流体动力学原理及应用范例6篇

前言:中文期刊网精心挑选了流体动力学原理及应用范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

流体动力学原理及应用

流体动力学原理及应用范文1

摘 要 高能闪光照相是诊断致密物质内部几何结构和物理特性的最有效技术.高能质子照相在穿透能力、材料识别、空间分辨率等方面都优于X射线照相,已经成为美国先进流体动力学试验装置的优先发展对象.文章详细介绍了高能质子照相方案及其研究进展.

关键词 光电子学,质子照相,综述,质子加速器,磁透镜 

AbstractHigh-energy flash radiography is the most effective technique to interrogate inner geometrical structure and physical characteristic of dense materials. It is shown that high-energy proton radiography is superior to high-energy x-ray radiography in penetrating power, material composition identification and spatial resolution. Proton radiography is taken as a leading candidate for the Advanced Hydrotest Facility by the United States. The project and current development in high-energy proton radiography is reviewed.

Keywordsoptoelectronics, proton radiography, review, proton accelerator, magnetic lens

1 引言

高能闪光照相始于美国的曼哈顿计划(Manhattan project),并持续到现在, 它一直用来获取爆轰压缩过程中材料内部的密度分布、整体压缩的效果以及冲击波穿过材料的传播过程、演变和压缩场的发展的静止“冻结”图像.这一过程非常类似于医学X射线对骨骼或牙齿的透射成像.高能闪光照相有两个显著特点:首先,照相客体是厚度很大的高密度物质,要求能量足够高;其次,客体内的流体动力学行为瞬时变化,要求曝光时间足够短.

目前,世界上最先进的闪光照相装置是美国洛斯阿拉莫斯国家实验室(LANL)的双轴闪光照相流体动力学试验装置(DARHT)[1].它是由两台相互垂直的直线感应加速器组成的双轴照相系统,一次实验能从两个垂直方向连续拍摄4幅图像,并且在光源焦斑和强度方面都有提高.但是,DARHT也仅有两个轴,这是获得三维数据的最小视轴数目,最多只能连续拍摄4幅图像,不能进行多角度多时刻的辐射照相,获得流体动力学试验的三维图像.而且DARHT的空间分辨率受电子束斑大小的制约.由于电子相互排斥,电子束不能无限压缩,束流打到转换靶上,产生等离子体,使材料熔化,这在一定程度上扩展了束斑直径,从而使X射线光斑增大.估计最小的电子束直径为1—2mm,制约了空间分辨率的提高.

研究人员希望实现对流体动力学试验进行多角度(轴)、每个角度多时刻(幅)的辐射照

相,从而获得流体动力学试验的三维动态过程图像.l995年,美国LANL的科学家Chris Morris提出用质子代替X射线进行流体动力学试验透射成像[2].首次质子照相得到的图像,其非凡的质量出乎发明者的预料.后续的研究和实验也确认了这项技术的潜在能力.据Morris回忆, 20世纪90年代初期武器研制计划资助了一项中子照相研究.其立项的主要思想就是利用高能质子、中子和其他强子的长平均自由程,使其成为闪光照相的理想束源.Steve Sterbenz从这个思路出发,研究了使用中子照相进行流体动力学试验诊断的可能性.然而即使使用质子储存环(PSR)的强脉冲产生中子,中子通量都不足以在流体动力学试验短时间尺度下获得清晰的图像.当时的洛斯阿拉莫斯介子物理装置(LAMPF)负责人Gerry Garvey听到这种意见的第一反应是“为什么不用质子?” Morris将这些思想统一起来,利用高能质子束实现流体动力学试验诊断的突破,就是水到渠成的事[3].Morris指出:质子照相的实施应归功于现代加速器具有产生高能质子和高强度质子的能力.促使发展质子照相技术最重要的一步是Tom Mottershead 和John Zumbro提出的质子照相所需的磁透镜系统[4],以及Nick King 在武器应用中发展改进的快速成像探测系统[5].

高能质子束为内爆物理研究提供了堪称完美的射线照相“探针”,因为其平均自由程与流体动力学试验模型的厚度相匹配.射线照相信息通过测量透过客体的射线投影图像来获取.如果辐射衰减长度过短,则只有客体外部边界能够测量;如果辐射衰减长度过长,则没有投影产生.质子照相为流体动力学试验提供了一种先进的诊断方法.

2 质子与物质相互作用机制

高能质子与物质相互作用的机制是质子照相原理的基础.首先,需要从质子与物质的相互作用出发,对质子在物质中的穿透性和散射过程进行分析研究.

所有质子都在被测物质内部并与其发生相互作用.质子与物质的相互作用分为强作用力和电磁作用力[6].强作用力是短程力,质子与核的强作用力分为弹性碰撞和非弹性碰撞两种:

如果是弹性碰撞,以某种角度散射的质子保持其特性和动量,质子因受核力的强大作用,会偏转很大角度, 这种现象叫做核弹性散射(如果采用角度准直器,这部分贡献可以忽略);

如果是非弹性碰撞,质子被吸收,也就是说,损失大部分能量分裂核,产生亚原子粒子——π介子.当质子能量达到GeV量级,质子与原子核的强相互作用占主导地位.质子与物质原子核中的质子和中子发生非弹性核相互作用,造成质子束指数衰减,其衰减规律可表示为

NN0=exp-∑ni=1liλi,(1)

其中N0,N分别为入射到被测物体上的质子通量和穿过被测物体的质子通量; λi和li分别为第i种材料的平均自由程和厚度.当质子能量达到GeV量级,核反应截面几乎不变,单就穿透能力而言, 质子能量达到GeV量级就足够了.核反应截面不变有利于质子照相的密度重建,因为质子在客体中的散射过程可能导致质子能量发生变化.

由于质子带电,它也通过长程电磁作用力与物质相互作用. 当质子能量达到GeV量级时,电磁作用只能产生很小的能量损失和方向变化:

质子与原子核的库仑力作用称为弹性散射,穿过原子核的每个质子,即使和核并不接近,也能导致质子方向发生小的变化,每个小散射效应可以累积,这种现象叫做多重库仑散射. 多重库仑散射的理论由Enrico Fermi在20世纪30年代建立.质子与原子核之间的库仑力作用发生多重库仑散射,多重散射可以近似用高斯分布表示:

dNdΩ=12πθ20exp-θ22θ20,(2)

式中θ0为多次散射角的均方根值,可用下式表示:

θ0≈14.1pβΣniliRi,(3)

式中p为束动量,β是以光速为单位的速度,Ri是材料的辐射长度,其值近似地表示为

Ri=716AZ(Z+1)ln(287/Z),(4)

其中A是原子量,Z是原子序数.多重库仑散射的结果很重要,特别是对重物质,最终导致图像模糊.另一方面,因为Ri与材料的原子序数有关,也正是这个特性使质子照相具有识别材料组分的独特能力[7].

