表观遗传学的特点范例6篇

前言:中文期刊网精心挑选了表观遗传学的特点范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

表观遗传学的特点

表观遗传学的特点范文1

由于遗传学在生命科学中具有不可替代的重要作用,其教学方法、教学模式的探索和研究近些年倍受关注。近年来,研究性教学在各高等院校不断地被提出,黑龙江八一农垦大学生命科学学院也把研究性教学改革不断地深入到各学科教学中去。作为遗传学教师,笔者在教学过程中不断地进行着研究性教学的实践和思考。

研究性教学是在‘‘发现学习模式”和瑞士皮亚杰的“认知发展学说”的理论基础上发展起来的,其认为学生学习的过程与科学家研究的过程在本质上是一致的,强调将教学与研究结合作为大学教学的基本思想,注重提高学生发现问题、分析问题和解决问题的能力,对培养创新型人才非常重要。研究性教学模式的核心理念是以实践中的真实问题为基础,将学生置于真实的情境中学习,培养学生的学习能力、创新能力和实践中的动手能力,增强学生对工作的适应能力,使教学与研究相统一m。研究性教学是以学生为主体,以问题为核心(PBL)去获取知识和应用知识的教学模式。研究性教学的内涵主要包括:教师把研究的思想、方法和取得的新进展引入教学活动;教师以研究的形式组织教学活动,打破原有的完整的学科逻辑和机械的顺序;学生积极参与研究之中,在研究中学习、成长,养成独立思考的气质和批判。

笔者根据研究性教学的规律及遗传学学科的特点,在教学过程中对以下几方面的问题进行了探索和实践。

1发挥学生的主动性和创造性,培养学生的思辨能力和独立思考能力

党的十指出,科技创新是提高社会生产力和综合国力的战略支撑,必须摆在国家发展全局的核心位置。要坚持走中国特色的自主创新道路,以全球视野谋划和推动创新,提高原始创新、集成创新和引进消化吸收再创新的能力,更加注重协同创新。这一论述充分体现了科技创新在经济和社会发展中的重要地位,也为高等教育提出了未来人才培养的方向。大学作为本科生培养基地,肩负着培养有创新精神和实践能力的高素质人才的重大历史使命。高校毕业生的质量直接关系到一个国家科技人才的整体实力和水平,高校教师如何改革现有的教学方法和模式,培养具有学习能力、自我创新能力的大学生,是目前教育教学过程中亟待解决的问题。

研究性教学模式具有极强的实践性。研究性教学模式特别注重教学与研究相结合,理论与实际相统一。研究性教学模式不只强调背诵、理解复述和模拟,而是注重培养学生的科学思维、自主意识、团队协作精神和工作责任心,强调培养学生获取与归纳整理信息的能力、分析解决问题的能力、展示成果与表述观点的能力。创新能力的培养不可能仅依靠获得知识,很大程度上还依赖于学生的直接经验的积累,因此切实加强研究性实践教学,对提高学生的实践能力是至关重要的。创新型人才的培养目标要求学生既要学会动手又要学会动脑;因此,教师在教学过程中要树立研究性教学为主的教学观,运用正确的教学法,积极探讨、推动教学研究和改革,培养学生主动探求知识的主体精神,动手、动脑的能力和创造性思维及创造精神。研究性教学过程从讨论问题开始,需要涉猎大量的资料,课程学习本身不仅在于学习知识,还在于掌握学习知识的方法。研究性教学以学生为主体的教学模式强调了学生在学习过程中的核心地位,教师只起引导、示范、鼓励、辅导和监控的作用,这种模式可以最大限度地调动学生学习的主动性和积极性,培养学生自主学习及独立分析和解决问题的能力。在遗传学的教学过程中可以采用问题式、讨论式、互动式课堂教学,从而达到更好的教学效果,在客观上具有一定的可行性。以学生为主体的教学模式关键在于课前的认真准备和教师在课堂上的灵活调控。

2专业知识教学和实验技术教学相结合

遗传学是一门在实验基础上发展起来的学科,尤其是现代遗传学技术的突飞猛进发展和遗传学知识的大量增加,都给学生的学习带来了一定的难度。因此,遗传学采用什么样的授课方法才能使学生掌握基本知识,提高学生的创新能力一直倍受教育工作者的关注。一些遗传学教师的教学经验表明,在遗传学授课过程中,适当地讲授遗传学研究的基本实验技术和遗传学研究材料的获得方法对帮助学生理解遗传学知识是非常重要的。例如,在介绍分子标记选择辅助育种的研究进展时,对分子标记的定义、类型、发展和每种标记的用途进行讲解,对遗传学研究材料如重组自交系和近等基因系群体的构建方法及其在基因定位和育种研究中的应用等知识进行回顾,大大增强了学生对专业知识的理解。在实验技术的教学方面,应不断地给学生介绍最新技术在遗传学研究中的作用以及不同技术在某一研究领域的时效性3。在内容上,尽量安排生动丰富且易于操作的实验项目,增加一些设计性和综合性的实验项目,尤其是近期,随着表观遗传学研究的日渐深入,适当地增加该方面的实验课程对帮助学生理解基于非基因序列改变所致基因表达水平变化,如DNA甲基化和染色质构象变化等表观遗传学对生物性状的改变所起的作用,可以开展表观遗传抑制剂对细胞周期调控的分析及RNA干扰基因沉默的遗传分析等实验。

3为学生提供具有时效性、权威性和新颖性的阅读材料

随着遗传学科的快速发展,研究领域不断拓宽,新技术、新成果不断涌现,任何一部教材都难以跟上遗传学快速发展的步伐,因此必须借助网络等媒体实现知识的不断更新。在教学过程中,教师可适当地借鉴〈(Science〉〉、《Nature》以及分子细胞生物学领域的一些国际权威杂志上的综述性文章作为教学中的补充内容,使学生在学习经典遗传学理论的同时,对分子遗传学和现代遗传学的发展有更深入的理解。如在研究癌症的遗传学基础时发现,一半以上癌症的发生过程中伴有p53突变。p53在正常细胞中寿命短、含量低,与细胞周期控制、DNA修复、衰老、血管生成和细胞凋亡密切相关。当p53发生突变时,细胞逃脱正常细胞生长的限制,使突变从一代细胞传到下一代细胞,这为癌症的发育创造了条件。在给学生授课的过程中,跟踪遗传学的最新研究动态,如引入p53等遗传学研究进展,可大大激发学生学习的积极性?。表观遗传学目前也是遗传学重要的补充,如乙酰化酶家族和染色体易位、转录调控、基因沉默、细胞周期、细胞分化与增殖以及细胞凋亡相关,从而对生物体的性状产生了影响。而非编码RNA不仅能对整个染色体进行活性调节,也可对单个基因活性进行调节,它们对基因组的稳定性、细胞分裂、个体发育都有重要的作用。在教学过程中,适量增加表观遗传学的知识,可以极大地丰富学生的知识量及对科技前沿知识的认识,为提高学生的科技创新能力奠定基础。

4案例式和情境式教学相结合,激发学生内在的学习动力

案例教学法(Casemedthodteaching,CMT)是根据教学目标和培养目标的要求,在学生掌握了有关的基础知识和基本理论的基础上,教师在教学过程中选择典型案例并以恰当的形式给学生展示,把学生带入一个特定情境中,在教师的指引下由学生自己依靠其知识结构和背景,在这种案例情境中发现、分析和解决问题,培养学生运用理论知识并形成技能技巧的一种教学方法5。案例教学法最大的特点就是模拟实践经验,增强学生实践的能力。遗传学教师在注重理论知识讲授的同时,要穿插与实际生活密切相关的大量案例,培养学生分析问题和动手实践等能力。

在遗传学教学过程中,注重教学内容与人类生活及人类疾病相结合,加强学生对教学内容的认识和遗传知识的深化。在讲授单基因遗传病、多基因遗传病和染色体病时,可与临床中真实的遗传病相联系,如常见的单基因遗传性疾病一白化病、苯丙酮尿症、黑尿症、先天性聋哑、高度近视,多基因遗传性疾病一原发性高血压、支气管哮喘、冠心病、青少年型糖尿病、类风湿性关节炎、精神分裂症、癫痫、先天性心脏病,染色体遗传性疾病一“21三体”综合征、猫叫综合征等。针对这些疾病,巧妙设计引导式问题,囊括大纲要求的知识点,突出遗传学的课程特色。在该模式下的教学过程中,学生不是被动地学、记忆和理解教师所教授的知识,而是在教师的指导下,将学生置于可以从不同角度看待事物的环境,问题情境便能够吸引并维持他们的兴趣,使他们积 极寻找解决问题的方法,创造性地得出结论,从而激发学生学习的内在动力。

