数学建模的方法和步骤范例6篇

前言:中文期刊网精心挑选了数学建模的方法和步骤范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

数学建模的方法和步骤

数学建模的方法和步骤范文1

【关键词】数学模型 数学建模 创新意识

小而言之,数学中的各种基本概念,都是以各自相应的现实原型作为背景而抽象出来的数学概念。各种数学公式、方程式、定理等等都是一些具体的数学模型。大而言之,作为用数学方法解决实际问题的第一步,数学建模有着与数学同样悠久的历史。两千多年以前创立的欧几里德几何,17世纪发现的牛顿万有引力定律,都是科学发展史上数学建模的成功范例。

一、数学建模的内涵

数学的实践性、社会性意义体现为:从事实际工作的人,能够善于运用数学知识及数学的思维方法来分析他们每天面临的大量实际问题,并发现其中可以用数学语言来描述的关系或规律,并以此作为指导与解决问题的基础与手段。用数学语言来描述的“关系或规律”可称之为数学模型,建立这个“关系或规律”的过程即数学建模。

从定义的层面上来说,所谓数学建模就是分析和研究一个实际问题时,从定量的角度出发,基于深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学符号和语言,把实际问题表述为数学式子,即数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验,这个建立数学模型的全过程就称为数学建模。

二、数学建模的操作过程

数学建模的操作过程包括七个渐进及循环的步骤,即模型准备模型假设模型建立模型求解模型分析模型检验模型应用。

其中步骤一、模型准备,即了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数学语言来描述问题。步骤二、模型假设,即根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。步骤三、模型建立,即在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构(尽量用简单的数学工具)。步骤四、模型求解,即利用获取的数据资料,对模型的所有参数做出计算(或近似计算)。 步骤五、模型分析,即对所得的结果进行数学上的分析。步骤六、模型检验,即将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。步骤七、模型应用,即应用方式因问题的性质和建模的目的而异。

三、数学建模对中学数学教学的现实意义

1.有利于培养学生数学应用意识

从小学到高中,学生经过十年来的数学教育,一定程度上具备了基本数学理论知识,但是接触到实际问题却常常表现为束手无策,灵活地、创造地运用数学知识解决实际问题的能力较低,而数学建模的过程,正是实践-----理论-----实践的过程,是理论与实践的有机结合,强化数学建模的教学,不仅能使学生更好的掌握数学基础知识,学会数学的思想、方法、语言,也是让学生树立正确的数学观,增强应用数学的意识,全面认识数学及其与科学、技术、社会的关系,提高分析问题和解决问题的能力。

2.有利于培养学生主体性意识

传统教学法一般表现为以教师为主体的满堂灌输式的教学,强化数学建模的教学,可极大地改变教学组织形式,教师扮演的是教学的设计者和指导者,学生是学习过程中的主体。由于要求学生对学习的内容进行报告、答辩或争辩,因此极大地调动了学生自觉学习的积极性,根据现代建构主义学习观,知识不能简单的地由教师或其他人传授给学生,而只能由学生依据自身已有的知识和经验主动地加以建构,知识建构过程中有利于学生主体性意识的提升。

3.有利于培养学生创新意识

从问题的提出到问题的解决,建模没有现成的答案和模式。学生必须通过自己的判断和分析,小组队员的讨论,创造性地解决问题。数学建模本身就是给学生一个自我学习、独立思考、深入探讨的一个实践过程,同时也给了那些只重视定理证明和抽象逻辑思维、只会套用公式的学生一个全新的数学观念,学生在建模活动中有更大的自主性和想象空间, 数学建模的教学可以培养学生分析问题和解决问题的能力以及独立工作能力和创新能力。

数学建模的方法和步骤范文2

【关键词】高职数学;数学建模;教学

伴随着现代科学技术的迅猛发展,人们在解决各类实际问题时需更加精确化和定量化。特别是在计算机得到普及和广泛应用的今天,数学更深入地渗透到各种科学技术领域。马克思说过:“只有充分应用了数学的科学才是完美的。”数学建模正是从定性和定量的角度去分析和解决所遇到的实际问题,为人们解决实际问题提供一种数学方法、一种思维形式,因此越来越受到人们的重视。另一方面,高等职业教育的目的是培养面向生产、建设、管理、服务第一线的高等技术应用性专门人才,这就要求数学建模教学在高等职业学校的数学教学中必须得到充分的重视。