质子和电子之间也会产生库仑力作用,通常是非弹性的.因为电子质量与质子相比很小,库仑力的作用使电子方向和速度产生跃变,而对质子的方向和能量只产生缓变. 也就是说,质子通过电离原子(把电子击出轨道),损失小部分能量.这种作用不会导致质子运动方向大的改变,但会导致质子能量的减少.20世纪30年代著名的贝特-布洛赫(Bethe-Bloch)公式很好地解释了这种机制.能量损失依赖于质子束能量,能量损失速率与它的动能成反比.质子束穿过厚度为l的材料时,能量损失为

ΔT=∫l0dTdldl≈dTdll.(5)

当质子能量达到GeV量级,dT/dl的值几乎与动能无关.如果E和T以m0c2为单位,p以m0c为单位,则

E=T+1,E2=P2+1.(6)

因此,能量损失引起的动量分散为

δ=Δpp=dpdTΔTp=T+1T+2ΔTT.(7)

质子通过物体后损失能量,发生能量分散.磁透镜对不同能量的质子聚焦位置不同,也将导致模糊,这就是所谓的色差[8].

3 质子照相原理

质子照相原理与X射线照相原理都是通过测量入射到被测物体上的粒子束衰减来确定被测物体的物理性质和几何结构.

由于多重库仑散射,穿过被照物体的质子束有不同的散射方向,形成一个相对于入射方向的锥形束,需要磁透镜系统才能成像.如果质子照相的模糊效应持续存在的话,质子照相的潜力可能永远不会被发掘出来.1995年,Morris发现磁透镜能使质子聚焦进而消除模糊效应,最初进行的实验证实了他的观点的正确性.后来, LANL的另一位物理学家John Zumbro改进了磁透镜系统的设计方案,称为Zumbro透镜[4]. 

Zumbro透镜的主要优点是它的消色差能力.加速器产生质子束并非是单一能量的束流,实验客体对质子的散射增加了质子能量的分散,不同能量的质子具有不同的焦距,导致图像模糊.基于这样的考虑,Zumbro采用在入射质子束的路径上增加一个匹配透镜(matching lens),匹配透镜的设计使得入射到被测物体上的质子束具有角度-位置关联,即质子与透镜光轴夹角与质子离轴的径向距离成正比.而且,角度-位置的关联系数与成像系统磁透镜的设计有关[9]. 这样,可以消除由能量分散引起图像模糊的主要色差项.

剩余的色差项为

x=-x0+Cxθ0δ,(8)

式中Cx为透镜的色差系数,θ0为多重库仑散射角,δ为动量的分散.由(3)式和(7)式可知, 多重库仑散射角和动量的分散都与入射质子的能量成反比.因此,为了尽可能减小色差对空间分辨率的影响,质子束的能量越高越好.高能量意味着大规模和高造价,根据空间分辨率随能量的变化趋势以及大尺度流体动力学试验的精度要求,LANL为先进流体动力学试验装置 (AHF)建议的质子能量为50GeV.

质子照相技术的关键之处在于其独特的磁透镜系统.图1给出了LANL质子照相磁透镜成像示意图[10].首先,质子束通过金属薄片扩散,再经过匹配透镜照射到客体(匹配透镜除了减小色差以外,还可以使质子束在击中物体前发散开来,以便覆盖整个物体,避免了使用很厚的金属作为扩束器),这部分称为照射(illuminator)部分;接着是三个负恒等透镜组,分别是监控(monitor)透镜组、两级成像透镜组.

Tom Mottershead 和John Zumbro论证了可以根据库仑散射角的不同,在透镜系统的某个位置(傅里叶平面),可以将不同的散射质子束区分开来.在傅里叶平面,散射角等于0的质子位于中心,散射角越大,半径越大.离开这个透镜后,质子就能在空间上聚焦.如果在这个位置平面放置角度准直器,可以将某些散射角度的质子束准直掉,对允许的角度范围进行积分,得到总质子通量为

NN0=exp-Σniliλiexp-θ2min2θ20-exp-θ2max2θ20.(9)

第一个角度准直器允许通过的角度范围为[0,θ1cut],则第一幅图像接收到的质子通量为

NN0=exp-Σniliλi1-exp-θ21cut2θ20.(10)

第二个角度准直器允许通过的角度范围为[0,θ2cut],且θ2cut

NN0=exp-Σniliλi1-exp-θ22cut2θ20.(11)

角度准直器的使用增加了图像的对比度.根据物体的光程调节角度范围,可获得最佳的图像对比度.通过分析两幅图像得到的数据,可以提供密度和材料组分的信息.

考虑到探测器记数服从泊松统计分布,面密度的测量精度要达到1%,则图像平面上每个像素需要的入射质子数应为104,每幅图像大约需要的质子数应为1011. 如果一次流体动力学试验需要获得12个角度,每个角度20幅图像,则每次加速的质子总数达3×1013个.

4 质子照相装置

质子照相技术自1995年首次在美国LANL被论证以来,LANL和布鲁克海文国家实验室(BNL)进行了大量的实验,其中很多次是和圣地亚(SNL)、劳伦斯利弗莫尔(LLNL)以及英国原子武器研究机构(AWE)合作完成的,直接针对流体动力学有关的关键科学问题[11].实验主要分为两部分:一是在LANL的洛斯阿拉莫斯中子散射中心(LANSCE)上进行的小型动态实验(质子能量800MeV),小型动态实验主要包括:高能炸药的爆轰特性实验、金属和材料对强冲击加载的复杂响应实验(包括失效、不稳定性和微喷射等)以及验证内爆过程后期的材料动力学和材料状态的实验;二是在BNL的交变同步加速器(AGS)上进行的用于诊断大尺度流体动力学试验的高能质子照相实验(质子能量12GeV或24GeV).进行高能质子照相的目的是:发展高能质子照相所需技术,验证采用质子照相进行大尺度流体动力学试验的能力,以及与DARHT进行某些直接的比较.对于厚的流体动力学试验客体而言,质子照相的质量远好于DARHT的照相结果.如果DARHT要获得同样的照相细节,需将其剂量提高100倍.而且比照片质量更重要的是,质子照相具有定量的特性.质子照相因其低剂量、定量的密度重建、亚毫米空间分辨率以及超过每秒500万幅的多幅照相频率等特性而成为新一代流体动力学试验闪光照相设施的必然选择.

LANL为AHF建议的质子照相装置包括质子束源、照相布局、磁透镜成像及探测器系统,图2给出了质子加速器和分束系统方案[12].质子束源是一台能量为50GeV的同步加速器和12条束线,包括一台H-直线加速器注入器,一台3GeV的增强器和一台50GeV的主加速器.采用快速踢束调制器将质子束从3GeV增强器注入50GeV主加速器,经过同步传输系统和使用分束器将质子平均分成多个子束.最后从多个方向同时照射到实验靶上.质子束穿过实验靶后,磁透镜系统对质子束信号进行分类,由探测系统记录数据.实验布局的复杂性都远远超出了闪光照相实验.

图2 LANL的质子加速器和分束方案

LANL提出的质子照相装置的主要指标:质子束能量达到50GeV,空间分辨率优于1mm,密度分辨率达到1%;每次加速的质子总数达3×1013个,每幅图像的质子数达到1×1011个;每个脉冲的间隔最小为 200ns,质子到达靶的前后误差不超过15ns;每个视轴可连续提供20个脉冲,视轴数12个,覆盖角度达165°.这样,一次流体动力学试验可获得12个角度,每个角度20幅图像.

2000年,LANL给出了发展质子照相的研究计划.整个装置预计投资20亿美元,其中质子加速器系统使用原有的部分设备,需要5678.8万美元.装置的建造时间需要10到15年,分几个阶段进行:2007年前,建造50GeV同步加速器、2个轴成像系统和靶室1;2008—2009年,建造3MeV增强器(booster)、4个轴成像系统和靶室2;2010—2011年,8—12个轴成像系统.从目前的调研情况来看,原计划2007年前完成的任务没能按期完成.因此,这个计划要推迟.最新的研究计划未见报道.