5加强遗传学教师师资队伍建设,为研究性教学提供人才保障

过去,很多高校过于注重结果性评价而忽视过程评价,无法对教师的研究性教学能力和学生的实践能力作出公正而又科学的评价H。目前,黑龙江八一农垦大学已经非常重视研究性教学的实施,并为此做出很多努力和尝试。遗传学作为生命科学的重要课程,其教师队伍的整体水平是制约教学效果的一个重要因素。没有一支高水平的教师队伍一切将成为空谈。为了提高研究性教学水平,学校组织教师到优秀研究性教学能手的课堂上听课,通过学习其他课程的课堂教学方法、教学模式,为遗传学更好地进行研究性教学提供了教学案例。此外,学校年轻的遗传学教师可以通过培训、进修等形式提高专业水平。最后,如果想成功地进行研究性教学,授课教师必须进行学科专业的科学研究。授课教师要随时关注遗传学领域的最新发展动向,将权威杂志中介绍这门学科研究的新概念、新发现、新思路和新方法的文献综述引入课堂。这些参考文献学术水平高、内容新、难度适中,开阔了学生的视野,对他们很有吸引力。教师只有通过科研,才能真正理解本学科教材的内在联系,把握住本学科的发展趋势,及时吸纳学科内最新科研学术成果,适时地把学生引入本学科知识和科研的前沿,引导学生在科研实践中增长才智、得到锻炼,激发学生的创造欲望,通过科研、实验等手段培养学生的创新能力。

表观遗传学的特点范文2

【关键词】同性恋;基因;表观遗传

【Abstract】The reasons of homosexuality are complex. With the development of science and technology, the reasons of homosexuality are increasingly clearly understood, which mainly involve in physiological factors and social psychological factors. This paper reviews the reasons of homosexuality, like genetic factor, biological factor, endocrine factor, Social psychological factors, as well as the recent research achievement of epigenetic factors.

【Key words】Homosexuality; Genetic; Epigenetic

【中图分类号】C913.14【文献标志码】A

自同性恋产生以来人们就没有停止对其成因的探究,随着科学技术的快速发展,生物医学和分子流行病学的不断进步,以及生理学和心理学的发展都对探究工作提供了更多的理论依据,人们对同性恋有了更清晰的认识。男男者已成为我国艾滋病流行的三大高危人群之一,同时也是性病的高危人群。其形成原因是十分复杂的,涉及生物、遗传、心理、社会文化等多重因素。本文就针对男性同性恋成因的研究进行综述。

同性恋又称同,是人际间性取向的一种。性取向指个体或群体的持续地指向何方。同性恋现象自古就有, 并一直存在, 在任何历史时期,任何文化背景下,不管社会主流支持还是反对,它都在人类社会中保持相当的比例。同性恋 ( homosexuality) 一词最早是由一名德国医生Benkert Kertbeny于1869年提出的。这个词的意思是指对异性不能做出性反应,却被同性别的人所吸引[1,2]。《生命伦理学百科全书》对同性恋的描述为:同性恋者是一个有着持久、显著、唯一的受同性性别吸引,对同性有性渴望和性反应,寻求同性并从中得到性满足的人。我国有学者将同性恋定义为:这种关系可存在于内在的心理上或外在的行为之中,如果某个人一生或一生中大部分时间都和同性别的人建立心理或者行为上的这种关系,就可称为同性恋者。男性同性恋或称男男者(men who have sex with men,MSM)指性取向为男性,且生理性别为男性者。

近年来,对于男男者的形成有先天说(生物因素)和后天说(环境因素)两种说法,前者称为素质性同性恋,后者称为境遇性同性恋[3]。但更普遍认为是由生物因素和环境因素共同决定的。其中生物因素的研究主要集中在与遗传学、神经生物学及性激素水平的相关范畴。环境因素主要在社会因素和心理因素两方面。最近,有学者还提出了同性恋的表观遗传学说,研究显示表观遗传学可能是导致同性恋的一个关键因素,从而扩大了同性恋成因的研究范围。

加州大学圣巴巴拉分校进化遗传学家William Rice[4,5]认为,同性恋会随后代遗传,这必然存在某种原因。研究估计有8%的人群是同性恋,且众所周知同性恋在家族中流行。如果一对双胞胎中有一人是同性恋者,另一个有20%的概率也是同性恋。

Mustanski等[6]利用10cm距离上的403个微卫星标记测定其基因型,分别计算母系的、父系的和联合遗传的最大可能连锁值,发现了连锁值最高的3个区域:7q36、8p12和母源的10q26。而另一项针对男同性恋全基因组扫描的分析也发现这3个区域与性取向的联系,并且发现了1个新的可能与MSM行为发生相关的14q32区[7]。

Camperio-Ciani等[8]比较了男性同性恋者和异性恋者的家系,结果显示同性恋者母系女性亲属的生育能力显著偏高,平均多生育33%的子女,父系女性亲属却没有,提示人类性取向相关的遗传因素有可能位于X染色体上,这些遗传因素未被逐步消除的原因在于携带该基因的女性生育能力较强。此外,男性同性恋的母系亲属中同性恋数目多于父系亲属,而且男性同性恋者多不是长子,有较多的哥哥或姐姐。其他几位学者的研究也报道多项家族性研究均证实男性同性恋具有遗传特征,且其相关影响因素可能位于X染色体上[9-11]。携带有同性恋基因的个体细胞,在适宜的条件下,易于发展成同性恋细胞。这就说明,同性恋的性取向有70% 是遗传基因所产生的结果[12]。Hamer等[13]对114个家庭中男性同性恋者的舅舅和表兄弟的性取向进行家系和连锁分析,并通过DNA连锁分析了兄弟均为同性恋的40个家庭的X染色体的基因多态性,发现Xq28区域可能有决定性取向的基因。

“男性基因”SRY(性别决定基因)的发现也从另外一个角度佐证了男性同性恋和变性者的生物医学基础。SRY基因在哺乳动物性别决定中起关键作用,它是决定因子( TDF),启动分化, 是发育负调节的抑制因子[13]。表现为XY的男性核型却在性染色体中查不到SRY,或SRY发生了突变, 因此可能表现为女性化,即所谓“性反转”[14]。迄今为止还没有明确证据证实染色体上某一区域或基因与男性性取向相关,但似乎可以推测遗传基因在性取向的决定上具有重要的作用,这还有待于进一步的研究。

澳大利亚学者对112 名男性同性恋和258 名男性异性恋的基因进行了比对,发现554%的男性同性恋的雄激素受体基因较长,476%的男性异性恋雄激素受体基因较长。研究人员说,雄激素受体基因较长可能导致激素信号传输弱,而激素是决定早期发育过程中大脑性别认知雄性化的关键因素。该研究认为,激素水平较低可能导致男性在大脑发育期时雄性化的过程不完整,造成性别认知方面倾向于女性[15]。

瑞典研究人员发现,男性同性恋者和女性异性恋者的大脑结构上存在某些相似特点,他们对一些志愿者进行了对比试验,脑部核磁共振成像显示,女性同性恋者和男性异性恋者都拥有不对称的大脑,左侧脑半球比右侧脑半球略小;而男性同性恋者和女性异性恋者的左右脑半球是对称的。研究人员还应用相关检测设备对志愿者脑部杏仁核区域做了分析,结果显示,男性同性恋者和女性异性恋者的杏仁核结构存在着相似性,而男性异性恋者和女性同性恋者的杏仁核结构更为相似。

科学家从脑和内分泌的研究出发,认为下丘脑是大脑负责调节包括性活动在内的身体功能的器官,同性恋可能与下丘脑有关。发现同性恋男性的下丘脑前部神经元的密度只是异性恋男性的一半,而下丘脑前角是大脑中能影响的部分,提出同性恋男性下丘脑前核神经元解剖学的差异可能导致促性腺激素释放激素释放频率的改变,这可能会成为性倾向起因的生物学基础。另外,Levay等比较了同性恋男性和异性恋男性的4种下丘脑前部间质核(interstitial nuclei of the anterior hypothalamus,INAH)的数量,其中INAHl-3是决定人类性别二态性的主要区域,结果显示异性恋男性INAH-3的数量是男性同性恋者的两倍。人体解剖发现男性同性恋INAH-3的体积与男性异性恋相比较小,但女性中却未显示出这种差异,提示了INAH-3与男性性取向的关系[16]。但目前尚未找到造成同性恋者大脑具有独特性的原因,要深入了解与同性恋相关的神经生物学机制需要进行更大规模的研究。

