除危险后,方可通电。

    (4)先简单后复杂当出现多种故障互相交织掩盖,一时无从下手时,应先解决容易的问题,后解决难度较大的问题。往往简单问题解决后,难度大的问题也可能变得容易。

    三、数控机床故障诊断的方法

    1.直观检查法它是维修人员最先使用的方法。在故障诊断时,首先要询问,向故障现场人员仔细询问故障产生的过程、故障表象及故障后果,并且在整个分析、判断过程中可能要多次询问;其次是仔细检查,根据故障诊断原则由外向内逐一进行观察检查。总体查看机床各部分工作状态是否处于正常状态(例如各坐标轴位置、主轴状态、刀库、机械手位置等),各电控装置(如数控系统、温控装置、装置等)有无报警指示,局部特别要注意观察电路板的元器件及线路是否有烧伤、裂痕等现象、电路板上是否有短路、断路,芯片接触不良等现象,对于已维修过的电路板,更要注意有无缺件、错件及断线等情况;再次是触摸,在整机断电条件下可以通过触摸各主要电路板的安装状况、各插头座的插接状况、 各功率及信号导线(如伺服与电机接触器接线)的联接状况等来发现可能出现故障的原因。

    2.仪器检查法使用常规电工仪表,对各组交、直流电源电压,对相关直流及脉冲信号等进行测量,从中找寻可能的故障。例如:用万用表检查各电源情况,以及对某些电路板上设置的相关信号状态测量点的测量,用示波器观察相关的脉动信号的幅值、相位甚至有、无,用PLC 编程器查找PLC程序中的故障部位及原因等等。

    3.功能程序测试法 功能程序测试法是将数控系统的G、M、S、T、F功能用编程法编成一个功能试验程序,并存储在相应的介质上。在故障诊断时运行这个程序,可快速判定故障发生的可能起因。功能程序测试法常应用于以下场合:

    1)机床加工造成废品而一时无法确定是编程操作不当、还是由于数控系统故障引起的。

    2)数控系统出现随机性故障。一时难以区别是外来干扰,还是系统稳定性差时。

    3)闲置时间较长的数控机床在投入使用前或对数控机床进行定期检修时。

    4.信号与报警指示分析法

    1)硬件报警指示这是指包括伺服系统、数控系统在内的各电子、电器装置上的各种状态和故障指示灯,结合指示灯状态和相应的功能说明便可获知指示内容及故障原因与排除方法。

    2)软件报警指示如前所述的系统软件、PLC程序与加工程序中的故障通常都设有报警显示,依据显示的报警号对照相应的诊断说明手册便可获知可能的故障原因及故障排除方法。

    5.接口状态检查法现代数控系统多将PLC集成于其中,而CNC与PLC之间则以一系列接口信号形式相互通讯联接。有些故障是与接口信号错误或丢失相关的,这些接口信号有的可以在相应的接口板和输入/输出板上有指示灯显示,有的可以通过简单操作在CRT屏幕上显示,而所有的接口信号都可以用PLC编程器调出。这种检查方法要求维修人员既要熟悉本机床的接口信号,又要熟悉PLC编程器的应用。

    6.参数检查法 数控系统、PLC及伺服驱动系统都设置许多可修改的参数以适应不同机床、不同工作状态的要求。这些参数不仅能使各电气系统与具体机床相匹配,而且更是使机床各项功能达到最佳化所必需的。因此,任何参数的变化(尤其是模拟量参数)甚至丢失都是不允许的;而随机床的长期运行所引起的机械或电气性能的变化会打破最初的匹配状态和最佳化状态。此类故障需要重新调整相关的一个或多个参数方可排除。这种方法对维修人员的要求是很高的,不仅要对具体系统主要参数十分了解,既知晓其地址熟悉其作用,而且要有较丰富的电气调试经验。

    7.试探交换法即在分析出故障大致起因的情况下,维修人员可以利用备用的印刷电路板、集成电路芯片或元器件替换有疑点的部分,从而把故障范围缩小到印刷线路板或芯片一级。采用此法之前应注意以下几点:

    1)更换任何备件都必须在断电情况下进行。

    2)许多印制电路板上都有一些开关或短路棒的设定以匹配实际需要,因此在更换备件板上一定要记录下原有的开关位置和设定状态,并将新板作好同样的设定,否则会产生报警而不能工作。