5 质子照相与X射线照相的比较

我们通过与现有最好的流体动力学试验装置——DARHT比较来说明质子照相的特点和优势[13].

(1) 三维动态照相. 由于质子加速器固有的多脉冲能力和质子束分离技术,因此,质子照相能够提供多个时刻、多个方向的三维动态过程图像.质子照相能够提供超过20幅的图像,这种多幅能力可得到内爆运动过程的动态图像. 而DARHT沿一个轴只能得到4幅图像,沿其垂直轴得到1幅图像.另外,质子照相不需要转换靶,保证了多次连续照相不受影响,而X射线照相由于需要转换靶,需要考虑束斑的影响.

(2) 精细结构分辨.高能质子穿透能力强,其穿透深度和流体动力学试验模型达到理想匹配.相比之下,X射线只有在4MeV能量时才能达到最大图像对比度,此时其穿透能力只有高能质子的1/10. 质子照相能测定密度细微变化的另一个理由是质子散射能得到控制. 散射质子可以被聚焦形成视觉上无背景、对比鲜明的图像.而实验客体对X射线形成的大角度散射无法控制,降低了照相的精度和灵敏度.

(3)质子对密度和材料都比较敏感,可以分辨密度差别不大的两种物质.实际上,质子散射的利大于弊,它能用于识别物质的化学组成.利用两个相同的磁透镜系统和不同孔径准直器串联组成的两级成像系统,通过对两种不同准直孔径得到的数据进行分析,可以提供材料的密度和组分信息.而X射线只对密度敏感,故分辨不出密度差别不大的两种物质.

(4) 曝光时间可调.质子加速器能够产生持续时间为100ps、间隔为5ns的“微小脉冲束”,每幅图像可用8—20个脉冲的时间进行曝光.因此,质子照相可任意选定曝光时间和间隔.内爆初期,研究人员可以选择较长的曝光时间和间隔,对较慢的运动进行连续式“冻结”照相.当内爆速度变快时,可以缩短曝光时间.DARHT的脉冲时间由电路决定,一旦脉冲的时间间隔和持续时间固定,只能以固定的时间间隔照相,研究人员只能指定第一幅图像的时间.

(5)探测效率高.质子是带电粒子,直接与探测介质中的电子相互作用产生信号,因此,很薄的探测器就能将质子探测出来.如此薄的探测介质接收不到被探测客体中产生的中子和 γ光子.

(6)空间分辨率高.X射线照相是X射线穿过样品打到闪烁体或底片成像,没有聚焦过程(事实上,对4MeV的X射线还没有聚焦办法),图像的空间分辨率由光源的尺寸(焦斑)决定.质子散射虽然也会引起图像模糊,但质子散射是可控的,可以通过磁透镜聚焦成像.磁透镜不仅能聚焦质子,而且能减小次级粒子的模糊效应.但不同能量质子的聚焦不同,也将导致模糊.Zumbro改进了透镜系统,消色差提高了图像品质.对于小尺寸物体的静态质子照相,空间分辨率可到100μm,最近的质子照相实验已达到15μm,并有达到1.2μm的潜力.

6 结束语

质子照相是美国国防研究与基础科学相结合而诞生的高度多用性的发明.质子照相若不是与国防基础研究共同立项,也绝不会有如今的发展.雄厚的武器实验基础能持续提供人员和创新技术.质子照相极大地提高了流体动力学试验的测量能力.它所具有的高分辨率能够精细辨别内爆压缩的细节,多角度照相有利于建立完整的流体动力学模型,多幅连续照相更加容易判断冲击波和混合物随时间变化的情况.近年来,科学家们加紧了对高能质子照相的研究.目前,X射线照相仍然是流体动力学试验的主要设备.总有一天,质子照相将代替X射线照相并对流体动力学试验进行充分解释.

参考文献

[1] Burns M J, Carlsten B E, Kwan T J T et al. DARHT Accelerators Update and Plans for Initial Operation. In: Proceedings of the 1999 Particle Accelerator Conference. New York, 1999.617

[2] Gavron A, Morris C L, Ziock H J et al. Proton Radiography. Los Alamos National Report, LA-UR-96-420, 1996

[3] Morris C L. Proton Radiography for an Advanced Hydrotest Facility. Los Alamos National Report, LA-UR-00-5716, 2000

[4] Mottershead C T, Zumbro J D. Magnetic Optics for Proton Radiography. In: Proceedings of the 1997 Particle Accelerator Conference. Vancouver B C, 1997. 1397

[5] King N S P, Ables E, Alrick K R et al.Nucl. Instrum Methods in physics research A, 1999, 424(1): 84

[6] Fishbine B. Proton Radiography Sharper “X-Ray Vision” for Hydrotests. In:The Winter 2003 Issue of Los Alamos Research Quarterly. Los Alamos National Laboratory, 2003

[7] Aufderheide III M B, Park HS, Hartouni E P et al. Proton Radiography as a Means of Material Characterization. Lawrence Livermore National Laboratory, UCRL-JC-134595, 1999

[8] Amann J F, Espinoza C J, Gomez J J et al. The Proton Radiography Concept. Los Alamos National Laboratory, LA-UR-98-1368, 1998

[9] Barbara B, Andrew J J. Chromatically Corrected Imaging Systems for Charged-Particle Radiography. In: Proceedings of the 2005 Particle Accelerator Conference. Knoxville, 2005. 225

[10] Andrew J J, David B B, Barbara B et al. Beam-Distribution System for Multi-Axis Imaging at the Advanced Hydrotest Facility. In: Proceedings of the 2001 Particle Accelerator Conference. Chicago, 2001. 3374

[11] Morris C L, Hopson J H, Goldstone P. Proton Radiography. Los Alamos National Laboratory, LA-UR-06-0331, 2006

流体动力学原理及应用范文2

Verification and Validation

in Scientific Computing

2010,780pp

Hardback

ISBN9780521113601

科学计算中的进展使得建模及模拟成为工程、科学及公共政策决策过程中的一个重要部分。验证和确认是建立在定量准确性评价的概念上的。本书提供了用于模型和模拟验证和确认的基本概念、原理及步骤的全面与系统的发展过程。它的重点放在了利用偏微分方程描述模型和模拟上面。书中所描述的方法可以应用于广泛的技术领域,诸如物理科学、工程及技术,以及工业、环境管理与安全、产品与设备安全、金融投资和政府管理中。

本书共有16章,除第1章外分成5个部分。1.绪论,内容包括建模与模拟的历史及现代的作用、科学计算的可信度、本书的内容概括与使用。第1部分 基本概念,含第2-3章,2.基本概念与术语;3.建模与计算模拟。第2部分 代码验证,含第2-3章,4.软件工程;5.代码验证;6.正确解法。第3部分 解法验证,含第4-6章,7.解法验证;8.离散化误差;9.解法适应。第4部分 模型的验证与预测,含第10-13章,10.模型验证基础;11.确认实验的设计与执行;12.模型准确性评价;13.预测能力。第5部分 涉及规划、管理及实施的问题,含第14-16章,14.建模与模拟的规划与优先化;15.建模与模拟的成熟度评价;16.验证、确认及不确定性量化的开发与责任。