一些研究者考虑到激素可能会导致同性恋。胎儿的大脑受何种性激素的影响,决定了个体细胞未来的性取向。如果男性胎儿未得到激素的影响,而是受到母亲卵巢的雌激素影响,男性胎儿大脑就会女性化;女性胎儿如果受到激素的影响,女性胎儿大脑就会雄性化[13]。有学者推测异性性取向的男性的雄激素暴露水平在一个很小的范围内,不足或超过此范围都可能增加男性成为同性恋的可能性 [17]。也有学者研究发现孕期暴露于乙醇与压力应激的联合作用引发导致雄性后代的性取向的改变[18]。

一直以来也没有任何的“同性恋基因”(gay genes)被确定。根据最新的一种假说,答案或许并不在于DNA本身,而是,随着胚胎发育,子宫中母亲和胎儿两者生成的激素水平发生波动,性相关基因对此做出了反应性开启和关闭。这样的调节机制可使未出生的胎儿受益,即便是在激素处于顶峰时,也可以维持稳定的雄性或雌性发育。然而如果到孩子出生或孩子拥有自己的表观遗传学标记时,这些所谓的表观遗传改变仍然存留,那些后代其中的一些人就可能变成同性恋。在Rice[4,5]的研究中,显示男性和女性胎儿对于它们周围的激素反应并不相同,甚至当一种激素暂时性增高时,这种差异并非是基因的结构,而是基因激活的程度,以及蛋白修饰的方式及程度,如DNA甲基化与剪切、多聚尾修饰等。如在睾酮对胎儿发挥作用的信号通路中,几个关键点的表观遗传改变有可能根据需要钝化或增进了激素的活性。研究中还提到,这些表观遗传学变化在父母处于早期发育时保护了他们,而早期对父母有利的表观遗传改变可解释同性恋在进化中遗留下来。Rice等[19]最近还建立并发表了针对同性恋发展的表观模型,该模型是基于胚胎干细胞的XX与XY核型的表观遗传标记。这些标记提高了XY胎儿中睾酮的灵敏度,降低了XX胎儿睾酮的灵敏度,从而性发展得以进行。该模型预测,这些表观遗传标记的子集进行了跨代遗传,建立了同性恋的表型。Ngun TC等[20]综合相关证据认为性取向是生物学的基础并且认为涉及表观遗传学机制,最近的研究表明,性倾向在同卵双胞胎中比在异卵双胞胎中更为一致,因此认为,男性的性倾向与基因组中的一些区域相关联,该研究惊喜的发现性取向与表观遗传机制有着重要的联系。值得一提的是,在一些先天性肾上腺增生的女性病例中,由于其子宫内高水平的睾酮激素以至于其后代中非异性恋的比例高于哪些非先天性肾上腺增生的女性。同时动物模型研究有力的证明,激素暴露的长期效应是由表观遗传机制介导的,该文章通过描述的假说框架得出结论,遗传和表观遗传共同解释了性取向的有关成因问题并愈发的接近事实,但有关性取向的研究还仍然面临很多挑战。

到目前还没有有力的证据能说明同性恋是由于生理因素导致的,而对于同性恋的形成机制的第二方面,主要包括社会因素和心理因素,其中比较有影响力的观点主要有精神分析学说和行为主义学说。

关于童年早期性心理发展,弗洛伊德认为个体在幼儿时都具有两性素质及双性恋特性,到底发展成同性恋还是异性恋是与个体在成长中的个人经历有关的。他认为在人的个体发展过程当中,4 至6 岁是儿童性别认同、性别角色发展的关键时期,在此期间儿童有着强烈的“恋父情结”或“恋母情结”,对异性的父母有着本能、强烈的依恋情感,而对同性别的父母则产生敌对情绪。父母如果在此期间对儿童的这种性本能不过分刺激也不过分抑制,儿童就会顺利通过这一时期而随后逐渐对同性父母认同。反之,如果在此期间儿童遭受心理创伤,就可能隐藏在潜意识里,并且在青春期时表现出来,可能发展为同性恋[21]。家庭环境对MSM的影响很大,1962 年,贝博提出的“家庭动力是同性恋主因”认为同性恋根源于早期家庭经验。他们大多数来自单亲家庭,从小缺乏父母一方的关爱;或是父母关系很差,经常争吵,长期分居两地;还有的是个体所处的家庭结构是由他/她和多个异性姐妹组成的,或者个体从小被父母当女儿养,从小和女孩子一起玩,产生了性倒错[21,22],将会导致个体对其性别的自我认同产生影响, 并影响以后所形成的性取向。在家庭关系中,通常是母亲的形象和影响远远大过父亲,所以儿子在青春期后会寻找一个具有父亲身上没有的“男性力量”的人作为伴侣。

行为主义者认为,同性恋由环境影响形成。一个人在青少年时期如果在与异往中受挫或有过不快的经历,异性情感没得到正常的发展而与此同时又受到了同性方面的引诱,就可能产生同性恋倾向[23,24],特别的,第一次性经历对个体性取向的影响很大,许多同性恋者第一次受人引诱或者在其他情况下发生同性,从而“欲罢不能”。有学者认为同性恋的形成是极度压抑的结果,如果一个人对性的需求无法通过正常的异性途径获得满足,便会压抑它,压抑的结果便是性需求更大,而为了消除性需求所带来的压抑,个体就会另寻出路去放松这种压抑,一旦个体以同性的方式缓解了压力,就有可能经过多次该行为的强化而形成同性恋。

学校是儿童接受教育的地方,同时也是孩子的主要活动场所,孩子的大部分时间都要在学校这个微缩型社会环境中度过,尤其是初中和高中正值学生性心理迅速发展成熟的时期,其间发生的任何事情如学校和老师对学生的性教育方式和力度、关切程度,以及同伴之间的相互影响等都会给孩子造成很大的影响。

李玉玲等[25]提出同性恋发生的原因在于性情绪的作用,男女同性恋的发生原因是相同的,同性恋与异性恋发生的原因也是相同的,都是由于性情绪的作用。当个体在中体验到喜欢、兴奋、冲动、渴望等积极情绪时,则将带来这些体验的人当恋对象。若此人为同性,则产生同性恋;反之则为异性恋。此外,恋母情结对同性恋者的情绪的产生也有重要作用,有研究表明,同性恋者的父母不鼓励男孩表现出男性特征,有统治欲的母亲不允许儿子对除她自己之外的异性产生兴趣[26],因此产生变得胆小,甚至产生恐惧、偏执的心态,从而影响其未来性取向。

此外,从中医的阴阳角度来看,人体内阴阳互藏,阴阳转化。若男子,阳火不生,或阳刚之气受挫,众阴聚合,则易变主动为主静。阳中阴气愈聚,阴阳失调,则为男子中的女性。相对而言,男子中的女性,为阴,而男子为阳,阴阳的相吸作用,促使他们的自然吸引从而在一起,使得他们相互补足依靠,相互需要,从对方身上获得快乐,实现阴阳的互根交感作用[27]。

社会学的研究个案表明,同性恋个体之间在成因上是不完全相同的,单纯从一种理论出发分析他们的成因是不科学的。比如说素质性的同性恋即绝对同性恋和境遇性同性恋的成因有可能不同。境遇性同性恋更多地受环境的影响,如单性性环境的军队、监狱等,他们中有些人在改变了环境之后,又恢复到异性恋的状态。

综上所述,目前研究男性同性恋成因的领域主要包括社会学、心理学、医学、法学、哲学等多个不同的学科,男性同性恋成因十分复杂,主要涉及遗传因素、表观遗传学、神经生物因素、发育及内分泌因素、社会及心理因素等诸多方面,彼此之间的因果关系不明,尽管相关方面研究均取得了一定的进展,但尚待解决。探索男性同性恋形成原因的道路还很长,但是意义重大。

参考文献

[1]伍传仁.中国男男同性恋的研究现状. 实用预防医学, 2009, 16(3): 985-987.

[2]余放争,杨国纲,余翔.同性恋国内研究概述. 医学信息, 2006, 18(12): 1758-1761.

[3]熊明洲,韩雪,刘爱忠,等.男同性恋性取向成因影响因素Delphi法分析. http:///kcms/detail/211234R.201402081036007html.