    3)某些印制电路板的更换还需在更换后进行某些特定操作以完成其中软件与参数的建立。这一点需要仔细阅读相应电路板的使用说明。

    4)有些印制电路板是不能轻易拔出的,例如含有工作存储器的板,或者备用电池板,它会丢失有用的参数或者程序。必须更换时也必须遵照有关说明操作。

    鉴于以上条件,在拔出旧板更换新板之前一定要先仔细阅读相关资料,弄懂要求和操作步骤 之后再动手,以免造成更大的故障。

    8.测量比较法CNC系统生产厂在设计印刷线路板时,为了调整和维修方便,在印刷线路板上设计了一些检测量端子。维修人员通过检测这些测量端子的电压或波形,可检查有关电路的工作状态是否正常。但利用检测端子进行测量之前,应先熟悉这些检测端子的作用及有关部分的电路或逻辑关系。

    9.特殊处理法 当今的数控系统已进入PC级、开放化的发展阶段,其中软件含量越来越丰富,有系统软件、机床制造者软件、甚至还有使用自己的软件,由于软件逻辑的设计中不可避免的一些问题,会使得有些故障状态无从分析,例如死机现象。对于这种故障现象则可以采取特殊手段来处理,比如整机断电,稍作停顿后再开机,有时则可能将故障消除。维修人员可以在自己的长期实践中摸索其规律。

    参考文献:

数控机床故障诊断方法范文4

关键词:数控机床;故障诊断;维修

Abstract: along with the rapid economic development of our country, to modern electronic technology and automation technology as the foundation of the numerical control technology, in every field of social production has applied more and more. For the current social production activities if, for CNC machine is out of order, will directly affect the efficiency of the production activities, so it is necessary to numerical control machine tool equipment necessary fault diagnosis and maintenance, make numerical control machine tool better play its role. This paper from the numerical control machine tool the structure of the system and characteristics, this paper expounds the numerical control machine tool equipment fault diagnosis and the general procedure of the commonly used method.

Key words: the numerical control machine tools; Fault diagnosis; maintenance

中图分类号:U226.8+1文献标识码:A 文章编号:

一、数控机床系统的组成和特点

当前世界上的数控机床系统种类多样,并且各自具备自己的特点,不同数控机床生产厂家的产品,设计理念和设计思想也存在很大的不同。但是不管是哪一种系统,它的基本构造都是大致相同的。一般来说,数控机床系统主要由控制系统、伺服系统以及位置检测系统组成。一般的运转过程是由控制系统来对工件的相应程序进行运算,并向伺服系统发出相应的控制指令,然后伺服系统会对控制指令进行分析,并由相应的电机来控制机械的运转,最后由位置监测系统对机械的运动位置和速度进行监测,并将相关信息传递给控制系统,并由控制系统进行进一步的指令修正。这就完成了整个数控机床系统的正常运转。

由于数控机床的特殊性以及使用重要性,相应的系统应该具备以下的特点:整个系统的运转应该可靠性较强;对环境的适应能力一定要强,因为数控机床常常处在高温、潮湿、振动等环境下工作;系统适应频繁启动关闭的运行状态。

三、数控机床故障诊断的基本步骤

当使用的数控机床出现故障时,相关人员应该保持冷静,然后对故障的产生原因进行细致的分析,进而找到相应的、适当的故障诊断方法,最后再进行仔细认真的故障诊断。一般可以采用下面的步骤来进行故障的诊断。

1、了解

在数控机床出现故障时,首先要做的就是对故障发生的情况进行全面的了解,然后对数控机床进行初步的故障诊断,仔细观察指示屏上显示的内容、各种故障指示灯等,然后利用观察、触摸、气味等方法对数控机床的常见故障进行判断,如热继电器、空气断路器有没有脱扣现象,熔丝有没有出现损坏、断裂现象,有关插接件有没有出现松动现象。虽然这些故障类型比较简单易见,但是对数控机床故障诊断有着重要的作用。

2、分析

当数控机床出现故障时,首先对机床进行断电,然后进行故障分析,在确认通电后不会产生更大故障时,进行运转状态下的故障诊断和观察,从而获得可能导致故障产生的各种因素,为接下来的故障排除确定大的方向和手段。