本书的第一作者具有在流体动力学、传热、飞行动力学及固体力学领域39年的研究与开发经验。并且在计算和实验两个领域工作过,他教授过验证和确认领域的30门短课程。现在,他带着技术人员的杰出代表的荣誉已从美国Sandia国家实验室退休。

本书的第二作者是弗吉尼亚理工学院航空与航天及海洋工程系的副教授。他于1998年从北卡罗来纳州立大学获得博士学位后,作为高级技术人员在美国Sandia国家实验室工作了5年。他在计算流体动力学领域发表过许多有关验证和确认的文章。2006年,他因计算科学与工程中的验证和确认方面的研究工作而获得美国青年科学家总统奖(PECASE)。

本书将会受到那些寻求改进模拟结果的可信度及可靠性的各个领域中的研究人员、专业人员及决策者的热诚欢迎。它的内容也适合用作大学课程或供人们自学。

胡光华,

退休高工

(原中国科学院物理学研究所)

流体动力学原理及应用范文3

关键词:流体力学;教学理念;内容调整;教学方法;教学改革

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2014)04-0041-02

流体力学是研究流体平衡和运动规律的一门科学,是力学的一个重要分支,已广泛应用到国民经济的各部门。工程流体力学课程在哈工大是机械类、材料类、仪器仪表类、航空航天类、建筑工程类、热能动力类、流体动力工程类等专业必修的技术基础课程,既有基础学科的性质,又具有鲜明的技术学科的特点,既与高等数学、大学物理、理论力学等课程有紧密的联系,又是专业课的基础,是一门理论性和工程实际意义都较强的课程[1]。哈工大流体力学教研室成立于1956年,历来重视教学研究及教学质量,不断积累教学经验,改进教学思想,在基础教学与实验设施、师资队伍建设、教学质量、教学研究与改革等方面都取得一系列成果,居于国内领先水平,并于2009年被评为国家精品课程,目前正在进行国家精品资源共享课程的升级。虽然取得了一系列的重要成绩,但是仍然存在一些问题,需要进一步转换观念,从当前社会的实际需求出发,深入进行教学模式和教学内容等方面的研究和探索。

一、改革教学理念

课程建设的目的是提高教学质量,归根到底是提高学生培养的质量,而学生质量的衡量标准则是其综合素质及能力。工程流体力学课程的特点是抽象概念多,数学分量重,理论性较强,许多复杂的流动物理现象难以用言语和具体图像清晰地表述[2]。工程流体力学课程中有很多较难的知识点,例如流体微元运动的Cauchy-Helmholts速度分解定理、粘性流体的运动微分方程、边界层基本方程及近似计算等,这些知识点包含了大量的数学推导,往往要占用很多课时,同时这些理论知识的讲解又是空洞和死板的,无法激发学生的学习热情。即使是多数教师能够本着负责的态度将这些知识难点讲解清楚,也往往并不能使学生对这些难点留下深刻的印象。这种教学过程是事倍功半的,容易引起学生对这些知识做机械的符号记忆或者陷入对推导严密性的过度钻研,无法建立起流体力学的全局思维方式,进而也不能提高学生的综合分析应用能力。因此,教师在授课过程中要不断引导学生梳理所讲授的知识,使学生能够运用流体力学知识进行综合分析。要让学生明白,流体力学的学习不是背定理、记公式,而是要通过学习这门课程,掌握一门新的科学知识,了解它的人文背景,学习它的思想和方法,掌握它的原理和应用。学生是课程学习的主体,在教学过程中需要注意教与学的同步,授课时关注学生的反映,根据学生的反应对授课进行调整,必要时放慢节奏或变换讲解方法,也可以让学生参与讨论。学生有必要参与到深层的学科知识应用中,因此可以让同学参加与学科相关的科学研究,引导同学应用流体计算模拟软件,实现模拟实验[3]。教师对学生的实践引导可以消减同学对流体力学公式繁多的苦恼,而在实践能力不断提高的过程中,学生的创新意识和能力将得到很大的锻炼。实践证明,学生可以完成适当的工程流体力学课程内容的拓展研究,实现课程与科研工作的相互促进。在积极开展第一课堂的同时,还应该引导学生参加第二课堂活动,激发学生创造热情,培养学生科学素质和创新精神,提高学生获取知识、运用知识的能力和创新能力。例如科技创新和节能减排大赛这样的大学生科技活动是开展素质教育的重要平台,为学生提供了施展才能、张扬个性的舞台,使学生得以将课本所学知识充分的运用,并从制作和创新过程中学到了比课本更多的知识,提高了其知识综合运用能力、实践动手能力。流体力学教师应该充分利用流体力学知识应用面广、基础性强的特点,引导并指导学生参与此类科技活动。另外,流体力学教师还应该经常举行科技讲座,丰富学生的专业和学科知识,培养学生的科研意识和科学精神。

二、课程内容调整

目前所使用的工程流体力学课程内容包括了流体静力学、流体动力学、漩涡理论基础、理想流体平面势流、粘性流体动力学、相似理论基础、流动的阻力与损失、管路的水力计算、粘性流体绕物体流动、气体动力学基础、机翼及叶栅理论、流体要素测量等内容。总的来说涵盖了流体力学工程应用的多数情况,但是结构仍然需要进一步调整。首先,工程流体力学课程内容较多,多年未更新,有些知识也趋于老化,应适当地对内容进行增减。2006年专业调整后,能源与动力工程本科教学按一级学科制定教学内容,在这种体系下,工程流体力学课程应在主体结构保留的情况下,对于涉及到工程热力学和空气动力学的内容进行删减,避免不同课程的内容重复,使课程之间的界线更加明晰。这样的好处就是,学生利用有限的课时可以将流体力学主体结构体系学得更好。另外,由于工程流体力学更多的应该涉及流体力学的工程应用,所以关于漩涡理论、理想流体平面势流及粘性流体绕物体流动章节内涉及的较多理论性知识且与工程应用关系不大的应该适当精简,减少课时占用。其次,工程流体力学课程内容应适当增加与工程应用相关的内容。美国著名的流体力学教材《Mechanics of Fluids》(Prentice Hall International Editions出版)选取了贴近工程实际的管道流动、叶轮机械流动、环境流体力学等内容,作为经典流体力学主题内容的有机补充[4]。哈工大工程流体力学课程也应该针对学校定位及专业设置,在广泛调研开课专业的需求基础上,适当增加有普遍性、代表性的工程应用知识。最后,工程流体力学课程内容应更新与近期科技发展紧密联系的内容。由于教材不可能年年更新,教师应该在教材内容基础之上,适当增加与科技进展相关的内容,例如流动的虚拟实验、流体参数的现代化测量、流体力学的发展现状、流体力学的最新应用情况等,让学生了解到流体力学的科技前沿,开拓学生视野,增强其学习流体力学的热情和兴趣。