[4]Rice WR, Friberg U, Gavrilets S. Homosexuality as a consequence of epigenetically canalized sexual development. The Quarterly review of biology, 2012, 87(4): 343-368.

[5]Bailey JM, Dunne MP, Martin NG. Genetic and environmental influences on sexual orientation and its correlates in an Australian twin sample. Journal of personality and social psychology, 2000, 78(3): 52-54.

[6]Mustanski BS, DuPree MG, Nievergelt CM, et al. A genomewide scan of male sexual orientation. Human genetics, 2005, 116(4): 272-278.

[7]Ramagopalan SV, Dyment DA, Handunnetthi L, et a1 genome-wide scan of male sexoal orientation. J Hum Genet, 2010(55): 131-132.

[8]Camperio-Ciani A, Corna F, Capiluppi C. Evidence for maternally inherited factors favouring male homosexuality and promoting female fecundity. Proceedings of the Royal Society of London. Series B: Biological Sciences, 2004, 271(1554): 2217-2221.

[9]Blanchard R. Quantitative and theoretical analyses of the relation between older brothers and homosexuality in men. Journal of Theoretical Biology, 2004, 230(2): 173-187.

[10]Ciani AC, Iemmola F, Blecher SR. Genetic factors increase fecundity in female maternal relatives of bisexual men as in homosexuals. The Journal of Sexual Medicine, 2009, 6(2): 449-455.

[11]Iemmola F, Ciani AC. New evidence of genetic factors influencing sexual orientation in men: Female fecundity increase in the maternal line. Archives of Sexual Behavior, 2009, 38(3): 393-399.

[12]佚名. 同性恋是怎样形成的. 科学大观园, 2007 (23): 47.

[13]Hamer DH, Hu S, Magnuson VL, et al. A linkage between DNA markers on the X chromosome and male sexual orientation. Science, 1993, 261(5119): 321-327.

[14]姜明子. SRY 基因的研究进展. 中国优生与遗传杂志, 2007, 15(5): 119-120.

[15]研究认为同性恋可能与基因有关. 中华中医药学刊, 2011, 29(5): 1124.

[16]于微, 冯铁建. 男性同性恋生物学成因的研究进展. 中华医学遗传学杂志, 2012, 29(002): 172-175.

[17]Rahman Q. The neurodevelopment of human sexual orientation. Neuroscience & Biobehavioral Reviews, 2005, 29(7): 1057-1066.

[18]Popova NK, Morozova MV, Naumenko VS. Ameliorative effect of BDNF on prenatal ethanol and stress exposure-induced behavioral disorders. Neuroscience Letters,2011,505(2):82-86.

[19]Rice WR, Friberg U, Gavrilets S. Homosexuality via canalized sexual development: a testing protocol for a new epigenetic model. Bioessays,2013,35(9):764-770.

[20]Ngun TC, Vilain E. The biological basis of human sexual orientation: is there a role for epigenetics. Advances in Genetics,2014,86(1):167-184.

[21]李阳, 张延华, 张海霞. 同性恋形成机制探析. 医学与哲学: 人文社会医学版, 2007, 28(6): 50-51.

[22]吴天亮, 张健, 陈国永, 等. 男男同性恋常见精神健康问题及成因探析. 中国性科学, 2013,22(9): 85-87.

[23]马文靖. 浅析同性恋成因中的心理、社会因素. 科技信息 (学术研究), 2008(11): 156-157.

[24]高淑艳, 贾晓明. 近15年来国内同性恋的研究概况. 中国健康心理学杂志, 2008 ,16(4):461-463.

[25]李玉玲. 同性恋是怎样发生的. 中国性科学, 2006, 15(3): 32-35.

[26]杨扬, 岳文静, 朱振菁. 同性恋的心理社会成因. 学理论, 2012 (15): 63-64.

表观遗传学的特点范文3

【关键词】组合数学 教学方法 生物医学 生物信息学

【中图分类号】G64 【文献标识码】A 【文章编号】2095-3089(2015)09-0132-02

伴随着信息时代的来临,特别是生物医学科学研究的迅猛发展,尤其是生物信息学这门科学的出现使得原来的生物医学研究向低通量的临床数据转向高通量分子生物学数据。组合数学作为一门应用性较强的数学分支,在生物医学中的应用广泛,面对多因素高通量的生物医学问题,增加高等学校,特别是生物信息学专业学生的组合数学知识,培养他们运用组合数学方法分析和解决生物医药科学问题的能力已经成为必要。如何在教学过程中提高学生学习组合数学的兴趣,建立组合数学的逻辑思维用于解决医学问题是我们教育工作者需要思考的问题。

一、高等学校组合数学的特点及教学现状

组合数学是一门研究离散对象的科学,在计算机科学、信息科学中具有重要的地位,是理科及工科院校的一门必修课,随着现代生物医学的日益发展,组合数学的重要性也日渐凸显。组合数学对于生物医学专业基础课有着直接的衍射作用。目前,部分开设组合数学课程的生物高等学校的主要面向生物信息学、统计学等等专业开设,讲授学时30到60学时。在大部分生物高等学校并没有该类课程的设置,也是导致高等学校组合数学教师队伍的匮乏的主要原因。而且目前组合数学授课考核形式也比较单一。组合数学主要是以理论授课形式为主的教学方式,考试成绩是考核学生的唯一标准,忽视了学生在学习过程中的考核。信息时代学科的交叉发展体现在组合数学在各个学科中不可替代的作用,因此提高生物高等学校学生的组合数学学习兴趣,培养他们运用组合数学的能力是目前迫切需要解决的问题。

二、改进组合数学教学措施,提高学生兴趣

(一)更新教学内容,改进教学方法

目前的组合数学内容主要有: 鸽巢原理、排列与组合、容斥原理、递推关系、生成函数等基本的组合数学知识及其在数学中的应用。为了让学生在有限的学时内学完必要的知识,更新和精选教学内容显得尤为必要,将以组合数学内容为主导的教学模式改进成以生物医学问题为导向的教学模式。由于面向医学专业的特殊性,从内容上应着重选择与医学知识联系紧密的内容,采取精讲和略讲相结合的方式。根据不同专业背景更新组合数学的教学内容往往能够起到事半功倍的效果。以下是我们在讲解排列与组合一章时的一个教学实例:“生物遗传信息是由DNA分子中4个碱基核苷酸就像电报密码似的以不同的排列顺序记录下来,它载着人类的全部基因或全部遗传信息,人的DNA约有30亿(3×109) 碱基对,按照排列的思想可知人类基因组可能的排列方式有N=4■=(4■)■≈(1.52)■种,然而人类仅从这无穷多的方式中选了一种作为全人类共同的遗传密码,可见我们的基因组是祖先们留给人类的最宝贵的财富!”。这样的实例教学不仅可以让学生熟悉课堂知识,还能让学生对所学的知识进行综合的运用,更重要的与生物医学问题的结合提高了学生的学习兴趣。通过兴趣小组讨论学习提高学生自主学习的主动性,变被动学习为主动学习,充分调动学生学习组合数学的兴趣,从而充分发挥学生学习的主观能动性。

(二)加强多媒体辅助教学,提高学生学习兴趣

组合数学传统的授课方式是在黑板上将定义、定理的内容进行逐步严密的推导证明,这在一定程度上让学生紧跟授课教师的思维和建立学生的逻辑思考能力。然而随着多媒体技术的不断进步,利用多媒体和板书相结合的策略成为下一阶段组合数学教学模式的主要教学手段。对于繁琐的定理公式例如容斥原理避免推导证明,结合多媒体的几何图形使学生更加直观的理解和应用。以我们在教授容斥原理时的一个实例,容斥原理的根本思想是将难的问题分解成若干简单问题,通过间接计数来解决直接计数不容易解决的问题,我们用多媒体幻灯片分别展示两集合和三集合的容斥原理(图1A和B),并按照容斥原理的逻辑顺序利用多媒体动画技术控制每一部分的出现顺序,不仅避免了大量繁重枯燥的板书推导,最重要的是图形式教学可以帮助学生对容斥原理建立更直观的理解。可见在组合数学的教学过程多媒体的充分利用可以起到事半功倍的效果。