3、查找

在进行故障原因查找时,应该遵循由表及里、由易到难的原则,也就是说,首先对容易拆卸和触及的位置进行检查,然后再进行那些拆除量较大和不易触及的部位检查。

三、数控机床故障诊断的常用方法

1、直接观察法

通过直接的感官来进行数控机床的故障查找,是一种最为简便的故障诊断方法,而且在实际操作中也有着非常实用的效果。

(1)利用视觉来对数控机床的故障原因进行查找,最为常见的观察就是:检查数控机床中是否出现机械性的损伤;线路是否出现烧焦变形现象;各类电阻有没有发现变色或烧毁现象;机床内部运转部件是否出现掉落物或流出物;一些保护性的部件是否出现跳闸;熔断器是否出现熔断现象;机床内部部件有没有出现松动或脱落的现象;操作者编写的控制程序是否正确等等。

(2)对数控机床的内外部进行气味检查,当数控机床运转时发生摩擦现象时,会出现相应的烧焦气味;线路灼烧或漏电时也会出现一定的焦糊气味,同时还可能伴随着放电的声音。

(3)利用手来进行数控机床相关部位的振动检查,可以判断出设备是否出现故障。此外,还可以通过接触来感知设备的运转温度是否处于正常的状态下。

2、报警信息诊断法

随着自动化技术的不断发展,现代数控机床设备的自诊断功能不断强大,很多的简单故障,数控机床都可以自动诊断出来,并能根据故障原因进行简单的处理。当故障发生时,相应的故障警报会自动进行报警,并指出故障原因。

3、机床参数检测法

对于数控机床而言,系统内部的参数丢失或设置不恰当都可能引起相应的故障发生。因此当数控机床出现故障时,应该对系统的参数设置进行核对。比方说在测量机床的往返精度时发现,X轴在从正向向反向转换时,让其走0.01mm,而从千分表上没有变化,X轴在从反向到正向转换时,也是如此。因此怀疑滚珠丝杆的反向间隙有问题,从系统说明书上可以得知,数控系统本身对滚珠丝杆的反向间隙具有补偿功能.根据说明书调整机床数据反向间隙的补偿数值,使机床恢复了正常工作。

4、测量法

测量法在诊断数控机床故障时是一种较为常见的方法,它主要是利用相序表、示波器等仪器对机床的各种线路进行检测。比方说,在对数控机床的三相电进行检查时,可以利用相序表,如果三相电的相序正确的话,那么相序表会按照顺时针的方向进行旋转。另外,还可以使用双通道示波器进行检查,当三相电相序正确时,不同两厢电之间的波形相位的差值为120°。

5、备件置换法

对于一些涉及控制系统的故障.有时不容易确认是哪一部分有问题,在确保没有进一步损坏的情况下。对怀疑有故障的部件或元、器件用相同的备件或同型号机床j:或本机床上其他部分的相同部件或元、器件来替换,以确定是否发生故障。一台采用FANUC OTC系统的数控车床启动后,数控系统屏幕没有显示,检查数控装置,发现所有的指示灯都不亮,检查其卜所有的熔断器,都没有损坏。检查其输入电源也正常没问题,可以肯定是电源模块出现了问题,更换系统电源后机床恢复了正常使用。

6、原理分析法

原理分析法是根据数控机床的组成原理,从逻辑上分析各点的逻辑电平和特征参数,从各部件的工作原理着手进行分析和判断,以确定故障部位的诊断方法。这种方法的运用,要求检修人员对整个数控系统和每个部件的工作原理都有清楚的、较深的了解,才能对故障部位进行定位。

总之,现实的数控机床设备越来越复杂,功能越来越多样,同时出现的故障类型也是越来越多样。但是只要相关的人员不断进行学习,从实际中吸收相关的经验,结合多样化的诊断方法,相信数控机床的故障维修问题也会得到一个合理的解决。

参考文献

1、郑伟,浅谈数控机床常见故障诊断与维修,科技信息(学术版),2008(2)

2、杨金荣,浅谈数控机床的故障诊断与维修,中国科技博览,2010(21)

数控机床故障诊断方法范文5

在工业化的持续发展过程中,各行各业的竞争越来越激烈。为了推动企业的进一步发展,所有企业都在进行技术革新。数控机床是机械生产过程中的通用装置,由气压、油压、机床、电控马达、自动控制等组合而成[1]。自20世纪中叶数控技术的出现以来,数控机床给机械制造业带来了革命性的变化。数控机械加工的特点是灵活、高精度、高生产性、降低操作员的劳动密集度、改善劳动条件、促进生产管理的现代化、提高经济效益。数控技术应用的关键在于开发高速、高精度、高稳定性的高科技设备。在现有的处理装置中,只有数控机床可以承担这个沉重的责任。