三、改革教学方法

关于教学方法,哈工大流体力学教师较早地采用了不完全教学法、潜科学教学法、社会探究法、问题教学法、角度教学法等创新性教学法,将教学内容、教学媒体、教师活动、学生活动等课堂教学要素有机组织起来,发挥整体的最大效能。强调学生通过主动探求问题解决的途径和方法,培养能力,以展素质;并将多媒体技术的运用与传统教学手段、教学形式的改革统一起来,突出重点,突破难点,从而充分调动和激发学生的学习兴趣和积极性。目前多媒体教学在高等教育中的应用越来越广,在如何正确使用多媒体教学的问题上目前还有一些争议和讨论。工程流体力学课程知识点多,公式推导多,难度大,对于具体的知识点利用板书详细推演在课堂教学中占用了大量的课时,同时也会影响到学生对流体力学整体思维的把握。由于工程流体力学课程的特点,很多流动现象概念比较抽象,难以用板书表达清楚,很显然传统教学方式达不到理想的教学效果。利用多种媒体手段可以更好地创设教学意境,变抽象为具体,变静态为动态,变黑白为彩色,变无声为有声,通过丰富的图例、连贯的动画以及真实的实验录像,可以使枯燥、乏味的内容变得趣味盎然,使抽象、晦涩的内容变得直观生动,同时也丰富了学生的信息量,可以更好地激发学习兴趣[5]。另外,流体力学的特点是数学分量重、理论性强,所以又不能过多依赖多媒体教学。对于涉及到重要理论公式推导的内容,简单地将推导过程搬到课件上去,并不能使学生了解重要理论公式的来龙去脉,也难以加深学生对这些关键知识点的理解程度。这个时候需要收起屏幕,用板书认真书写每个符号,推导每个关键公式,并解释其中的物理概念和意义。多媒体和板书都有各自的优缺点,因此我们可以取其长而避其短,采用两者兼顾而又两者不弃的原则,交互使用,相辅相成。

四、更新考评制度

哈工大工程流体力学课程作为技术基础课,目前采取了综合性的考评方法,总成绩由作业、实验、考试三部分组成,学生共计要完成60题左右的作业,由教师进行判分并作为总成绩的10%;共计要完成11项左右的实验,根据学生对每个实验原理和操作技能的掌握及实验报告的质量情况分为优、良、及格、不及格来评定成绩,若有两次不及格或者缺席者必须重做否则不得参加期末考试。实验课成绩占课程总成绩的10%。期末考试为闭卷,占总成绩的80%。流体力学考试的组卷与课堂教学内容息息相关,课堂教学如果注重内容的应用性、灵活性和综合性,则在组卷时应适当减少客观题,丰富试题类型,加大理解性和综合性题目的分量,避免记忆性成分所占比重较大,而学生临近考试加班加点应付考试的现象。另外,根据课堂教学和课外科研实践的特点,对于偏重于工程应用的专题,可以探索利用撰写科技论文、提交科研作品的方法进行考试,与传统考试成绩综合来建立起更合理、更具实践意义的考评制度。

工程流体力学课程是面向工程应用人才的课程,所以教学核心始终应该是学生知识应用能力的培养。为此,在教学中贯穿流体力学思维模式和综合分析解决问题能力的锻炼,使学生学有所成、学有所用,是工程流体力学课程改革的一个长期方向。

参考文献:

[1]陈卓如,金朝铭,等.工程流体力学[M].北京:高等教育出版社,2004.

[2]赵超.“流体力学”课程教学方法探索.中国冶金教育[J].2010,(5):63-64.

[3]李岩,孙石.《工程流体力学》课程教学改革与实践.科教文汇[J].2008,(11):88-89.

[4]C.P.Merle,C.W.David.Mechanics of Fluids(second edition)[M].NJ(U.S.A.):Prentice Hall International Editions,1997.

流体动力学原理及应用范文4

【论文摘要】针对目前液压传动课程教学过程中存在的主要问题,本文试图从学生心理、社会需求这一视角出发,大胆进行课程教学改革,寻找一条适合现代教学理念的教学新路子。

液压传动课程是机电一体化类、机械制造、数控技术等机械相关专业一门重要的专业基础课程。也是机械类各专业课中难度较大的课程之一。对该专业学生而言,动手能力的培养非常重要。如何开展教学活动,让学生实现真正去做,是全面实施素质教育对教学改革提出的要求。因此,本文针对液压传动课程自身特点和教学过程中存在的问题,为提高教学质量,培养学生创新实践能力,从学生心理、社会需求出发,对教学改革作了一些有益的探讨。

一、目前液压课程教学存在的问题

(一)内容多,学时少

使学生能够阅读、设计一个完整的液压传动系统是“液压传动”课程的教学目的。要达到这一教学目标,应对以下内容进行讲解:流体动力学的基本理论、液压元件的结构原理、液压基本回路及液压系统。这些内容前后相关,在教学过程中需通盘考虑,缺一不可。传统教学计划中总教学课时在100学时以上,现在随着教学计划的改革,教学学时已缩减至50学时左右。如何处理好教学学时与教学目标这一矛盾,是该课程教改面临的首要问题。

(二)学习困难

液压传动以流体力学为理论基础,概念、原理较抽象,各类元件及传动的原理非常不直观,学生较难理解和掌握。同时,该门课程实践性也较强,教学过程中安排的四个实验项目,绝大多数为验证性实验,实验课上很多学生是“看”实验,而不是“做”实验,即便动手做,也只是动手不动脑,很少去思考为什么要这样做。由此导致学生理论学习困难、应用基本不会的局面。

二、教学方法探讨

针对以上液压传动学习过程中存在的问题,如何改变传统的理论授课、集中实验、期终考试的教学方式,以激发学生的学习兴趣,调动学生的学习积极性,让学生在学习过程中把理论和实践结合起来,可进行以下教学改革。

(一)依据必需、够用原则安排教学内容

液压传动课程主要由三部分内容组成:流体动力学、液压元件、液压回路。这三部分内容既有自身的特点和知识体系,彼此之间又有一定的内在联系。这就导致学生在学习这门课时产生一种“内容繁杂、知识散乱”的迷茫感觉,课程的知识要领很难把握。如何使学生抓住学习的重点和难点,这是教师在教学中需要面对的难题之一。对此,在课程的理论教学过程中,应坚决贯彻“必需、够用”的原则,在阐述基本概念和基本理论的同时,重点突出其技术的应用和实用,大量删减理论偏深、偏多的推导及证明。在教学内容安排上,一是应打破原有的编排顺序,将流体力学和液压元件基本原理、液压元件原理和液压回路分析等有关内容结合起来讲授,加强知识的连贯性,以利于学生的理解、接受和记忆。二是应重点介绍液压元件作用、基本回路的特性、整机系统的分析等。三是应简要介绍目前新型液压技术。 (二)依据学生主体原则采取教学措施

目前,大学液压传动课程教学过程主要以教师授课为主导,而学生的学习主动性不高,这与培养实用型人才的目标相悖。激发学生主体意识的重要手段是激发学生的兴趣,兴趣是推动学生学习的内在力量。因此,课程教学改革应充分考虑学生及社会实际需求,从学生心理需求出发调动学生的学习积极性与主动性,始终贯穿着学生主体原则,改变过去那种“我讲你听”的“满堂灌”的填鸭式教学方法,探讨新的教学模式,提高教学质量与效果。首先,学生自主学习,应先给学生提出些问题及要求,让学生带着问题和要求去自学,培养大学生从书本中获取知识的能力。教师应通过多种途径引导学生从被动地接受中走出来,强化学生的主体意识,激发学生的学习潜能,实现学生的自主学习。教师应让学生懂得教师只是他们的疏导者和助学者。其次,应进行多种方式的理论讲授。在学生自学基础上,教师对课程中每一章节,都应开展重点、难点部分的理论讲授。教师可根据每一章节自身特点,采用多种方式,如液压元件部分采用直观性教学方法,让学生对照实物,学习元件工作原理,组织学生讨论;鼓励学生发表意见,最后由教师总结归纳。这样教师可减少繁琐的简单说教,学生也可得到必要的锻炼。回路部分采用多媒体教学方法,用动画形象生动地表现回路的中液压油的流动方向,执行元件的运动等,控制过程一目了然,加上讲解,可收到事半功倍的教学效果。最后,学生自拟实验。液压传动课程是一门实践性很强的专业基础课,学生能否实际运用所学理论知识与实验内容和实验教学方法有关。因此,应结合实验室条件,删除部分验证性实验,同时增加动手型、设计性实验。教师在此类实验中只对学生提出实验内容、实验要求,提供实验设备,由学生根据所学的液压基本理论知识,自己拟定实验方案、实验步骤,选配相应液压元件,连接液压回路,并独立操作,自行发现并解决问题。这样,就能为学生创造主动思考和主动参与的机会,从而培养学生独立分析问题、解决问题的能力。