图1 多媒体在组合数学教学中的应用――容斥原理实例

(三)增设组合数学实验课,培养学生创新性思维

组合数学除了基本理论课之外还应该开设适当的实验课,在实验课上让学生自己动手解决一些与生物医学有关的实际问题。通过让学生自己编程实现排列组合的算法,不仅可以增进学生对排列与组合的深入认识,也能够培养学生利用排列组合思想解决实际问题的能力。以下是我们的一个实验教学实例:“任选一种排列生成算法,编程实现自动生成n个(如n=6)不同元素中取r个元素的排列,并输出指定任意n和r的所有排列。”,不仅让学生掌握了课堂上讲解的排列原理,还锻炼了编程能力,初步体验了科研的乐趣,由消极的被动学习升级为积极的主动学习。可见通过组合数学实验课更能培养学生自己动手自己学习的能力,进一步激发学生的创新性思维。

(四)精挑细选课后练习,培养学生独立解决问题的能力

组合数学作为一门应用性较强的数学课,需要学生掌握其在生物医学领域的应用,这就必须加强组合数学课堂后练习。因此习题是组合数学课程重要的教学环节,也是理论教学必不可少的补充。然而习题课并不意味着单纯地大量做题,教师应根据课堂内容,精挑细选出质量比较高的少量题目,供学生课余时间认真研究,要在习题中体现组合数学的知识点,激发学生独立给出解决问题的新观点和新方法。设置习题时,应以问题为导向,即给定一个实际的有兴趣的问题,让学生利用所学的组合数学理论进行解决,进一步加强学生对知识细节的理解和掌握,并让学生举一反三熟练掌握所学内容,使学生的理解更加深刻。如我们在教学过程中的一个课后习题实例:“一位国际象棋大师有11周的时间备战一场锦标赛,他决定每天至少下一盘棋,但是为了使自己不过分疲劳他还决定在每周不能下棋超过12盘。证明存在连续若干天,期间这位大师恰好下了21盘棋。”,该实例引起了学生在课余时间学习组合数学的一个热潮。

总之,面对高等学校生物信息学学生的专业特点,传统的单一的纯理论的组合数学教学方法已经不再适用。应该考虑改进教学内容和方法,发挥学生学习的主观能动性,使学生在快乐进取的氛围里学习组合数学,具体的教学内容和教学方法的改进仍有待教学工作者进一步探讨和研究。

参考文献:

[1]卢开澄,卢华明.组合数学[M].北京:清华大学出版社,2002.

[2]苏建忠,张岩,刘洪波,王芳,崔颖.组合数学在生物信息学教学中的应用[J]. 科技创新导报,2012,6,142-143.

作者简介:

刘洪波(1983-),男,汉族,山东德州人,博士,讲师,主要研究方向:生物信息学,计算表观遗传学。

王芳(1982-),女,汉族,吉林松原人,博士,副教授,主要研究方向:生物信息学,计算表观遗传学。

表观遗传学的特点范文4

关键词:医学分子生物学 实验教学 教学改革 综合性实验

中图分类号:G64 文献标识码:A 文章编号:1673-9795(2014)02(a)-0037-03

21世纪以来,随着人类基因组计划的完成,医学分子生物学作为分子生物学的重要分支得以迅猛发展,其理论与技术早已广泛渗透到生命科学的各领域,同时也成为横跨基础医学与临床医学的桥梁课程。我校于2003年为医学本科生开设了医学分子生物学理论课的教学,实验课的教学由于经费、场地、仪器等因素的限制,仅针对检验专业学生开设,其教学任务由医学基础研究中心医学分子生物学实验室承担。通过多年的教学实践和摸索,我们在现有的条件和办学特色定位下及实验教学基础上,针对检验专业本科生教育的特点,于2011年起,我们对医学分子生物学实验课教学改革进行了初步探索,以期促进本学科实验教学工作的发展,达到提高教学质量和培养学生综合实践能力的目的。

1 医学分子生物学实验教学的重要性

医学分子生物学主要致力于阐明生物大分子结构、功能、调控机制以及人体各种生理和病理状态的分子机制[1]。这些内容十分抽象而无直观的实体,其中所涉及到的生理、生化过程,学生仅从书面上是无法进行形象化的观察和认知。因此,作为一门实践性和应用性很强的学科,实验教学在医学分子生物学整个教学过程中占有重要地位。通过实验课的学习,不仅能验证课堂上所学到的理论基础,增强学生对知识的理解和掌控能力,而且能够激发学生的学习兴趣,培养学生发现问题、分析问题和解决问题的实际能力。

2 对医科生全面推行医学分子生物学实验课教学的改革势在必行

医学分子生物学是生命科学发展中最重要的前沿学科之一,其发展依赖于反复的实验验证,故具有实验性强的特点,分子生物学实验技术正深刻地影响着医学的各个分支领域。因此,对省属医学院校各专业的本科生来说,掌握分子生物学技术的基础理论和基本的实验方法非常重要。提高学生的动手能力、培养应用型人才,对广大医科本科学生、研究生和青年教师而言显得越来越重要。培养应用型人才成为目前教育教学改革的趋势[2]。因此,实验课的教学内容应该更加结合临床实际,除了基本的分子生物学技术,注重增加医学应用和前沿的内容。

特别是从2012年起,国家对大学本科教育经费的投入大幅度增加,体现了国家对高等教育的高度重视。大幅度提高对教育的投入,对于医学生来说,主要体现在对教学成本高的实验课教学的重视和投入,理论课教学的成本毕竟相对较低。因此,对医学院校本科生进行医学分子生物学实验课教学改革,加强分子医学教学,全面推行医学分子生物学实验课教学改革的时机成熟、势在必行。

3 我校医学分子生物学实验教学中存在的问题

泸州医学院是培养医学本科生最大的省属地方医学院校之一。学校现有17个二级院系,在校全日制本专科学生、研究生、留学生15000余人(http:///html/xygk/xyjj/)。医学基础研究中心成立于1999年,通过十多年的发展,目前拥有多名高学历、高职称的专职教师、实验技术人员及先进的实验仪器和设备,建立了“医学分子生物学”省高校重点实验室,“肿瘤表观遗传学”省高校重点实验室和“表观遗传与肿瘤”省医学重点实验室,形成了分子生物学、细胞生物学、肿瘤生物学、实验动物模型、形态学等研究平台,可开展蛋白质组学、基因组学与个体化医药、表观遗传学等方面多学科交叉的科学研究工作,是我校一个重要的开放性实验中心,为医学分子生物学实验教学提供了强大的师资队伍力量和科研技术支持,但在实验教学过程中仍存在诸多问题。

首先,实验教学课时不足。众所周知,医学院校学生由于专业的特殊性所学课程繁多,各门课程的课时非常有限,就我校检验专业本科生而言,医学分子生物学理论教学36学时,实验教学18学时,理论与实验的比例为2∶1。由于课时安排不充分,许多实验项目无法开展,导致学生与许多医学分子生物学的经典实验失之交臂。而教师为了完成教学任务,被迫加快教学进度,甚至为了节约时间,提前准备好实验所用试剂,学生没有亲自动手的机会,无法真正达到实验教学的效果。

其次,实验教学经费紧张。医学分子生物学实验项目多,所涉及的知识面广泛,许多仪器和试剂都十分昂贵,需要大量的资金投入[3]。本中心作为全院重要的科研平台和人才培养基地,拥有许多先进的仪器和设备,如基因扩增仪、各种电泳系统、各种离心机、凝胶成像系统、流式细胞仪等,但数量有限仅用于日常科研工作的开展,无法完全满足实验教学的需求,使得学生只能减少分组,不仅动手机会减少,而且实验内容选择也受到限制。

最后,传统的教学模式影响了教学质量。长期以来,医学分子生物学实验教学模式都遵循着一个基本流程进行:教师简单讲解实验目的和原理,学生按照实验操作步骤进行实验,学生观察结果写实验报告。并且在实验过程中,教师会提前将实验结果告知学生,学生只需要验证结果是否相符,完全没有独立思考的时间和空间,成了被动的接受者,时间一长,学生失去了学习的热情,严重影响了教学质量。

4 检验医学专业的医学分子生物学实验教学改革探索

实验教学的设计思想是通过有限数目的实验,加上实验原理与方法导论的讲授,使学生从实验技能和实验理论上能全面掌握医学分子生物学的整体实验体系、基本技术和方法。通过实验教学改革,特别是设计性、探索性和综合性实验的开展,一方面加深了对理论知识的理解和掌握;另一方面培养了学生的动手能力,独立分析问题和解决问题的能力,以及创造性思维的能力,从而为今后从事富于创造性的实际工作奠定良好的基础[4~5]。