一、数学建模的概念和一般步骤

数学建模即从生活中抽象出数学问题,建立模型,利用数学软件或计算机技术求解,回到现实中进行检验,必要时修改模型使之更切合实际。建立数学模型的过程就称为数学建模。具体说,数学建模是用数学语言模拟现实的一个过程,把实际问题中某些事物的主要特征、主要关系抽象成数学语言,近似地反映客观事物的内在联系与变化过程,综合地运用各种数学方法和技巧去分析和解决实际问题。

数学建模的主要步骤一般分为:模型准备、模型假设、模型建立、模型求解、模型分析、模型检验、模型应用。

二、如何优化课堂建模教学

高等职业教学的教学特点要求数学教学也要一切从实际出发,而对数学建模的教学而言,笔者认为可从以下几个方面来优化课堂教学。

(一)创设情景,引出数学模型的现实意义

思维是由问题开始的,因此在教学中要激发学生的思维活动,让学生独立思考来寻求答案,发现要点,获得各种知识,这就需要安排适当的情境。例如为了讲解“二元一次不等式组与简单的线性规划问题”,我们可以先引入下面这样一个问题。

数学建模的方法和步骤范文3

【关键词】:高考应用题数学建模

在江苏数学高考题中,应用题每年都会有,大多处于第17题的位置(也就是解答题的第三题的位置,但也有时也会适当调整其位置,例如2009年高考题中应用题为第19题,南京市2012届高三二模中调到第18题。大多数情况下,从多高考卷的构成看,本题具有承上启下的作用,在本题之前的题目属于简单题,而之后的题目属于较难题,而本题正处于中档题,难度适中。

一、 高考中应用题的意义和作用

高考题为什么要设定应用题,主要是因为体现教育部高中数学课程标准中对数学建模与数学应用能力的考查,数学课程标准中明确指出,要发展学生的数学应用意识。

数学应用的巨大发展,是数学发展的显著特征之一。当今知识经济时代,数学正在从幕后走向台前,数学和计算机技术的结合使得数学能够在许多方面直接为社会创造价值,同时,也为数学发展开拓了广阔的前景。因此,高中数学在数学应用和联系实际方面需要大力加强。开展数学应用的教学活动符合社会需要,有利于激发学生学习数学的兴趣,有利于增强学生的应用意识,有利于扩展学生的视野。

而数学建模可以具体规范地展示数学的应用方法,体现数学在现实生产生活中的意义。

二、 解数学应用题目前存在的问题

在江苏目前的高考方案中,语文、数学和英语无疑处于非常重要的地位,一般而言,考生的语文和英语成绩会相对稳定一点,而数学成绩变化往往较大,当数学成绩的波动时,发挥较为平稳的学生往往能取得很好的成绩,而应用题在数学高考题的作用更是不可替代,如果失去应用题的分数,就会影响数学的成绩,从而影响整个高考的成绩。

而在高考中,主要存在的问题是学生解题能力不足,大题得分率不高,得分不多,解题不规范,缺少解题意识。究其原因,主要由以下几个方面:

1、考生对数学应用题有一种恐惧感;

2、考生没有掌握数学应用题求解的一般分析方法;

3、是考生的应试策略与表述方面还存在一些问题。

三、如何解决数学应用题教学的困扰

对于数学应用题的教学,很多教师在觉得比较麻烦,而对学生数学意识及数学思维方式的培养又比较困难。那么,在教学中,我们对于应用题与数学建模相关的内容应如何处理呢?

1、要重视数学模型及应用题的相关章节的教学

在数学教学中,有很多环节是和应用题相联系的,例如函数模型及应用,三角函数的应用,数列中的分期付款问题,不等式中基本不等式在实际生活中的运用,算法案例,统计与概率,导数的应用,等等,这些问题展示了数学的应用,在教学这些章节的时候,我们要注意认真仔细地教学,要引起重视,而在实际教学中往往不够重视,有时一带而过,有的教师甚至讲都不讲,但从最后高考的结果看,这其中就有很大的缺陷了,因此,我们不能等到高三的时候才对数学应用题加以重视,而是要在高一、高二时要对学生的数学应用意识打好基础,到高三时在进行相应的强化训练,这样就可以对数学应用题的整体教学有一个系统的安排,系统的做好数学应用题教学意识,强化背景知识的引入,使学生的成绩得到充分的提高。