流体动力学原理及应用范文5

关键词:小水线面双体船 船舶阻力 数值模拟 粘性绕流 计算流体力学软件

小水线面双体船又称为半潜式双体船,是一种为了改善耐波性、减小兴波阻力,将常规双体船的片体在水线处缩小宽度形成狭长流线形水线面的双体船型。

小水线面双体船由常规双体船发展而来,和常规双体船一样,具有甲板面积宽广、使用空间规整而充裕、横向稳定性好等优点。此外,小水线面双体船还具有其他的一些优点:高速航行时,静水阻力性能和波浪阻力性能好;螺旋桨轴线沉深较大,推进效率高;水线面面积小,耐波性能好;易实施联合控制操纵系统,操纵灵活,航向稳定性及其回转性能良好;船体表面外形简单,便于模块化设计和建造,建造成本低周期短;静稳性好,具有较强的生命力。

目前,世界各主要造船国家都在致力于小水线面双体船的研究开发,并将其应用军船和民船之上。而船舶阻力作为船舶快速性能的重要方面,是进行小水线面双体船设计首要予以保证和优先进行研究的。

小水线面双体船阻力及其研究方法

小水线面双体船总阻力Rt主要包括兴波阻力Rw、粘性阻力Rv、附体阻力Rap和波浪中航行时的阻力增值Raw,即:

Rt=Rw+Rv+Rap+Raw (1)

与单体船一样,小水线面双体船的阻力研究方法有理论计算分析法、数值模拟法和模型试验法等三种。理论计算分析方法有线性理论、面元法理论及经验公式估算等;常用的数值模拟方法有有限差分法、有限体积法、有限元法、有限分析法等;模型试验对于小水线面双体船阻力的确定仍然起着决定性的作用,常用来验证其他阻力研究手段的可靠性。

小水线面双体船阻力数值模拟方法研究

水动力性能的数值模拟是通过计算流体动力学(Computational Fluid Dynamics,CFD)软件来实现的。CFD软件是专门进行流场计算、分析和预报的软件。通过CFD软件数值模拟,可以计算、分析并显示发生在流场中的各种现象,可以得到比模型试验更多的流场信息;在比较短的时间内,可以进行水动力性能的预报,在多目标方案选优方面有着广泛的应用;也可以通过改变各种参数预报性能,达到单目标优化的目的。

1、几何模型的建立

某小水线面双体船片体的主要尺度:下潜体长度LB=59.67m,下潜体直径DB=3.32m,支柱体长度 LS=38m,支柱体沉深HS=2.73m,支柱体最大厚度tS=1.6m,两片体中心距2b=16m。

建立几何模型:首先,根据支柱体和下潜体的外形生成坐标数据,进行适当的处理后建立建模软件能够识别的数据点文件;然后,在建模软件中导入数据点文件,分别建立几何体;最后,进过布尔运算等处理生成一个完整的片体实体模型。

小水线面双体船的两个片体及其流场左右关于船体中纵剖面对称,基于加快数值模拟计算速度方面的考虑,只需建立一个片体模型并设置对称面便可实现整个流场的模拟。

2、构建计算控制域

数值模拟的目的是得到小水线面双体船片体以一定航速在静水中航行的阻力及流场信息。在进行数值模拟的时候,根据运动的相对性,可以将片体模型固定在一个位置,而给水流一个来流速度。

小水线面双体船实际航行的时候,可以认为片体处于无界的流场中。因此,从理论上讲,进行数值模拟的时候也应该将片体模型放置在一个无限大的流场中,才能保证数值模拟与实际情况相符。然而,在实际计算中计算控制域不可能取到无限大,我们只有根据片体模型的尺寸和实际流场计算的要求建立适当大小的控制域。在数值模拟中,控制域的外形也是非常重要的,它影响到网格划分的网格划分的网格类型和网格质量,进而对数值模拟的精度和需要的时间产生重大的影响。

计算控制域分上、下两个部分,上部分控制域流过的流体是空气,下部分控制域流过的流体是水。控制域为一长方体,其尺寸长(x轴,船长方向)为456m、宽(z轴,船宽方向)为100m、高(y轴,吃水方向)155m。

3、网格划分

双体船阻力数值模拟中,网格划分的原则:①双体船表面网格大小应约为设计水线长度Lwl的6‰;②建议细化流场网格系数r*

由于片体表面不规则,不易生成结构化网格,所以本文在片体表面采用了非结构化的四边形面网格,减小假扩散误差,提高计算精度。体网格采用四面体、六面体和楔形的混合网格单元。

根据双体船网格划分的原则及计算机硬件配置情况,共生成了214万个混合型体网格单元,网格质量EQUISIZE SKEW≤0.88。

4、定义边界条件

根据具体的数据模拟问题的定义边界条件,来流方向沿x轴指向负方向,我们将右侧表面设定为空气速度入口和水流速度入口(velocity inlet,专门用于不可压缩流动入口定义);假定出口表面处水流不受片体扰动的影响,我们将左侧表面设定为自由流出口边界(outflow,用于充分发展的自由流出口边界定义);进行数值模拟的目的是求解片体所受阻力大小,所以将片体表面设定为壁面边界(wall,无滑移壁面条件);控制域的侧向表面及两片体流场的对称面均设定为对称边界;将整个控制域设定为流域中的流体性质。

5、求解设定与计算

采用三维单精度求解器。首先,进行网格的处理及模型尺寸比例的设定,包括网格检查、光滑、粗化及模型比例设定;其次,求解的设定,采用分离式求解器非稳态求解,用VOF模型对自由液面进行捕捉,选用工程上常用的标准k-ε湍流模型,对于近壁区域采用壁面函数法进行处理,两相流方面将空气设置为第一相、水设置为第二相,选择精确的界面跟踪方法几何重构公式模拟,运行环境考虑重力的影响,并且进一步设置边界条件参数;再次,求解的控制,选用SIMPLE算法进行压力和速度耦合,欠松弛因子保持默认,对压力采用PRESTO!离散动量插值采用二阶迎风格式,压力用Geo-Reconstruct格式,其他均用一阶迎风格式,根据问题的需要进行多重网格和参数限制进行设定,进行求解初始化和两相流状态初始化,分别设置残差监视器、阻力监视器等作为判断收敛标准。最后,进行数值模拟计算至结果收敛。

