表观遗传学主要研究范例6篇

前言:中文期刊网精心挑选了表观遗传学主要研究范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

表观遗传学主要研究

表观遗传学主要研究范文1

关键词:表观遗传学;中医药;DNA甲基化;组蛋白修饰;miRNA调控;综述

DOI:10.3969/j.issn.1005-5304.2016.01.035

中图分类号:R2-05 文献标识码:A 文章编号:1005-5304(2016)01-0134-03

Application of Epigenetics in TCM Research CHENG Xi-hua, RAO Chun-mei, YU Rong, REN Ting (Hunan University of Chinese Medicine, Changsha 410208, China)

Abstract: Epigenetics change has been considered to be the most promising new strategy for disease control and prevention. TCM regulates gene expression through epigenetics, participating in pathological and physiological process including cell apoptosis, proliferation, differentiation, cell cycle regulation, immunity, inflammation, and metabolism. This article reviewed the application of DNA methylation, histone modification and the miRNA regulation in TCM research.

Key words: epigenetics; TCM; DNA methylation; histone modification; miRNA regulation; review

表观遗传学由Waddington CH[1]于1942年作为后生论和遗传学的合词而提出。1975年,Holliday R对表观遗传学进行了较为准确地描述,认为表观遗传学不仅在发育过程中,还在成体阶段研究可遗传的基因表达改变,这些信息可经有丝分裂、减数分裂在细胞和个体间世代传递[2]。2008年的冷泉港会议达成了关于表观遗传学的共识,即“染色体的改变所引起的稳定的可遗传的表现型,而非DNA序列改变”[2]。表观遗传学研究内容主要包括两类:一类为基因选择性转录表达的调控,有DNA甲基化、基因印记、组蛋

白共价修饰和染色质重塑;另一类为基因转录后的调控,包括基因组中非编码RNA、miRNA、反义RNA、内含子及核糖开关等。表观遗传学应用于中医药研究,则集中于DNA甲基化、组蛋白共价修饰和miRNA领域。兹将近年来的相关研究总结如下。

1 表观遗传学与中医证候

表观遗传学是中医证候多样性的部分物质基础。牟氏等[3]对糖尿病肾病人群不同体质类型、不同证候及其与转化生长因子(TGF)-β1基因T869C多态性的内在关联及其交互作用进行分析,发现糖尿病肾病的部分体质和TGF-β1基因T869C多态性有相关性。对糖尿病肾病患者的证候与TGF-β1基因T869C多态性进行二分类logistic回归分析发现,无相关证候进入回归模型。说明与证候的动态性和受后天环境因素影

响较大有关,因此认为表观遗传学在探究中医证候实质中应具有重要地位[4]。刘氏等[5]研究了急性髓系白血病各证型患者ID4基因启动子区甲基化阳性率,由低到高依次为气阴两虚证、瘀血痰结证和毒热炽盛证,表明证型与表观遗传学变化存在一定联系。曾氏等[6]发现,肾阳虚组血浆中免疫相关基因FHIT、MAP2K6基因CpG岛甲基化水平高于健康组,WNT5B、FRAT2、CSNK1D基因CpG岛甲基化水平低于健康组,说明以上基因启动子区甲基化状态与肾阳虚证相关。颜氏等[7]报道,hsa-miR-18a上调和hsa-miR-99b下调可能与阴虚火旺型口腔扁平苔藓发生相关。