2、重视用数学建模的方法来处理数学应用题

数学建模是一个比较规范科学的数学处理方式,解决数学应用题教学困扰突破口的重要方法就是要学会数学建模的数学思维方式。

一般来说,数学建模分析的步骤是:

1)读懂题目。应包括对题意的整体理解和局部理解,以及分析关系、领悟实质。 “整体理解”就是弄清题目所述的事件和研究对象; “局部理解”是指抓住题目中的关键字句,正确把握其含义; “分析关系”就是根据题意,弄清题中各有关量的数量关系; “领悟实质”是指抓住题目中的主要问题、正确识别其类型。

2)建立数学模型。将实际问题抽象为数学问题,建模的直接准备就是审题的最后阶段从各种关系中找出最关键的数量关系,将此关系用有关的量及数字、符号表示出来,即可得到解决问题的数学模型。

3)求解数学模型。根据所建立的数学模型,选择合适的数学方法,设计合理简捷的运算途径,求出数学问题的解,其别注意实际问题中对变量范围的限制及其他约束条件。

4)检验。既要检验所得结果是否适合数学模型,又要评判所得结果是否符合实际问题的要求,从而对原问题作出合乎实际意义的回答。

四、数学建模教学的实施步骤

数学建模的教学是一个系统的工程,不能一蹴而就,而我们数学建模的教学却需要一个长期的教学,对此,我们设想可以推广数学建模相关的校本课程开发,其中包括数学建模思维方式的培养和数学建模的相关步骤,可以与课本相关的章节联系到一起,也可以独立开设,一般可以这样安排:

第一阶段主要培养学生对数学模型的认识及对数学思维方式的培养。

我们主要以高一学生为研究对象,在课堂教学中给学生展示数学模型,重视此类课程的教学,如《函数模型及应用》。

第二阶段主要培养学生建模能力。

主要以高二学生为研究对象,教给学生数学建模的方法,例如在曲线方程的教学中,求曲线的轨迹,我们可以让学生建立直角坐标系,根据要求写成曲线满足的数学条件,再进行化简,得到曲线的方程,解答提出的问题。

第三阶段是综合提高的阶段。

我们以高三学生为研究对象,综合对学生的数学模型意识及建模能力的培养,以高考题及统测试题的应用题为模型,充分让学生建模解模,体会数学带给学生的能力的提高和用数学解决实际问题的快乐,让学生体会数学的价值。

参考文献

数学建模的方法和步骤范文4

【关键词】大学数学;微积分;数学建模

长期以来,微积分都是大学理工专业的基础性学科之一,也是学生普遍感觉难学的内容之一.究其原因,既有微积分自身属于抽象知识的因素,也有教学过程中方法失当的可能,因此寻找更为有效的教学思路,就成为当务之急.

数学教学中一向有建模的思路,中学教育中学生也接受过隐性的数学建模教育,因而学生进入大学之后也就有了基础的数学建模经验与能力.但由于很少经过系统的训练,因而学生对数学建模及其应用又缺乏必要的理论认识,进而不能将数学建模转换成有效的学习能力.而在微积分教学中如果能够将数学建模运用到好处,则学生的建构过程则会顺利得多.本文试对此进行论述.

一、数学建模的学习价值再述

从学生的视角纵观学生接受的教学,可以发现现在的大学生所经历的教学往往更多地将研究重心放在教学方式上,基础教育阶段经历过的自主合作探究的教学方式,成为当前大学生的主流学习方式.这种重心置于教学方式的教学思路,会一定程度上掩盖传统且优秀的教学思想,不幸的是,数学建模就是其中之一.大学数学教学中,数学建模理应彰显出更充分的显性价值.现以微积分教学为例进行分析.