数值模拟结果

数值模拟结果的后处理:计算至收敛以后,根据需要分别提取残差监视曲线图、阻力系数监视曲线图、片体表面动压力分布图、空气体积分数分布图以及采集片体所受阻力D。

根据采集的不同航速时候片体所受阻力数据D,求得总阻力R。以航速V为横轴,总阻力R为纵轴绘制出小水线面双体船阻力曲线图。

结论

本文对小水线面双体船阻力进行了分析,并对其数值模拟方法具体过程进行了研究。通过分析研究,可以得到如下结论:①数值模拟方法可以很好地进行小水线面双体船流场计算、分析和预报,进而预报其水动力性能;②通过对流场的计算分析和预报,计算流体动力学软件可以简单方便地进行小水线面双体船阻力计算和预报,为船舶快速性设计提供依据;③通过对流场的计算分析和预报,计算流体动力学软件可以直观形象地显示发生在流场中的各种现象,得到比模型试验更多地流场信息;④在船舶粘性数值模拟自由液面的模拟和捕捉上,VOF模型具有一定的优势;⑤数值模拟方法可以在比较短的时间内进行小水线面双体船水动力性能的预报,在多目标方案选优方面有着广泛地应用,并通过改变各种参数预报性能可以达到单目标优化的目的。

参考文献:

[1]赵连恩,谢永和.高性能船舶原理与设计[M].北京:国防工业出版社,2009.

[2]李云波. 船舶阻力[M].哈尔滨:哈尔滨工程大学出版社,2006.

流体动力学原理及应用范文6

关键词:汽车CAE;力学专业;数值模拟能力;课程体系

作者简介:丁军(1978-),男,重庆人,重庆理工大学机械工程学院,副教授;黄霞(1977-),女,四川射洪人,重庆理工大学机械工程学院,讲师。(重庆 400054)

基金项目:本文系重庆市高等教育教学改革研究项目(项目编号:112013)的研究成果。

中图分类号:G642 文献标识码:A 文章编号:1007-0079(2013)35-0051-02

力学是研究物质机械运动规律的科学。它以理论分析、实验验证和数值模拟为主要研究手段,揭示和解决工程技术中的普遍规律和共性问题,涉及航空、航天、造船、核能、建筑、机械、汽车、环境、生物医学等诸多领域。它包括力学中的基本问题和方法、动力学与控制、固体力学、流体力学、生物力学、爆炸与冲击动力学等学科。[1]力学基础课程和力学基础知识是大多数工科专业,特别是机械、汽车相关领域的必备基础。力学具有基础和技术学科的双重特征,力学专业不仅十分关注科学技术的发展前沿,成为推动新学科发展的重要力量,而且特别注重解决工程实际问题。例如在固体力学的范畴内,新材料的发展带来了新的固体力学问题。当经典力学的连续、均匀、小变形假设不再成立时,要想找到精确解是不可能的,唯一解决手段是计算力学方法。另一方面,在经济和社会发展中的重大工程问题中,例如交通运输、先进装备以及航空航天等领域,工程力学的作用越来越大。现代力学问题追求更加真实的工程环境以及跨尺度、多物理场耦合的相互影响,因而提出了大量的数值模拟仿真问题,计算力学是解决工程数值模拟关键技术的主要手段。[2-3]我国著名科学家钱学森曾经预言:在21世纪,“力学加计算机将成为工程设计的主要手段”。[4]当今数值计算理论及CAE仿真技术的飞速发展验证了钱老的真知灼见。

重庆理工大学(以下简称“我校”)地处我国兵器工业和装备制造业的集结重镇——重庆。汽车、摩托车产业和装备制造业是重庆市经济发展的重要支柱产业,是催生重庆市地方区域经济发展的新增长点,促进和推动重庆市经济快速稳步增长的核心和动力。目前,重庆已发展成为全国重要的汽车生产基地、世界最大的摩托车零部件制造基地和全国最大的摩托车整车生产基地。《2013重庆经济展望》指出:2012年全年,重庆市汽车、摩托车产值高达3600亿元,预计2013年汽车、摩托车产业总值将达到4000亿元左右。同时,重庆是我国10个重大装备制造业基地之一。《重庆市装备制造业三年振兴规划》指出:未来三年,重庆将依托现有装备制造产业基础,加快产业结构调整,推动产业优化升级,形成特色产业集群,全面提升产业竞争力,预计三年后,即2015年,重庆装备制造业实现工业总产值5000亿元的规模。汽车、摩托车产业和装备制造业带来的庞大经济规模,势必提高产业发展对大学本科应用型人才培养质量的要求。

我校主动适应地方区域经济及产业发展对应用型人才的需求,将理论与应用力学专业与汽车产业紧密结合,形成具有汽车CAE特色的力学专业人才培养模式,培养具有较强汽车CAE分析能力和坚实力学专门知识的应用型人才。

一、数值模拟能力范畴

近年来,数值模拟分析能力水平已成为工科研究生,特别是汽车和机械类研究生的必备工具之一,而对于机械、汽车专业学生来讲,其CAE分析水平主要还是停留在利用软件进行简单的建模分析阶段,由于CAE分析软件具有较强力学专业背景,多数学生并不了解CAE分析的具体过程和产生此种分析结果的缘由;另一方面,力学专业的学生往往又不具备很强的汽车结构专业知识和工程背景。因此,为了弥补既有较强汽车专业知识又具有扎实力学专门知识的人才空白,我们将力学与车辆两个专业有机而紧密结合起来,将数值计算模拟分析能力进行进一步深化和拓展,培养力学专业学生扎实的数值模拟分析能力和较强汽车工程背景。数值模拟能力主要归结为以下方面:

1.数学建模能力

建立正确的模型是进行计算分析的基础。对于工程问题,首先要建立反映问题本质的数学力学模型,建立反映问题变量之间关系的微分方程及相应定解条件,这是数值计算的出发点。没有正确完善的数学模型,数值计算就无法模拟真实情况。

2.结果分析能力

在CAE分析过程中,一旦确定了正确的力学模型之后,求解过程是一个关键问题。但问题在于,任何一种通用有限元分析软件的求解过程都是一个“黑匣子”,其所有方程求解都封装于求解器之内,对于一般大学本科生层次来讲,无需深入了解暗箱中的操作。但结果出来之后,结果分析能力就显得至关重要。如何去判断所得的结果是否正确,是CAE分析的关键所在。因此,力学专业本科生要掌握运用所学力学知识进行结果分析和讨论的能力,不能只看到表面上的数字和图表,而是通过分析和讨论,挖掘数字和图表后面所隐含的力学原理和实际意义,学会判断计算结果的正确性、精确度、应用限制与改进方法。

3.程序编制能力

前面所说CAE的求解是一个封装后的黑匣子,对于一般用户来讲无需去细究,但是,对于想要成为具有较强数值模拟能力的CAE专业人员来讲,具备一定的程序编制能力非常必要,是实现自己新思想、新方法的唯一途径。目前,通用有限元分析软件如SIMULIA(ABAQUS)、ANSYS、PATRAN&NASTRAN等都是针对用户实现一般分析功能的通用程序,在某些特定环境下或针对某些具体的工程实际问题,如先进复合材料分析,由于软件本身自带的材料物理本构模型无法表述某种复合材料时,此时就必须利用程序来编制适合工程实际的材料本构方程。