2 DNA甲基化

DNA的甲基化是基因组DNA的一种主要表观遗传修饰形式。在脊椎动物中,DNA启动子区CpG岛成簇状存在,是DNA发生甲基化的主要位点,所以,研究DNA甲基化常与CpG岛相关联,目前对DNA启动子区CpG岛异常甲基化的研究是表观遗传学的一个热点。血府逐瘀胶囊、四季三黄胶囊及其联合应用均具有降低血清三酰甘油水平、稳定动脉粥样硬化斑块的作用,其机制可能与提高血清中DNA甲基化水平和DNA甲基化转移酶(DNMTs)水平有关[8]。纳米脂质体槲皮素下调DNMTs1和组蛋白脱乙酰化酶1表达,降低p16INK4α甲基化水平,通过表观遗传核因子κB(NF-κB)信号途径而下调角质形成细胞增殖的NF-κB和白细胞介素(IL)-6炎症因子的表达[9]。黄氏等[10]用不同浓度白藜芦醇孵育体外培养的人胃癌SGC-7901细胞,结果白藜芦醇能以剂量依赖性方式抑制SGC-7901细胞增殖,随着浓度的增加,RASSF1A甲基化的水平逐渐减弱,非甲基化水平逐渐增多;同时,RASSF1A的mRNA和蛋白表达水平明显上调。提示白藜芦醇对甲基化水平的调节可能是其抗癌的重要因素。郭氏[11]研究表明,消痰散结方能有效抑制胃癌细胞系及裸鼠原位移植瘤生长,其机制与逆转抑癌基因p16甲基化水平、增加p16 mRNA表达水平有关。林氏等[12]采用8.4%的益肾方剂和15.2%的健脾方剂处理生理性肾虚小鼠,显示益肾健脾方剂能明显提高生理性肾虚小鼠肝细胞DNA甲基化酶的活力,具有延缓衰老的作用,为从分子生物的角度探讨中医益肾健脾延缓衰老的机理提供了客观依据。多数研究表明,中药调节DNA甲基化,治法多属于补肾填精、益气健脾活血、化痰散结等方面[12]。

3 组蛋白修饰

组蛋白的去乙酰化与基因的失活相关,乙酰化转移酶主要是在组蛋白H3、H4的N端尾上的赖氨酸加上乙酰基,去乙酰化酶则相反,不同位置的修饰均需要特定的酶来完成。乙酰化酶家族可作为辅激活因子调控转录,调节细胞周期,参与DNA损伤修复,还可作为DNA结合蛋白。去乙酰化酶家族则和染色体易位、转录调控、基因沉默、细胞周期、细胞分化和增殖及细胞凋亡相关[13]。白藜芦醇及其衍生物能直接激活去乙酰化酶SIRT1,促使转录因子FOXO3a与过氧化物酶体增殖活化受体γ共激活因子-1α(PGC-1α)活化[14]。在小鼠动物模型中,白藜芦醇诱导SIRT1活化,激活PGC-1α与蛋白激酶AMPK,减少类胰岛素1增长因子表达与提高机体对胰岛素的敏感性,通过增强线粒体氧化磷酸化和有氧代谢能力,增加机体的能量消耗,延长小鼠寿命。提示白藜芦醇起着类似减少热量饮食或节食的功效[15]。姜黄素处理新牛鼠心肌细胞后,姜黄素抑制GATA4、肌细胞增强因子2C和Nkx2.5表达,可能机制是这些基因启动子区域组蛋白乙酰化修饰状态降低导致染色质构型紧密,不利于转录因子及其他相关元件与启动子的结合,从而抑制了基因的表达[16]。有研究者用文献信息学方法,发现在众多方药中,补药主要针对组蛋白修饰发挥功效[17]。

4 miRNA调控

miRNAs(MicroRNAs)是在真核生物中发现的一类内源性的具有调控功能的非编码RNA,其大小长约20~25个核苷酸[18]。Ma YN等[19]对益髓生血颗粒一些纯化的组分进行分析,发现大黄素能促进K562细胞内CD235a和CD71及α-、ε-和γ-珠蛋白的表达,并能通过下调miR-221和miR-222的表达水平调控红细胞分化。说明地中海贫血相关miRNA的研究能从一个侧面揭示中医药治疗相关疾病的分子机制。白藜芦醇具有抗癌活性,基因芯片分析非小细胞肺癌A549细胞,发现白藜芦醇处理后71个miRNAs表达异常,其潜在靶基因分别参与细胞凋亡、细胞周期、细胞增殖和分化的调控[20]。白藜芦醇也能上调免疫细胞如THP-1单核细胞miR-663的表达,通过miRNA起着抗炎的作用[21]。迄今为止,中医药调控miRNA及其相关基因多局限于姜黄素、白藜芦醇、大豆异黄酮、丹参酮ⅡA、人参皂苷、延胡索总生物碱等中药活性成分,而复方研究尚少。鉴于miRNA在中医药研究中的重要地位,其为中医药理论的发展提供了新的切入点[22]。