(1)实验教材改革。

尽管实验教学学时有限,开展的实验项目较少,但为了让学生能全面了解医学分子生物学这门学科所涉及的各方面知识,本中心组织了一批有经验的教师和实验技术人员共同编写了可供医学本科生和研究生使用的《精编医学分子生物学实验指导》[2],全书共分五章四十余个具体的实验操作。按照实验目的、原理、仪器材料、步骤及注意事项等结构介绍每一项实验技术。其内容大致分为五部分,包括基本分子生物学实验技术、基因操作技术、基因诊断技术、表观遗传学和蛋白质分析技术、细胞培养与分析技术。该教材不仅保留了一些经典的实验内容,如质粒DNA的提取,大肠杆菌感受态细胞的制备等外,新增了关于临床基因诊断以及形态学与功能学的实验内容。在具体实验教学过程中,我们可以根据不同专业,不同层次灵活教学。该实验指导既有原理又有实验结果,图文并茂、简洁精炼。同时附有医学分子生物学实验课程简介和医学分子生物学教学大纲。这样,我们保证了实验课教学内容的知识性、系统性和权威性。

(2)教学内容改革。

由于教学学时和实验条件的限制,原有的教学内容仅开展了三个实验项目,分别为动物外周血全血DNA的提取实验、琼脂糖凝胶电泳实验和血清蛋白SDS-聚丙烯酰胺凝胶电泳实验。这些实验虽然是医学分子生物学基础及经典的实验技术,重要性很强,但是它们之间相对独立,关联度不够,缺乏实验的连贯性和综合性,且与临床联系不大,学生兴趣缺乏。为了节约教学成本,实验准备均由教师提前完成,学生只需提取样品,最后电泳上样,观察实验结果,完成实验报告。因此,学生根本没有充分的时间对整个实验进行思考和探索,可能实验做完,他们完全没有理解这些实验的目的和意义,只是照搬照抄,应敷了事,完全违背了设置实验课的初衷,没有达到锻炼学生独立思考,独立操作的目的。

针对这些问题,为了培养学生的学习兴趣,提高学生的动手能力和创新性思维,根据医学检验专业的特点,我们创新性地重新设计了一个综合性实验――DNA指纹分析[2,6~8](见图1),包括人外周血DNA的提取、分光光度法(Nanodrop法)测定DNA的浓度和纯度、以所提取的DNA为模板进行PCR扩增D1S80短串联重复序列、琼脂糖凝胶及聚苯稀酰胺凝胶电泳、DNA染色(EB染色和银染)、凝胶成像系统下观察结果和照相,最后进行分析[2]。

同时将学生分为4人一组,每4个组为一个班,每个班由两位教师负责。学生之间相互抽取血样进行DNA的提取,所有实验步骤均由学生独立操作完成,教师只是从旁协助和指导,尽量争取每位学生都有动手的机会。这样改革的优点在于,我们将研究对象由模式动物转化为人类自己,从核酸技术以及基因工程技术两条主线展开,并且选用了基因诊断中的一个重要内容―DNA指纹分析这个能引发学生兴趣的内容,使得整个实验过程更加贴近临床实践,更能促进学生的积极性和参与度。而且实验具有连续性和系统性,使学生对实验内容有了更深刻的认识,提高了学生的动手能力,巩固了课堂教学所学的理论知识。

(3)教学方式改革。

我们摒弃了传统的教学方式,不再是单一的教师讲,学生听的模式,而是结合PBL法、充分利用现代教学手段,巧妙运用计算机多媒体作为实验教学的辅助工具,合理利用多媒体系统的音频和视频信息,在实验课里将一些未开展的实验项目自然生动的展现在学生面前,方便了学生学习,提高了学生的学习兴趣,为学生今后的毕业实习及工作奠定良好的基础。同时教师带习学生数量相对减少,有更多时间与学生进行面对面交流和沟通,启发学生发现问题、分析和解决问题,使学生由被动的接受者转变为主动参与者,培养学生的科研思维和创新能力。

(4)教学效果反馈。

为了了解实验教学改革的效果,我们对参与实验的同学进行了问卷调查(见表1)。调查表的内容主要涉及实验开设是否具有创新性,是否能提高学生的学习兴趣和动手能力,对学生今后的工作是否有帮助等等。调查结果显示,实验教学改革后,学生对医学分子生物学这门课程有了更深的认识和理解,而且学习积极性明显增加,对知识掌握更加具有完整性和系统性,达到了培养学生科研素质和创新思维、提高动手能力的目的。

5 结语

总之,经过医学分子生物学实验教学的改革,其实验内容将理论基础与临床实践完整地结合在一起,学生普遍反映教学效果良好,学习积极性明显提高,实验操作能力显著增强。通过医学分子生物学实验教学激发了学生的潜在能力,培养了学生的创新思维,为学生今后从事科学研究和临床工作打下了坚实的基础。适应社会发展需要,由培养单一临床技能型人才向培养具有临床科研和动手能力强的复合型人才转变。但本次改革仍有不足之处,学生普遍反映实验教学学时不够,以及实验教学经费不足,导致实验项目相对较少。

参考文献

[1] 药立波.医学分子生物学[M].3版.北京:人民卫生出版社,2008.

[2] 傅俊江.精编医学分子生物学实验指导[M].北京:中国医药科技出版社,2012.

[3] 林家齐,李玲.深化高校实验教学改革,促进创新人才培养[J].科技与管理, 2009,6:124-127.

[4] 高利臣,肖璐.分子生物学实验教学改革的几点思考[J].实验室研究与探索, 2010,29(4):99-102.

[5] 王继红,叶芳.医学院校生物化学与分子生物学实验教学改革[J].实验室研究与探索,2011,30(7):288-291.

[6] Kseler A,ztürk O,Atalay A. Allele frequency of VNTR locus D1S80 observed in Hb D-Los Angeles carrires[J].Molecular Biology Reports 2012,39(12):10747.

表观遗传学的特点范文5

大量研究表明,通过与Wnt信号通路上相应的受体结合,DKK1对细胞的分化、增殖、迁移或癌变等特性进行调控,在肿瘤发生方面发挥重要作用。Wnt/β-catenin信号通路参与胚胎发育及肿瘤形成,同时与造血系统发育、造血干细胞自我更新及某些恶性血液病密切相关。当细胞分泌的Wnt蛋白与细胞跨膜受体卷曲蛋白(Frizzled)结合后,在辅助受体LRP-5/LRP-6的协同作用下,激活细胞内的信号转导,使胞质内散乱蛋白(dishevelled)发生磷酸化而活化。磷酸化的散乱蛋白抑制了GSK-3β的活性,使β-catenin不能与Axin-APC-GSK-3β等形成降解复合物,从而使胞浆内游离的β-catenin蛋白积聚,进入细胞核,与淋巴增强因子(lymphoid-en-hancingfactor,LEF)/T细胞因子(T-cellfactor,TCF)结合,形成β-catenin/TCF/LEF转录复合体,使下游靶基因如C-MYC、cyclinD1等转录和表达增高(附图),最终促进肿瘤的发生。Mao等发现,DKK1作用通路是通过竞争Wnt蛋白结合LRP5/6受体而直接抑制Wnt蛋白活性,或通过含kringle结构域的Kremen受体间接与LRP5/6受体结合,从而形成三聚体复合物,降低Wnt蛋白向细胞内传导信号,阻断经典Wnt/β-catenin/TCF传导通路,抑制肿瘤细胞增殖和侵袭,诱导其凋亡。