因此,为了实现实际的快速切削,数控机床必须朝着高速化、高精度、灵活性、开放控制系统、控制系统辅助软件、工厂生产数据管理的方向移动,以满足现代制造业快速发展的需要。为了完全发挥数控机床的最大价值,我们必须关注数控机床的故障排除问题,了解数控机床的一般机械问题,掌握故障诊断和维护方法,充分发挥数控机床的最大适用价值,提高故障诊断效率,利用科技驱动提高生产效率,确保工业生产活动顺利发展。

二、国内外发展现状

2.1设备故障诊断的国内外研究现状

(1) 国外故障诊断的研究现状

设备状态监测与故障诊断在美国、日本、英国等国家得到了高度重视, 各国竞相开展相关技术。美国是最早开展设备故障诊断工作的国家之一, 自1961 年美国的阿波罗计划执行后, 由设备出现的一系列的设备故障造成的悲剧促使了美国机械故障预防小组 (MFPG) 的成立, 开始对故障诊断技术进行有组织、有计划的研究。随着故障诊断技术的发展, 美国西屋公司、Bently、HP等公司的监测技术代表了当今诊断技术的最高水平, 其完善的监测功能和较强的诊断功能使之广泛应用于宇宙、军事、化工等领域;上世纪六七十年代, 英国以R.A.Collacott为首的机械保健中心和状态监测协会开始对故障诊断技术进行研究, 其在汽车、摩擦磨损、飞机发动机等方面的监测和诊断研究对国内外故障诊断的研究有着指导性意义;日本开展的诊断技术研究工作主要集中在两个层面:一是高等院校, 比如在东京大学、京都大学、早稻田大学高等学府均发表了不少基础性的研究报告;二是在在企业, 如三菱重工的“机械保健系统”对汽轮发电机组故障监测和诊断起到了推动作用, 日本的故障诊断技术在钢铁、化工、铁路等行业发展较快;欧洲其他国家的故障诊断技术在某一方面具有特色或占有领先地位, 瑞典SPM公司的轴承监测技术、AGEMA公司的红外热像技术、挪威的船舶诊断技术、丹麦的B&K公司的振动及噪声监测技术等技术都各有千秋。

(2) 国内故障诊断研究现状

国内关于故障诊断技术发展起步晚, 始于70 年代末, 而真正起步应该从1983 年南京首届设备诊断技术专题座谈会开始, 国家政府有关部门对关于故障诊断技术的研究给予重视和支持, 尤其在技术引进、技术改造、科研开发等方面给予高度重视。近年来, 国内包括西安交通大学, 浙江大学, 北京理工大学、清华大学、东北化工大学、中国科学院等在内的众多大专科院校、科研机构、学术机构等都在故障诊断方面做了大量的研究。这些研究都注重结合当代各种先进故障诊断技术, 应用于很多大型设备中,并取得了巨大的成果。透平发电机、压缩机的诊断技术已列入国家重点攻关项目并受到高度重视;西安交通大学研发的“大型旋转机械计算机状态监测与故障诊断系统”,哈尔滨工业大学的“机组振动微机监测和故障诊断系统”;东北大学设备诊断工程中心的“轧钢机状态监测诊断系统”以及“风机工作状态监测诊断系统”均取得了可喜的成果, 为国内故障诊断的发展奠定了坚实的理论基础和实践经验。与国外理论基础雄厚、研究深入的故障诊断技术相比, 我国的设备状态监测与故障诊断技术水平同发达国家的差距已大大缩短, 但仍然存在一定差距。

2.2 故障诊断系统的研究现状

随着智能诊断系统的发展, 基于知识的诊断推理目前是国内外研究的热点, 对智能故障诊断推理技术及用于智能推理的知识表示方式的研究取得了很多成果, 另外, 随着网络技术、关于信息同步相关技术的研究也迅速发展起来, 随着故障诊断研究与发展, 出现了大量故障诊断系统应用与数控机床诊断故障诊断模式, 先后出现的有现场诊断模式和远程诊断模式, 现场诊断模式当故障发生后, 企业必须派售后服务人员到现场故障诊断, 国内多数企业对故障诊断仍然依靠传统的故障诊断维修方式;远程网络化故障诊断在数控机床领域得到很深入的研究。