5 其他

卢氏等[23]认为,开展DNA甲基化、组蛋白修饰等表观遗传学调控及其相应调控蛋白酶研究,对于深入阐述针灸“理、法、方、穴、术”的物质基础具有积极意义。miRNA与靶基因之间的动态平衡关系与中医的阴阳平衡思想不谋而合。以miRNA及其调控网络为切入点,结合病证结合、方证对应的临床研究模式,获取相关证候及方剂起效前后的miRNA表达谱,进而寻找相关靶基因及其细胞分子网络,将为阐明中医治病求本的机制提供新的视角,对中医理论的发展具有重要意义[24]。

6 展望

表观遗传学的改变已被认为是最有前途的疾病防治新战略。中医药通过表观遗传学调控基因表达,参与细胞凋亡、增殖、分化、细胞周期调控、免疫、炎症及代谢等病理生理过程。但中医药调控表观遗传学的研究尚处于初期和不完善阶段。目前研究主要集中在肿瘤领域,且多为甲基/去甲基化酶、乙酰/去乙酰化酶表达差异,基因的启动子甲基化、乙酰化调控,miRNA表达差异等方面,研究深度和系统性待提高。

表观遗传学DNA序列不变而功能可变与中医“同病异治”“异病同治”有很强的结合点。同一疾病的发生可能与不同甲基化或乙酰化调控相关,而不同疾病的发生可能受同一甲基化或乙酰化调控。另外,中医整体观念强调自然环境对机体的不可分割性与表观遗传受环境影响、阴阳相互转化与表观遗传抗逆性均有高度一致性。

表观遗传学具有可遗传、可逆性的特点,可通过相互作用,多途径、多层次影响和调控遗传基因的功能和特性。该特点与中医药治疗疾病的整体性、综合性、多靶点性等具有很大相似性。表观遗传学方法的出现,将为中药有效性的研究提供新方法,进一步丰富中医药理论,促进中西医结合理论的发展。

参考文献:

[1] WADDINGTON C H. The epigenotype[J]. Endeavour,1942,1:18-20.

[2] LEDFORD H. Language:Disputed definitions[J]. Nature,2008, 455(7216):1023-1028.

[3] 牟新,赵进喜,刘文洪,等.试论糖尿病肾病中医体质易感性和证候多样性[J].中华中医药杂志,2010,25(11):1771-1773.

[4] MOU XIN, LIU WEN-HONG, ZHOU DAN-YANG, et al. Association of Chinese medicine constitution susceptibility to diabetic nephropathy and TGF-β1(T869C) gene polymorphism[J]. Chinese Journal of Integrative Medicine,2011,17(9):680-684.

[5] 刘菲,徐瑞荣.急性髓系白血病中医证型与ID4基因启动子区甲基化相关性研究[J].中国中西医结合杂志,2012,32(4):471-473.

[6] 曾跃琴,李炜弘,张天娥,等.肾阳虚证免疫相关基因CPG岛调控机制研究[J].时珍国医国药,2013,24(6):1515-1517.

[7] 颜家渝,曾洁萍,黄映红.阴虚火旺型口腔扁平苔藓差异表达miRNAs靶基因分析[J].成都中医药大学学报,2011,34(2):77-79.

[8] 赵伟峰,周明学,王绿娅,等.活血解毒中药对动脉粥样硬化小鼠斑块稳定性、血脂及DNA甲基化水平的影响[J].北京中医药,2014,33(3):215-218.

[9] 郭晓瑞,李红文,郑乃刚,等.槲皮素下调人角质形成细胞内NF-κB和IL-6表达的表观遗传学修饰效应[J].中国皮肤性病学杂志,2013, 27(10):977-981.

[10] 黄明明,蔡卫东,刘永辉.白藜芦醇对胃癌细胞Ras相关结构域家族1A基因甲基化及表达的影响[J].当代医学,2011,17(18):21-22.

[11] 郭维.消痰散结方对胃癌P16基因甲基化的影响[D].上海:第二军医大学医院,2010.