大学数学教学中,微积分知识具有分析、解决实际问题的作用,其知识的建构也能培养学生的应用数学并以数学眼光看待事物的意识与能力,而这些教学目标的达成,离不开数学建模.比如说作为建构微积分概念的重要基础,导数很重要,而对于导数概念的构建而言,极值的教学又极为重要,而极值本身就与数学建模密切相关.极值在微积分教学中常常以这样的数学形式出现:设y=f(x)在x0处有导数存在,且f′(x)=0,则x=x0称为y=f(x)的驻点.又假如有f″(x0)存在,且有f’(x)=0,f″(x)≠0,则可以得出以下两个结论:如果f″(x)0,则f(x0)是其极小值.在纯粹的数学习题中,学生在解决极值问题的时候,往往可以依据以上思路来完成,但在实际问题中,这样的简单情形是很难出现的,这个时候就需要借助一些条件来求极值,而在此过程中,数学建模就起着重要的作用.譬如有这样的一个实际问题:为什么看起来体积相同的移动硬盘会有不同的容量?给定一块硬盘,又如何使其容量最大?事实证明,即使是大学生,在面对这个问题时也往往束手无策.根据笔者调查研究,发现学生在初次面对这个问题的时候,往往都是从表面现象入手的,他们真的将思维的重点放在移动硬盘的体积上.显然,这是一种缺乏建模意识的表现.

反之,如果学生能够洞察移动硬盘的容量形成机制(这是数学建模的基础,是透过现象看本质的关键性步骤),知道硬盘的容量取决于磁道与扇区,而磁道的疏密又与磁道间的距离(简称磁道宽度)有关,有效的磁道及宽度是一个硬盘容量的重要决定因素.那就可以以之建立一个极限模型,来判断出硬盘容量最大值.从这样的例子可以看出,数学建模的意识存在与否,就决定了一个问题解决层次的高低,也反映出一名学生的真正的数学素养.因而从教学的角度来看,数学建模在于引导学生抓住事物的关键,并以关键因素及其之间的联系来构建数学模型,从而完成问题的分析与求解.笔者以为,这就是包括数学建模在内的教学理论对学生的巨大教学价值.

事实上,数学建模原本就是大学数学教育的传统思路,全国性的大学生数学建模竞赛近年来也有快速发展,李大潜院士更是提出了“把数学建模的思想和方法融入大学主干数学课程教学中去”的口号,这说明从教学的层面,数学建模的价值是得到认可与执行的.作为一线数学教师,更多的是通过自身的有效实践,总结出行之有效的实践办法,以让数学建模不仅仅是一个美丽的概念,还是一条能够促进大学数学教学健康发展的光明大道.

二、微积分教学建模应用例析

大学数学中,微积分这一部分的内容非常广泛,从最基本的极限概念,到复杂的定积分与不定积分,再到多元函数微积分、二重积分、微分方程与差分方程等,每一个内容都极为复杂抽象.从学生完整建构的角度来看,没有一个或多个坚实的模型支撑,学生是很难完成这么多内容的学习的.而根据笔者的实践,基于数学建模来促进相关知识的有效教学,是可行的.

先分析上面的极限例子.这是学生学习微积分的基础,也是数学建模初次的显性应用,在笔者看来该例子的分析具有重要的奠基性作用,也是一次重要的关于数学建模的启蒙.在实际教学过程中,笔者引导学生先建立这样的认识:

首先,全面梳理计算机硬盘的容量机制,建立实际认识.通过资料查询与梳理,学生得出的有效信息是:磁盘是一个绕轴转动的金属盘;磁道是以转轴为圆心的同心圆轨道;扇区是以圆心角为单位的扇形区域.磁道间的距离决定了磁盘容量的大小,但由于分辨率的限制,磁道之间的距离又不是越小越好.同时,一个磁道上的比特数也与磁盘容量密切相关,比特数就是一个磁道上被确定为1 B的数目.由于计算的需要,一个扇区内每一个磁道的比特数必须是相同的(这意味着离圆心越远的磁道,浪费越多).最终,决定磁盘容量的就是磁道宽度与每个磁道上的比特数.

其次,将实物转换为数学模型.显然,这个数学模型应当是一个圆,而磁盘容量与磁道及一个磁道的容量关系为:磁盘容量=磁道容量×磁道数.如果磁盘上可以有效磁化的半径范围为r至R,磁道密度为a,则可磁化磁道数目则为R-ra.由于越靠近圆心,磁道越短,因此最内一条磁道的容量决定了整体容量,设每1 B所占的弧长不小于b,于是就可以得到一个关于磁盘容量的公式:

B(r)=R-ra・2πrb.

于是,磁盘容量问题就变成了求B(r)的极大值问题.这里可以对B(r)进行求导,最终可以发现当从半径为R2处开始读写时,磁盘有最大容量.