一、DKK1甲基化与急性白血病

急性白血病(acuteleukemia,AL)是一种与表观遗传学相关的疾病,具有多基因、遗传学表型异质性特点。大量研究表明,AL的发生与DKK1基因表达异常有密切关系。DKK1基因甲基化,引起基因表达下调或沉默,其抑制Wnt信号通路作用失活,导致Wnt信号通路激活,进而引起肿瘤的发生。Griffiths等[9]研究表明,在169名原发性AML患者中,89%的患者骨髓冰冻样本或外周血组织样本有1个以上的抑制基因发生甲基化,其中DKK1甲基化率为16%,且其甲基化与AML患者的不良预后存在相关性;在检测的白血病细胞系(HL-60,K562,KG1,HNT34,KG1a,U937和HCT116)中至少50%的细胞都会发生DKK1甲基化。Valencia等[10]研究表明,在AML细胞系(kasumi-1,KGla,HL-60,THP-1)中DKK1基因都发生高甲基化,184例AML患者DKK1基因启动子区域高甲基化状态,甲基化发生率为32%。Suzuki等[11]研究发现,5例正常骨髓单核细胞样本DKK1不发生甲基化,而47例AML患者骨髓样本中DKK1甲基化率为29.8%,其中M2型病人更容易检测到DKK1的甲基化,甲基化发生率为42.3%,10个伴t(8;21)染色体易位的AML患者中有5人发生DKK1甲基化。Raji、Molt-3和SK-NO-1细胞系均可观察到DKK1甲基化,且多变量分析显示DKK1甲基化是不良预后的一个危险因素,与白血病的疾病进展有关,但病人的5年总生存率与是否发生DKK1甲基化没有明显的相关性;研究还发现,RUNX1/RUNX1T1,CBFB-MYH11或者PML-RARA融合基因常与DKK1甲基化伴随发生,均促进白血病形成,而存在FLT3/ITD突变的11个AML患者没有发现DKK1基因甲基化。这些结果显示,FLT3/ITD突变可能不与DKK1甲基化同时发生。Hou等[12]发现,在269例AML患者中,166人有1个以上的Wnt抑制基因发生甲基化,其中DKK1甲基化率为30.1%。这些研究表明所有的Wnt抑制基因的异常甲基化导致的甲基化上调可能是Wnt抑制基因失活的主要机制。国内朱珣珣等[13]研究发现,与正常对照组比较,AL患者DKK1基因mRNA表达显著降低,正常对照组单个核细胞标本不存在DKK1的甲基化,但AL患者中DKK1甲基化率为37.7%,其中急性淋巴细胞白血病(ALL)患者甲基化率为41.2%,AML患者中甲基化率为28.6%。一系列的研究发现,当DKK1基因启动子区域高甲基化,mRNA转录水平降低,DKK1蛋白表达降低,导致Wnt通路激活,从而引起AL的发生,且DKK1甲基化程度与病情的严重程度及预后有关。

二、DKK1甲基化与慢性白血病

慢性粒细胞白血病(CML)是具有Ph染色体和/或BCR-ABL融合基因阳性的造血干细胞恶性增殖性疾病。朱雅姝等[14]研究表明,脂肪间充质干细胞分泌的DKK1可以抑制慢性髓细胞白血病细胞K562的增殖。将DKK1基因用RNA干扰后与K562细胞共培养,可重新增加K562细胞Wnt信号通路中β-catenin表达,减弱对K562增殖的抑制作用。Zhu等[15]人研究发现,间充质干细胞分泌的DKK1蛋白是Wnt信号通路强有力的抑制剂,可以抑制K562细胞增殖;当DKK1基因被敲除或者使用抗体中和DKK1蛋白,DKK1对共培养的K562细胞的抑制作用则降低。Han等[16]研究表明,DKK1蛋白可以通过抑制Wnt信号通路,降低β-catenin含量,导致K562细胞凋亡增加,逆转最终急变期CML的骨髓间充质干细胞对K562细胞的保护作用,使β-cate-nin水平降低。Filipovich等[17]研究发现,尽管Wnt信号通路在CLL中激活,而健康的B淋巴细胞和CLL细胞表达的DKK1基因mRNA及LRP6水平是等量的,在CLL中DKK1可能不发挥作用。然而Moskalev等[18]人研究表明,在CLL中DKK1甲基化水平明显高于对照组,在EHEB和MEC-1细胞系中,DKK1甲基化发生率分别为68%和75%,12个CLL病人样本中DKK1甲基化发生率为34%。研究结果的差异可能由于选择的样本影响或者样本数量有限或者别的实验因素的影响,这需要进一步研究证明。这些研究表明,不同类型的慢性白血病中DKK1所起的作用可能不同,这为以后更深入的研究DKK1基因在慢性白血病中的功能提供参考。

三、白血病去甲基化治疗的新进展

去甲基化药物主要是指DNMT抑制剂。此类药物在小细胞肺癌、乳腺癌、白血病及骨髓增生异常综合征等疾病中的应用,获得了显著的疗效。去甲基化药物地西他滨(5-氮杂-2'-脱氧胞嘧啶,DAC)是一种天然的脱氧胞苷酸的腺苷类似物,特异性的DNA甲基化转移酶抑制剂,可逆转DNA的甲基化过程,激活沉默失活的抑癌基因,从而诱导肿瘤细胞向正常细胞分化或诱导肿瘤细胞凋亡。Moskalev等[18]研究表明,5-氮杂-2'-脱氧胞嘧啶在CLL细胞系中可以降低DKK1基因甲基化水平,然而并没有导致明显的DKK1基因的mRNA水平表达增加。Suzuki等[11]研究发现,当AML细胞株(SKNO-1)使用5-氮杂-胞嘧啶治疗4d后,观察到DKK1基因表达恢复,这提示DKK1甲基化抑制了DKK1基因表达。Va-lencia等[10]研究表明,地西他滨治疗AML后,DKK1基因的表达水平呈剂量依赖性增加。孟真等[19]研究发现,使用去甲基化药物三氧化二砷后在原本不表达抑癌基因SHP-1mRNA的HL-60细胞中,SHP-1得到表达,而高表达的原癌基因C-kit表达水平下降。当使用不同浓度的三氧化二砷作用后,SHP-1mRNA的表达水平呈剂量依赖性地上升,而C-kitmRNA的表达水平随剂量增加而下降。虽然地西他滨在白血病的治疗中取得了明显疗效,但由于使所有基因去甲基化,因此也有可能诱导肿瘤的发生。目前的研究主要是靶向诱导DKK1去甲基化,这在白血病中还没有新进展,但在多发性骨髓瘤已取得一定的成果。如针对DKK1蛋白抑制成骨细胞激活破骨细胞而导致的溶骨性病变,可使用DKK1的中和抗体、蛋白酶体抑制剂、多肽疫苗免疫治疗及调节因子等,这些方法均显示出较好的疗效[20]。另有研究表明,在结肠直肠癌中使用生物活性物质维生素D3可以通过增加DKK1基因表达来调控Wnt/β-catenin信号通路[21]。使用维生素D3(100nmol/L)治疗结肠直肠癌细胞株SW480-ADH,2d后肿瘤抑制基因DKK1表达增加,而致癌基因DKK4表达降低,其具体的机制还有待进一步研究证实,但这也为我们治疗提供了一个方向,或许在白血病治疗中也有一定的参考意义。

四、问题与展望

表观遗传学的特点范文6

关键词:C-erbB2;启动子区CpG岛甲基化;肠道肿瘤;甲基化特异性聚合酶链反应

现代分子生物学认为肿瘤发生、发展的本质是细胞内遗传调控和表观遗传调控的紊乱[1]。表观遗传学的重要研究内容之一就是DNA甲基化。在肿瘤细胞中,异常甲基化最大的特点是全基因组低甲基化和局部性(CpG岛)高甲基化并存[2],这既是癌症发生的重要原因之一,也是癌症良恶转化的重要标志。目前发现癌基因活化和抑癌基因失活都与基因甲基化异常有关。近年来,国内外对肿瘤抑制基因启动子区CpG岛过度甲基化作了大量研究,已确认其为基因失活的一种重要机制[3],但是对致癌基因甲基化状态研究甚少。为探讨C-erbB2基因甲基化状态在肠道肿瘤发生、发展过程中的变化规律和意义,明确肠道肿瘤的发生、发展机制及为预后判断提供检测指标,本研究采用甲基化特异性聚合酶链反应(MSP)分析,以初步了解肠道肿瘤及其癌旁组织C-erbB2基因CpG岛甲基化的状态。

1 资料与方法

1.1一般资料 2013年~2014年上海市普陀区人民医院行手术治疗的40例肠道肿瘤患者的癌组织及其相应的癌旁组织,其中男20例,女20例,年龄40~92岁。经病理证实癌组织全部为腺癌,癌旁组织取自距肿瘤中心3cm处外观正常的组织。临床分期按UICC(国际抗癌联合会)标准:T1期0例,T2~T3期38例,T4期2例。标本于术中获取,甲醛固定,置-70℃冰箱保存。

1.2仪器和试剂

1.2.1仪器 ①Universal 16R型台式高速离心机(德国Hettich公司);②Gene Quant Ⅱ型RNA/DNA Calculator(瑞典pharmacia Biotech公司);③PTC-150型Mini CyclerTM (美国MJ RESEARC公司)。