故障诊断经历了三个阶段, 即人工诊断, 常规诊断以及智能诊断, 智能诊断是目前国内外研究的热点, 关于智能诊断诊断的研究国内外专家学者都进行了大量的理论和实验研究,得到了许多有价值的成果, 基于人工神经网络、模糊模型、粗糙集理论、故障树等诊断方法以及基于本体、规则推理RBR和基于案例推理CBR的专家系统在数控机床故障诊断中得到很好地发展, 并都取得了一定的成果, 其中基于知识的专家系统在人工智能中的应用最广泛[2]。为了提高故障诊断的效率和精度, 多方法集成的故障诊断引起了人们对高度重视, 将RBR和CBR串行结合, 利用一种推理方式来解决先导方式推理产生的问题, 当两者都得不到故障诊断的结果时, 采用人工诊断得出故障诊断结果。

智能诊断是基于知识的诊断方法, 因此智能诊断的发展与知识的表示密切相关, 关于故障知识表示的研究主要有基于规则、框架、对象等方式, 对基于本体表示的方式进行了研究。随着分布式计算机管理的出现, 一个关键的技术——信息同步技术也有了广泛的研究, 提出了一个基于Petri网的信息同步模型, 提出了基于该模型的信息预取、状态估算、系统时间同步等控制策略研究了分布式虚拟现实系统的信息同步, 信息同步在分布式环境下多媒体的得到研究。

三、 数控机床机械故障诊断方法

3.1 人工诊断法

人工诊断方法是基于操作员的经验,分为外观故障检查、软失误检查、连接器接线、电缆检查、机床数据检查等。外观检查是操作员使用自己的嗅觉,视觉等,判断机床是否故障。软失误检查法是指操作员使用外观检查方法确认机床最近的维护记录,了解最近的机床工作,确认机床的潜在危险性。连接器接线及电缆检查方法是指使用确认机床各部分连接的指示的操作员。同时,需要仔细检查零件之间的配线连接。机床的数据检查是通过分析机床的故障现象,参照机床相关的故障数据来检查和纠正机床数据。但是,这些方法的缺点是带有强烈的主观性,不可靠的诊断结果和低诊断效率。

3.2 智能诊断法

目前,数控机床故障诊断的主流方法是在故障诊断领域应用计算机、人工智能等技术的智能诊断方法[3],主要分为以下几种方法:

(1)容错树分析法:容错树分析法是分析和调查使机器工具的故障从本地逐渐减少的原因。容错树分析方法不仅检查了系统软件的故障和硬件故障,而且检查了由一个组件引起的系统故障的原因,还可以检查人的因素也可以分析由两个以上的组件引起的系统故障的原因。这是一种综合考虑系统故障原因的分析方法。[4]但是缺点是故障机制不明确,构成故障树的冗余量复杂而困难,适合以往的故障诊断,找不到各个特殊故障。

(2)单个功能监测方法:单个功能监测方法在操作过程中收集机床的各个部分的信号,例如温度、功率、声发射、振动等,建立相应的数学模型,分析信号提取故障特性信号[5]。然后,判断机床是否有故障和断层的位置。其缺点是传感器容易受到环境干扰的接收故障信号复杂,不全面,信号处理效率不高。容易弄错或判断机床的故障。

(3)模式识别和训练模型的应用:模式识别和训练模型的应用是建立数控机床的故障样品库,使用数控机床的已知故障因子建立实验样品,神经网络的训练支持向量机和其他模型以及模式识别和训练模型的应用:模式识别和训练模型的应用意味着使用数控机床已知的故障因素建立数控机床的故障样本库。我们训练了神经网络和支持向量机模型。

四、数控机床机械故障类型

4.1主轴运行中的故障

(1)精度和设计不符合相关要求。

数控机床对精度要求很高。如果精度在处理过程中不满足所需条件,主轴总是处于影响状态,结果无法保证后续安装的牢固性[6]。数控机床对精度要求很高。如果精度在处理过程中不满足所需条件,主轴总是处于影响状态,结果无法保证后续安装的牢固性。

(2)过度的切削振动。

数控机床的运行中发生的结构问题主要有:无法确保轴线,中间距离过大,主轴承和主轴的安装不符合标准要求,主轴箱的柱子和架子分离等[7]。为了解决这些问题,有必要针对实际情况采取相应对策,例如及时更换传送带或轴承。