而在其后的反思中学生会提出问题:为什么不是把整个磁盘写满而获得最大容量的?这个问题的提出实际上既反映了这部分学生没有完全理解刚才的建模过程,反过来又是一个深化理解本题数学模型的过程.反思第一步中的分析可以发现,如果选择靠近圆心的磁道作为第一道磁道,那么由于该磁道太短,而使得一个圆周无法写出太多的1 B弧长(比特数),进而影响了同一扇区内较长磁道的利用;反之,如果第一磁道距离圆心太远,又不利于更多磁道的利用.而本题极值的意义恰恰就在于磁道数与每磁道比特数的积的最大值.通过这种数学模型的建立与反思,学生往往可以有效地生成模型意识,而通过求导来求极值的数学能力,也会在此过程中悄然形成.

又如,在当前比较热门的房贷问题中,也运用到微积分的相关知识,更用到数学建模的思想.众所周知,房贷还息有两种方式:一是等额本金,一是等额本息.依据这两种还款方式的不同,设某人贷款额为A,利息为m,还款月数为n,月还款额为x.根据还款要求,两种方式可以分别生成这样的数学模型:

x1=Am(1+m)n(1+m)n-1,

x2=Amemnemn-1.

显然,可以通过微积分的相关知识对两式求解并比较出x1和x2的大小,从而判断哪种还款方式更为合理.在这个例子当中,学生思维的关键点在于对两种还款方式进行数学角度的分析,即将还款的相关因子整合到一个数学式子当中去,然后求解.实际上本题还可以进一步升级,即通过考虑贷款利率与理财利率,甚至CPI,来考虑贷款基数与利差关系,以求最大收益.这样可以让实际问题变得更为复杂,所建立的数学模型与所列出的收益公式自然也就更为复杂,但同样能够培养学生的数学建模能力.限于篇幅,此不赘述.

三、大学数学建模的教学浅思

在实际教学中笔者发现,大学数学教学中,数学建模有两步必走:

一是数学建模本身的模式化过程.依托具体的教学内容,将数学建模作为教学重点,必须遵循这样的四个步骤:合理分析;建立模型;分析模型;解释验证.其中合理分析是对实际事物的建模要素的提取,所谓合理,即是要从数学逻辑的角度分析研究对象中存在的逻辑联系,所谓分析即将无关因素去除;建立模型实际上是一个数学抽象的过程,将实际事物对象抽象成数学对象,用数学模型去描述实际事物,将实际问题中的已知与未知关系转换成数学上的已知条件与待求问题;在此基础上利用数学知识去求解;解释验证更多的是根据结果来判断模型的合理程度.通常情况下,课堂上学生建立的模型有教师的判断作楸Vぃ因而合理程度较高,而如果让学生在课后采集现实问题并利用数学建模的思路去求解,则往往受建立模型过程中考虑因素是否全面,以及数学工具的运用是否合理等因素影响,极有可能出现数学模型不够精确的情形.这个时候,解释验证就是极为重要的一个步骤,而如果模型不恰当,则需要重走这四个步骤,于是数学模型的建立就成为一个类似于课题研究的过程,这对于大学生的数学学习来说,也是一个必需的过程.

二是必须基于具体知识去引导学生理解数学建模.数学建模作为一种数学思想,只有与具体实例结合起来才有其生命力.在微积分教学中之所以如此重视建模及应用,一个重要原因就是微积分知识本身过于抽象.事实表明,即使进入高校,学生的思维仍然不足以支撑这样的抽象的数学知识的构建,必须结合具体实例,让学生依靠数学模型去进行思考.因此,基于具体数学知识与实际问题的教学,可以让学生在知识构建中理解数学模型,在模型生成中强化知识构建,知识与数模之间存在着相互促进的关系,而这也是大学数学教学中模型应用的较好境界.

【参考文献】

数学建模的方法和步骤范文5

关键词:数学建模教学;渗透;建模类型

中图分类号:G427 文献标识码:A 文章编号:1992-7711(2014)01-049-1

一、在初中数学教学中渗透建模思想的方法和途径

1.精心设计教学情境,激发学生学习兴趣和求知欲。

以建模的视角来对待和处理教学内容,使学生从中体味所用的数学知识、方法和思想,学生头脑中储存一定数量的“基本模式”。

例1:在一个64个格子的棋盘中的第一格放下一粒米,在第二格子里放下两粒米,在第三格子里放下四粒米,然后在以后的每一个格子里都放进比前一格子多一倍的米,当64个格子放满了,将会有多少米呢?