4.软件的综合应用与开发能力

软件的综合应用能力是解决工程问题的利器,也是分析和提高计算的可靠性、有效性和精确性的有利方法。现代计算力学发展已经逐步专业化、产业化,功能强大的、成熟的商业软件是解决工程实际问题的有力工具。在掌握模型建立的基础上,让学生熟悉多种商业软件的使用既有利于对前期建模、计算方法、有限元分析等知识的进一步深化,也为今后解决工程实际问题掌握了有力工具。教学中要求学生针对具体的、较复杂的工程问题采用成熟软件进行模拟分析,写出分析报告,并在课堂讲解接受答辩。

二、汽车CAE特色的数值模拟能力培养和提升的核心课程体系

为了培养既具有汽车结构专业知识,又具有较强数值模拟计算能力的力学专业高素质应用型专门人才,我们在理论与应用力学专业人才培养方案中设置了“汽车构造”和“现代汽车技术”两门课程,专门用于培养学生汽车结构专业知识和提高其对现代汽车技术发展的了解和掌握,强化了学生的工程背景,构建了以数值计算能力培养和提高为驱动的力学专业核心课程体系。整个课程体系设置如图1所示。

数值模拟能力的基础是有限单元法,其将工程结构问题抽象成数学力学模型,然后再采用偏微分方程、泛函分析、数值分析等数学工具求出工程实际问题的近似解,通过不断提高网格质量和增加网格数量等技术手段来逼近物理问题的真实解,学生要很好掌握有限单元法知识必须得具有扎实的弹塑性力学知识(其是理解并抽象工程实际问题的最基本工具和方法),C语言或Fortran语言程序识读及编程能力,以及必备的数值分析能力,这三门学科知识奠定了有限单元法坚固的理论基础。[5-6]

在良好掌握有限单元法知识后,开设了“CAE软件应用”、“多体动力学软件及应用”、“动力学有限元软件及应用”、“计算流体动力学及软件应用”等技术课程。这四门课程的学习可以使学生对有限元法的理论和编程思想有更深刻的理解和认识,实现质的提升。在“CAE软件应用”课程的学习中,采用ABAQUS软件作为学生的操作软件。ABAQUS一直是国外高校科研院所、航空航天领域的标志性工具软件。作为力学专业学生,理应需要学习专业性更强、拓展性更好的分析软件。“多体动力学软件及应用”课程采用的是ADAMS软件,该软件在国际多体动力学分析行业中得到一致认可,通过对多体动力学理论和软件的学习,弥补了理论与应用力学专业学生机械知识薄弱等不足,强化了学生对机构等构件的认识和理解,同时,ADAMS软件在汽车业界也是公认的主流软件,加深了力学专业学生毕业后在汽车业界的被认同感。“动力学有限元软件及应用”主要采用LS-Dyna和Nastran,结合我校的学科特点和专业特色,让学生通过动力学理论及软件的学习掌握对机械零部件、汽车零部件及整车的动力学特性分析(如机械零部件的振动、汽车的碰撞等)。“计算流体动力学软件及应用”课程采用国际公认的专业流体分析软件Fluent。随着近年来国内汽车工业的飞速发展,国产轿车技术的突飞猛进,产生大量需要利用空气动力学理论来解决的汽车工程问题,如车身外形的设计及优化、发动机的冷却、车内空调制冷优化等问题。在掌握了ABAQUS、ADAMS、Nastran、Fluent等通用或专业分析软件之后,在人才培养方案中,我们结合“汽车构造”和“现代汽车技术”两门专业课程,让力学专业学生系统地学习汽车专业知识,将汽车工程实际问题与已获得的CAE分析能力有机结合起来,达到力学专业并不是只注重理论,还要将力学专业知识与工程背景相结合的人才培养目标。

三、教学环节的实施

在每门课程教学中,特别注意重点内容的选择,把主要精力放在有限单元法的基本原理、工程实际问题建模和程序实现上,特别是不能把有限单元法的求解过程讲解成计算方法或线性代数。主要的实施环节可以归结为三项。

1.研读源程序

学生最早接触有限元源程序是在有限单元法课程学习中,因此,要求学生不仅理解有限元法程序的设计流程、主要模块功能、算法实现和调试验证等主要环节的基本原理,而且要求学生具备对源程序进行修改、增加功能模块和自行编制调试程序的能力。在有限单元法课程上准备了三个源程序,即入门级的三角形常应变程序、平面问题的等参元程序和板壳单元程序。

2.自主建模

为了培养学生解决实际工程问题的能力,特别是汽车工程的建模能力,在上机实习、考试和课外作业中实行自我命题、自我解决、自我判断的能力培养环节。工程实际问题的分析模型可能有多个,鼓励学生对不同的几何简化、载荷工况和边界约束进行分析比较。找到合理模型,积累建模经验。

3.阅读经典著作及文献

以有限元分析软件为手段的数值模拟计算现在已经成为各个研究领域解决工程实际问题特别是大工程问题的主要手段。因此,培养和提高数值模拟计算能力对于地方工科院校人才培养是十分重要的环节。地方高校要加强内涵发展,培养和提高学生的工程实践能力,培养学生的创新精神,全面提高人才的培养质量。实现学生创新精神和能力的培养需要对所学行业、学科及专业的纵深有了解,因此,在教学过程中,我们十分重视向学生引入汽车的先进技术知识、数值模拟先进手段、超高性能计算机的发展现状及趋势。推荐学生阅读优秀的科研论文以对计算力学的先进理论成果进行了解,对CAE领域的发展具有一个总体的研判。

有限单元法课程理论深奥,涉及学科错综复杂,不同版本教材的作者站在不同的学科和专业视角,可能会让学生产生难学难懂的错觉,甚至有学生产生学习抵触情绪。我们就此专门向学生推荐有限单元法领域世界级大师的著作,如K.J Bathe,J.N Reddy等有限元法原著,倾听大师对有限元法的风趣诠释和超凡理解,让学生从另外一个角度来深刻体会和学习知识。

在该课程体系的实践下,我校首届理论与应用力学专业学生取得了良好成绩和效果,有33%左右的学生考上了国内著名985高校的研究生,多名学生就读于在国际国内计算力学领域具有重大影响的大连理工大学,师从业界有名的计算力学专家。其中一名学生更是以专业第一名的优异成绩完胜其他高校学生,被大连理工大学计算力学专业录取为直博研究生。部分学生凭借其在校期间掌握和积累的数值模拟计算分析能力就职于国内多家著名汽车整机或零部件企业,获得用人单位一致好评。

四、结论

以掌握有限元软件分析应用为手段的数值模拟计算能力是地方工科院校力学专业学生应具备的基本素质。将力学专业知识和飞速发展的汽车行业紧密结合,培养学生坚实的力学知识且具有热门行业的专业知识和工程背景。拓宽了地方工科院校力学专业人才培养的思路和渠道,为力学专业毕业生提供了更为广阔的用武之地和发展愿景。通过系列化的课程设置、工程化的培养手段和融入少许国际元素的教学理念,为国家培养具有高水平数值计算模拟能力的力学和汽车专业人才。

参考文献:

[1]国家自然科学基金委.未来10年中国学科发展战略:力学[M].北京:科学出版社,2012.

[2]杨庆生,龙连春,刘赵淼,等.力学专业研究生计算力学能力培养及其课程体系建设[J].力学与实践,2012,(4):66-69.

[3]李建,林贤坤.力学专业车辆方向有限单元法课程教学探讨[J].科技信息,2012,(23):13-14.

[4]钱学森.我对今日力学的认识[J].力学与实践,1995,17(4):1.