1.2.2试剂 ①蛋白酶K(德国Merck K GaA公司);②TE缓冲液(pH8.0);③平衡酚(华美公司);④氯仿:异戊醇(24:1);⑤冷无水乙醇;⑥70%乙醇;⑦亚硫酸氢盐修饰试剂盒CpGenome DNA Modification Kit(CHEMICON公司,Cat NO.S7820);⑧10mmol/L dNTP,5U/μlTaq酶,25mmol/LMgCl2(上海生工生物工程公司);⑨Agarose B Low EEO(Bio Basic Inc公司);⑩Low MW DNA Marker-A(范围25bp~500bp,Bio Basic Inc公司);11引物由本实验室自行设计,上海生工生物工程公司合成。序列如下:甲基化特异引物:上游引物(MF)序列为:5'-TTTTACGGGGTTTTTTATTGC-3',下游引物(MR)序列为:5'-TAATACTCACTACGACTCCGACC-3'(产物120bp);非甲基化特异引物:上游引物(UF)序列为:5'-TTTTTATGGGGTTTTTTATTGT-3',下游引物(UR)序列为:5'-ATAATACTCACTACAACTCCAACC-3'(产物120bp)。野生型引物:上游引物(WF)序列为:5'-CCAGACTTGTTGGAATGC-3',下游引物(WR)序列为:5'- AAGAGGGCGAGGAGGAG-3'(用于监测亚硫酸氢盐修饰效果,产物352bp)。

1.3方法

1.3.1组织标本前处理 甲醛浸泡1w内的组织块剪碎后于PBS( pH7.4)中浸泡1h,换新鲜PBS再浸泡24h,最后加TE缓冲液匀浆后转入1.5ml Ep管中。

1.3.2基因组DNA抽提 采用本实验室试剂,用蛋白酶K消化-氯仿抽提法抽提组织DNA,以TE缓冲液溶解,并用紫外分光光度仪进行定量。

1.3.3 C-erbB2基因启动子甲基化检测

1.3.3.1 DNA亚硫酸氢盐修饰 取10μg DNA按修饰试剂盒CpGenome DNA Modification Kit的说明书操作步骤进行修饰。最后获得TE缓冲液洗脱修饰好的DNA,置-20℃保存。

1.3.3.2 MSP MSP基本原理:DNA经亚硫酸盐处理后,未发生甲基化的胞嘧啶转化为尿嘧啶,甲基化的胞嘧啶不发生转化,使用对甲基化和未甲基化DNA分别特异的引物进行PCR扩增,由此产生差异而加以区分[4]。PCR反应时,其中一对引物序列针对甲基化目的片段,若DNA处理后用该对引物能扩增出片段,说明该检测位点甲基化。两对引物都与未处理DNA序列无互补配对,高度特异。

PCR反应体系:修饰后DNA 200ng,10×Buffer 1μl,10mmol/L dNTP1μl,25mmol/LMgCl2 3.0μl , MF和MR(20pmol/μl)各0.8μl或UF和UR(20pmol/μl)各0.8μl,Taq酶(5 U/μl)0.5μl,蒸馏水补至20μl。采用热启动PCR,循环前95℃预变性5min后加入Taq酶,依次作如下循环(延伸条件均为72℃,30s):①95℃,30s;66℃,30s;②95℃,30s;64℃,30s;③95℃,30s;62℃,30s;④95℃,30s;60℃,30s;⑤95℃,30s;58℃,30s;以上5组参数各行3次循环;⑥90℃,30s;56℃,30s;⑦90℃,30s;54℃,30s;⑧90℃,30s;53℃,30s;以上3组参数各行4次循环。(9)90℃,30s;52℃,30s;该组参数行20次循环,共计47个循环后72℃延伸5min。最后4℃保存。PCR反应完毕,取5μl反应产物,加1μl溴酚蓝电泳指示液,于2.0%琼脂糖凝胶上电泳30min,以低分子量DNA Marker作为电泳条带参照,电泳结束后将凝胶置紫外灯箱观察结果。甲基化特异引物对MF/MR扩增阳性者为甲基化阳性;非甲基化特异引物对UF/UR扩增阳性且MF/MR扩增阴性者为甲基化阴性。以未经亚硫酸氢盐处理的DNA作为野生型引物的扩增模板,经Sss I甲基化酶处理成完全甲基化的DNA作为阳性对照,以设有甲基化阳性对照的实验判为C-erbB2基因CpG岛启动子未甲基化的DNA作为阴性对照。

1.4统计学方法 采用两样本率比较的χ2检验和四格表精确检验进行统计学分析。

2 结果

2.1癌组织和癌旁组织MSP结果 在所测40份肠道肿瘤标本中,21份癌组织检测到C-erbB2基因启动子CpG岛甲基化(52.5%)(其中11份癌组织中同时检测到甲基化和未甲基化条带),30份癌旁组织中检测到甲基化(75.0%)。40份肠道肿瘤癌组织和癌旁组织C-erbB2基因甲基化阳性率分别为52.5%(21/40)和75.0%(30/40),两者差异有统计学意义(χ2=4.38,P

2.2肠道肿瘤中C-erbB2基因甲基化与临床和病理特征的关系 见表1。

C-erbB2基因甲基化率在T2~T3、T4 期肠癌中分别为52.6%(20/38)、50.0%(1/2),两者差异无统计学性意义(P>0.05);与性别、年龄及淋巴结转移无关(P>0.05)。

3 讨论

3.1 C-erbB基因位于第17号染色体长臂(17q21),C-erbB2原癌基因正常情况不但不引起肿瘤,还具有重要生理功能,在细胞进行生命活动中必不可少[5]。研究表明,在多种细胞系和实体肿瘤中存在C-erbB2基因的扩增、过度表达、点突变或甲基化等改变,提示C-erbB2基因过度表达可能与多种肿瘤的发生、发展有关。

3.2 CpG岛通常出现在基因的5'端,是发生甲基化的区域[6]。正常细胞CpG岛多处于非甲基化状态,但细胞发生癌变时某些抑癌基因启动子区的CpG岛发生甲基化[7]。

3.3肠癌是我国消化系统最常见恶性肿瘤,本研究数据分析结果表明,C-erbB2在肠癌组织中有一定程度过甲基化,但与肠癌患者的性别、年龄、临床分期、有无淋巴结转移均无关,提示C-erbB2的低甲基化可能是C-erbB2蛋白高表达的原因之一。

3.4与肿瘤中遗传性改变不同,DNA甲基化改变是可逆的,因此通过去甲基化处理可以起到预防和治疗肿瘤的作用[7]。去甲基化药物在一些难治性肿瘤,特别是在白血病治疗方面已取得较好疗效[8]。

3.5 MSP法只需极少量DNA用于分析,具有灵敏、特异的优点。利用甲基化和非甲基化DNA单链序列的差异来设计不同的PCR引物,这类引物放大甲基化的DNA单链(MSP)或非甲基化的DNA单链。若引物选择和设计不当或者亚硫酸氢钠对DNA处理不完全,易导致假阳性,本研究通过专用软件设计引物,并设置野生型引物监测亚硫酸氢钠处理DNA的效果,较好解决了这一问题。

3.6热启动PCR和降落PCR的应用 低温下Taq酶仍有活性,热启动PCR可以降低非特异性产物。DNA复性时,温度过高,不利于引物与模板结合和引物延伸;温度过低,则会导致碱基对错配,导致假阳性出现,降落PCR在初始若干循环中选用高温变性和退火,有利于引物与模板特异性结合,在后继循环中,由于初始循环积累的产物与引物的结合有浓度优势,仍可得到特异性产物,使反应的特异性和敏感性都得以提高。

参考文献:

[1]Baylin SB,Herman JG.DNA hypermethylation in tumorrigenesis:epigenetics joins genetics[J].Trends Genet,2000,16 (4):168-174.

[2]Tycko B.Epigenetic gene silencing in cancer[J].J Clin Invest,2000,105(4):401-407.

[3]张嘉玲,苏秀兰.去甲基化在肿瘤治疗中的作用[J].中国误诊学杂志,2006,6(23):4531-4533.

[4]Herman JG,Graff JR,Myohanen S,et al. Methylation-specific PCR:a novel PCR assay for methylated status of CpG island[J]. Proc Natl Aead Sci USA,1996,93 (18):9821-9826.

[5]Weigelt B,Peterse JL,van 't Veer LJ. Breast cancer metastasis: markers and models[J]. Nat Rev Cancer, 2005,5(8):591-602.

[6]Ushijima T. Detection and interp retation of altered methylation pat2 terns in cancer cells[J]. Nat Rev Cancer,2005,5(3):223-231.