学生会纷纷议论、猜想、估计,认为这些米不会太多。最后教师指出:这些米可以覆盖整个地球表面,全世界要几百年才能生产出来。结论一出,学生哗然一片,教师又接着指出:在学习了有理数的乘方后就可以很快算出结果。这时学生都流露出迫切希望学习的心情,由此引入“幂”这一数学模型,从而激发了学生学习数学的兴趣。

2.根据教材内容设置教学情境。

在教学中,组织学生积极参与对知识的学习和对问题的解决,引导学生参与探索、讨论,在这个过程中渗透数学建模思想,能够使学生初步体会数学建模思想,了解数学建模的一般步骤,进而培养学生用数学建模思想来处理实际中的某些问题,提高学生解决这些问题的能力,从而促进学生数学素质的提高。

例2:在“有理数的加法”这一节的实际教学中,教师可以给学生创设如下问题情境:“一位同学在一条东西向的跑道上,先走了20米,有走了30米,能否确定他现在位于原来位置的哪个方向,与原来位置相距多少?”

在学生回答完之后,就可以顺势介绍数学建模的数学思想和分类讨论的数学方法,并结合这个问题介绍数学建模的一般步骤:首先,由问题的意思可以知道求两次运动的总结果,是用加法来解答;然后对这个问题进行适当假设:1先向东走,再向东走;2先向东走,再向西走;3先向西走,再向东走;4先向西走,再向西走;接下来根据四种假设的条件规定向东为正,向西为负,建立数学模型——数轴,画出图形并把各种条件下的运动结果在数轴上表示出来,列出算式根据实际题意写出这个问题的结果,分别得出四个等式,最后引导学生观察上述四个算式,归纳出有理数的加法法则。这样一来不仅可以使学生学习有理数的加法法则,而且对数学建模有了一个初步印象,为今后进一步学习数学建模打下良好基础。

3.密切联系生活实际,强化学生学习动机。

数学建模的最大特点是联系实际。在学生学习数学建模过程中,多安排一些学生身边的或具有强烈时代意义的数学建模问题,让学生真正体验到数学建模学习的实用价值,从而强化学习动机,激发学习热情。从生活中的数学出发,强化应用意识。日常生活是应用数学的源泉之一,现实生活中有许多问题可通过建立中学数学模型加以解决,如果教师能善于利用实际生活中的事情作背景编制应用题,必然会大大提高学生用数学的意识,以及学数学的兴趣。

二、数学建模教学活动中的注意点

1.注意结合学生的实际水平,分层次逐步地推进。

数学建模对教师、对学生都有一个逐步的学习和适应的过程。教师在设计数学建模活动时,特别应考虑学生的实际能力和水平,起始点要低,形式应有利于更多的学生能参与。

2.注意结合正常教学的教材内容。

数学应用和建模应与现行数学教材有机结合,把应用和数学课内知识的学习更好地结合起来,而不要形成两套系统。教师应特别注意把握数学建模(应用)与学生实际所学数学知识的融合,引导学生在学中用,在用中学。

3.注意数学应用与数学建模的“活动性”。

数学应用与数学建模的目的并不仅仅为了给学生扩充大量的数学课外知识,也不仅仅为了解决一些具体问题,而是要培养学生的应用意识、数学能力和数学素质。因此数学应用和建模不能变成老师讲题、学生模仿练习的套路,而应该重过程、重参与,更多地表现活动的特性。

4.注意教师自身能力的提高。

老师应努力保持自己的“好奇心”,留心向身边各行各业的能人学习,开通自己的“问题源”、相关知识的储备库和咨询网。努力掌握计算机工具,学会一些常用的算法,如求根、迭代、逼近、拟合、模拟等。还有教师最好自己做一点应用的课题,或参加专业的培训班、讨论班;也可以从自己熟悉的课题着手,直接实践、探索教与学的规律。

5.注意学生角色的定位。

数学建模的方法和步骤范文6

关键词 :中学数学 数学建模 应用

1、引言

近些年的教育制度改革,高度重视中学生的素质教育,在此项教育方式的实施中,中学数学该如何变革呢?新的课程标准,着重强调了中学生必须要加强对数学的应用意识,那么该如何加强中学生的数学应用意识呢?如果将生活实际问题与数学相联系,将生活中的实际问题渗透到数学题中,让学生学会运用数学知识解决一些生活中的实际问题.