4.2运动系统的故障

(1)滚珠丝杠的副噪声的问题。

滚珠丝杠滚动球的损伤、滚珠丝杠的效果、螺丝支撑轴承的损伤等滚珠丝杠的噪音有很多原因[7]。鉴于这样的缺点,为了确保轴承部的紧固,必须配置特别的人员进行轴承盖的调整等维护管理。另外,要做好和维护工作,及时更换新的球。

(2)滚珠丝杆的灵敏度在运行中不好。

此类问题出现的原因为其负载过高,致使导轨以及丝杠无法处于平行状态。针对此类问题,应调整对轴向的间隙,强化滚珠丝杠的负载力,确保导轨以及丝杠处于平行的状态。

4.3导轨运行中的故障

(1)轨道磨削不良。如果数控机床损坏,机器的床位和基础会受到装置长期操作的影响。另外,如果在短时间内适用数控机床的话,那又会造成损失。由于这样的问题[8],在导轨的维护管理中必须做良好的工作,使用用于维持数控机床的油,保证良好的运转,避免损伤问题。

(2)运行导轨时,存在零部件涂抹效果差等问题。考虑到这种问题,通过结合现实,可以分析特定的问题,控制容许度,选择质量好的部件。

五、研究难点及可能的解决方案

数控机床是复杂而精密的大型设备,受各种因素的影响,有故障倾向。操作员不恰当工作时,工件加工困难,处理环境恶劣,数控机床就会产生各种故障。从目前的研究观点来看,人工诊断法的效率低,精度低,不能及时准确地找到故障部位,因此逐渐被取代。智能诊断法因更有效的诊断速度和准确可靠的诊断效果而受到越来越多的企业的青睐。目前,智能诊断技术尚未成熟,但还有很多缺点,可以从以下几方面进行改进:

(1)为了解决构建容错树的复杂和困难的问题,可以有机地集成模糊理论,专家系统和容错树。首先,使用减少现有知识基础的规则数,提高知识基础知识应用的灵活性和适应性的模糊推论法[9]。然后,建立容错树与专家系统知识基础的关系,通过推论来确定系统的故障模式。

(2)为了解决单功能监视方式的传感器容易受到环境的干扰,收集的信号不完整的问题,采用了通过多个传感器收集机床各部分操作信息的多传感器融合技术。另外,通过合成多个信息源来改善故障判定的概率,建立信息处理的有效数学模型,提高信号处理的效率,提取正确的故障信号特征。

(3)为了应用模式识别和训练模型,解决找不到机床故障部位的少数样品的问题,可以使用多方法融合故障诊断,即机床故障的多方法综合诊断。首先,创建共享故障样本数据库,使用训练模型来判断机床是否出现时间故障[10]。接着,使用功能监视法和fort树法等对应的方法来确定机床的故障部位。这样,可以高效准确地诊断机床的故障。

六、未来的发展趋势

数控机床今后的发展会更加蓬勃,而数控机床的故障诊断技术在其中发挥着重要作用[11]。在人工智能的持续发展中,智能诊断技术会更加成熟,识别结果会更加准确。数控机床的故障诊断技术今后的发展,可从以下几个方面入手:

(1)建立故障诊断系统的知识结构和知识基础。

(2)开发和研发综合多源故障信息的高效信息处理技术,及时准确地提取机床故障特性。

数控机床故障诊断方法范文6

关键词:数控机床;故障诊断;处理

引言

随着我国加工制造业的发展,以微电子技术为基础,以大规模集成电路为标志的数控机床在我国得到了广泛的应用,并给制造业带来了较高的经济效益。数控机床中,大部分的故障都有据可查,而有些故障CNC系统提供的报警信息相对比较含糊甚至根本没有任何征兆,甚至出现故障的周期较长,没有规律,不定期,这些疑难故障给查找分析带来了很多困难。对于这类数控机床故障,需要对具体故障情况做具体检查和分析,逐步缩小故障范围,而且检查时特别需要机械、电气、液压等方面进行综合判断,不然就很难快速、正确地找到故障的真正原因。

1.数控机床故障的类型

数控机床是机电一体化的产物,技术先进、结构复杂。数控机床的故障也是多种多样、各不相同,故障原因一般都比较复杂,这给数控机床的故障诊断和维修带来不少困难。虽然数控机床有很多种,但数控机床发生的类型可分为两类:系统性故障、随机故障。