数学建模正是一个学数学、做数学、用数学、综合运用所学的知识解决实际问题的过程,它体现了学与用的统一,可以使学生掌握好数学的基础知识、基本技巧及基本思想,提高运用数学的能力.这一点也正好体现了新课程标准中对素质教育的要求内容.因此本文将着重研究数学建模在中学数学中的应用,具体内容以参考文献[1]至参考文献[14]作为参考.

2、建模的一般性理论知识

要想更好的应用建模,则首先要了解建模的一些理论知识,下面本文将从三个方面对此加以简单的介绍:(1)数学模型的概念;(2)建模的一般步骤;(3)建模应遵循的原则.

2.1 数学模型的概念

数学模型可以描述为:对于现实世界的一个特定对象,为了一个特定目的,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构.

2.2 数学建模的一般步骤

2.2.1 模型准备

了解问题的实际背景,明确建模的目的,搜集必要的信息,如现象、数据等

尽量弄清楚对象的主要特征,形成一个比较清晰的“问题”,由此初步确定用

一类模型.

2.2.2 模型假设

根据对象的特征和建设目的,抓住问题本质,忽略次要因素,作出必要的、合理的简化假设,选择有关键作用的变量和主要因素对建模成败起着重要的作用.

2.2.3 模型构成

根据所作的假设,用数学的语言、符号描述对象的内在规律,运用简单的数学工具,建立各个量之间的定量或定性关系,初步形成数学模型.

2.2.4 模型求解

建立数学模型是为了解决实际问题,对建立的模型可以采用解方程、画图形、优化方法、数值计算、统计分析等各种数学方法,特别是数学软件和计算机技术.

2.2.5模型分析

对模型求解得到的结果进行数学上的分析,有时根据问题的性质,分析各变量之间的依赖关系或稳定性态,有时根据所得的结果给出数学上的预测.

2.2.6 模型检验

把求解和分析结果翻译回到实际问题,与实际的现象、数据比较,来检验模型的合理性、适用性和真实性.如果与实际不符,应该对模型进行修改、补充,或是重建.一个符合现实的数学模型的构建往往需要多次反复的修改,直至完善.

2.2.7 模型应用

应用的方式与问题性质、建模目的及最终的结果有关,因此要具体问题具体分析.

2.3 建模应遵循的几个原则

2.3.1适度性原则

数学建模实际既要尊重问题的实际背景,又要使学生更容易理解信息.对中学生而言,专业术语过多、计算量过大,都会对其理解问题有很大的影响.因此,教师在选择建模题目时,必须对问题的实际背景进行加工,以达到适度并且符合学生的学习接受能力.

2.3.2 适应性原则

数学建模的设计应该与教学内容相适应,在课堂教学中建模问题要与教学目标和课堂教学进度同步,在课外活动中,建模的设计可根据实际需要进行拓宽,以开放学生的视野.

3、中学生建模的重要意义

通过上面实际问题的应用举例,可以看出数学建模在中学数学中有着不可或

缺的重要作用,所以中学生建模有着重要的意义,展开如下.

3.1 增强学生数学的应用意识

过建立数学模型,学生可以掌握用数学问题解决实际问题的方式,可以深刻的体会到现实生活中时时有数学,处处有数学.这有利于加深学生对数学应用的认识,有利于培养他们用数学的眼光观察和分析问题,增强他们应用数学的意识.

3.2 提高学生学习数学的兴趣

在中学阶段,很多学生都认为数学就是题海战术,就是大量的计算.因此培养学生学习数学的兴趣十分必要.使其认为数学不是枯燥无味的而是丰富多彩的,可以把生活中的实际问题紧密的应用到数学问题当中,慢慢培养学生学习数学的兴趣,因为兴趣是最好的老师,可以起到事半功倍的教学效果.

3.3 有利于学生数学素养的培养

数学建模渗透着重要的数学思想和数学方法.学生在建模的过程中可以掌握基本的数学方法,领悟数学思想.建模还要求学生要有丰富的想象力和敏锐的洞察力.通过建模还可以使学生养成勤学好问的好习惯,使他们具有坚持不懈的毅力、团结协作的团队精神以及认真谨慎的科研态度.这些都是学好数学必备的素养.