系统性故障是指只要满足一定的条件,机床或者数控系统就必然出现的故障。例如电网电压过高或者过低,系统就会产生电压过高报警或者过低报警;切削量过大时,就会产生过载报警等。随机故障是指在同样条件下,只偶尔出现一次或者二次的故障。要想人为地再现同样的故障则是不容易的,有时很长时间也很难再遇到一次。这类故障的分析和诊断是比较困难的。一般情况下,这类故障往往与机械结构的松动、错位,数控系统中部分元件工作特性的漂移、机床电气元件可靠性下降有关。

2.数控机床的故障诊断方法

2.1动态梯形图诊断法

通过动态梯形图信号的明暗或颜色的变化来判定故障的具体部位,这种方法对机床厂家编制的报警号的故障诊断特别有效,但要求维修者必须理解并掌握PMC具体控制原理,新型PMC还具有信号跟踪功能和强制功能,可以帮助分析故障出现前后系统输入/输出信号状态的变化情况及信号无效是由系统内部还是由系统外部信号导致的,从而更加完善了这种诊断方法。

2.2自诊断功能法

数控系统的自诊断功能,已成为衡量数控系统性能特性的重要指标,数控系统的自诊断功能随时监视数控系统的工作状态。一旦发生异常情况,立即在CRT上显示报警信息或用二极管指示故障的导致起因,这是维修中最有效的一种方法。通常有硬件报警指示和软件报警指示两种。硬件报警指示:这是指包括数控系统、伺服系统在内的各电子电器装置上的各种状态和故障指示灯,结合指示灯状态和相应的功能说明便可获知指示内容及故障原因与排除方法。软件报警指示:如前所述的系统软件、PLC程序与加工程序中的故障通常都设有报警显示,依据显示的报警号对照相应的诊断说明手册便可获知可能的故障原因及故障排除方法。

2.3仪器检查法

仪器检查法使用常规电工仪表,对各组交、直流电源电压,对相关直流及脉冲信号等进行测量,从中找寻可能的故障。例如用万用表检查各电源情况,及对某些电路板上设置的相关信号状态测量点的测量,用示波器观察相关的脉动信号的幅值、相位甚至有无,用PLC编程器查找PLC程序中的故障部位及原因等。

2.4功能参数封锁法

所谓参数封锁法就是通过修改系统参数来判定故障是系统内部故障还是外部故障。数控机床某些控制功能由系统参数设定,通过参数维修数控机床是一种高效快捷的方法。如某一数控机床进给采用全闭环(位置检测采用光栅尺)控制,加工中出现了位置反馈信号断线报警,故障原因可能是光栅尺本身断线或系统内部检测电路故障。通过重新设定系统控制功能参数(FANUC-0i系统为1815#1设为“0”)及伺服设定参数,使系统由原来的全闭环控制改为半闭环控制(通过参数封锁了光栅尺),数控机床可以正常运行,则故障为光栅尺本身故障。最后仔细检测发现光栅尺内部有油污导致反馈信号不良。

3.数控机床的处理及维护

在现场维修结束后,应认真填写维修记录,列出有关必备的备件清单,建立用户档案。对于故障时间、现象、分析诊断方法、采用排故方法,如果有遗留问题应详尽记录,这样不仅使每次故障都有据可查,而且也可以不断积累维修经验。 对于数控机床来说,合理的日常维护措施可以有效预防和降低数控故障的发生机率。首先,针对每一台机床的具体性能和加工对象制定操作规程,建立工作、故障、维修档案是很重要的。其次,在一般的工作车间的空气都含有油雾、灰尘甚至金属粉末之类的污染物,一旦落在数控系统内的印制或线路电子器件上,就会引起元器之间绝缘电阻下降,甚至导致元器件及印制线路受到损坏。所以除非是需要进行必要的调整及维修,一般情况下不允许随便开启柜门,更不允许在使用过程中敞开柜门。数控机床目前一般都会采用专用稳压电源,这样提高电源负载能力。遇到强干扰时,可以采用接地,利用电容滤波法抑制高频干扰,通过这些预防性措施减少供电开关电源的故障。

4.结束语

总之,对于数控机床的调试和维修,重要的是吃透控制系统的PLC梯形图和系统参数的设置。出现问题后,应首先判断是强点问题还是系统问题,是系统参数问题还是PLC梯形图问题。要善于利用系统自身的报警信息和诊断画面。只要遵从以上原则,一般的数控故障都可以及时排除。

参考文献:

[1]徐玉秀等.复杂机械故障诊断的分形与小波方法.北京:机械工业出版社,2003