[12] 林一萍,陈比特,陈玉春.DNA甲基化酶与中医抗衰老机理的关系[J].中国中医药信息杂志,1999,6(6):18-19.

[13] PHAM T X, LEE J. Dietary regulation of histone acetylases and deacetylases for the prevention of metabolic diseases[J]. Nutrients,2012,4(12):1868-1886.

[14] HUBBARD B P, GOMES A P, DAI H, et al. Evidence for a common mechanism of SIRT1 regulation by allosteric activators[J]. Science,2013,339(6124):1216-1219.

[15] BAUR J A, PEARSON K J, PRICE N L, et al. Resveratrol improves health and survival of mice on a high-calorie diet[J]. Nature,2006,444(7117):337-342.

[16] 孙慧超,朱静,吕铁伟,等.姜黄素对小鼠心脏发育相关基因表达的影响及其表观遗传调控机制[J].基础医学与临床,2011,31(9):959-964.

[17] HSIEH H Y, CHIU P H, WANG S C. Epigenetics in traditional Chinese pharmacy:a bioinformatic study at pharmacopoeia scale[J]. Evid Based Complement Alternat Med,2011,2011:816714.

[18] KALA R, PEEK G W, HARDY T M, et al. MicroRNAs:an emerging science in cancer epigenetics[J]. J Clin Bioinforma,2013,3(1):6-11.

[19] MA Y N, CHEN M T, WU Z K, et al. Emodin can induce K562 cells to erythroid differentiation and improve the expression of globin genes[J]. Mol Cell Biochem,2013,382(1/2):127-136.

[20] BAE S, LEE E M, CHA H J, et al. Resveratrol alters microRNA expression profiles in A549 human non-small cell lung cancer cells[J]. Mol Cells,2011,32(3):243-249.

[21] TILI E, MICHAILLE J J, ADAIR B, et al. Resveratrol decreases the levels of miR-155 by upregulating miR-663, a microRNA targeting JunB and JunD[J]. Carcinogenesis,2010,31(9):1561-1566.

[22] 郑思道,吴红金,刘宇娜.microRNA在现代中医药研究中的作用和意义[J].中西医结合心脑血管病杂志,2012,10(7):857-860.

[23] 卢圣烽,徐斌,于美玲,等.表观遗传学在中医针灸研究中的应用探讨[J].南京中医药大学学报,2013,29(2):105-108.

[24] 虞桂,王阶.miRNA及其调控网络与中医治病求本机制研究[J].中华中医药杂志,2012,27(11):2789-2791.

表观遗传学主要研究范文2

澳大利亚阿德莱德大学的科学家,从育空冻土层中的野牛骨骼标本中提取出了3万年前美洲野牛的DNA样本。研究结果显示,那时野牛的表观遗传学特征在两代内即可发生变化,说明产生可遗传变异所需的时间比传统进化过程所需时间要短得多。这样,北美野牛在短期内快速适应气候变化的难题就迎刃而解了。

什么叫表观遗传学特征呢?长期以来人们相信,DNA携带着基因并世代相传,保持了物种的稳定;而基因突变(即DNA分子链上碱基对的组成或排列顺序的改变),则是新性状乃至新物种产生的物质基础。按照这一观点,生物后天获得的性状是不能遗传给下一代的,也就是说,法国博物学家拉马克在100多年前提出的生物性状“用进废退”的假说是不成立的。

近年来分子生物学的新发现,在一定程度上颠覆了这种成见。人们发现,生物所显现的新性状、新能力并不一定是基因突变造成的,而在很多情况下是由于基因被“修饰”了,即表观遗传学特征发生了变化。例如,科学家们发现了一种甲基(-CH3),它们可以跟DNA上的碱基结合,就像给DNA挂上了首饰。这种神奇的“首饰”就像一个开关,挂上它,基因就关闭了,摘掉它,基因又能重新表达。至于基因是关闭还是表达,则取决于生物个体是否努力适应新的环境压力。也就是说,对于生物的某种能力来说,用则进化,不用则退化――拉马克的假说在某种意义上已经复活了。

表观遗传学研究虽然历史不长,其中尚有诸多关键问题亟待解决,但它所揭示的现象却足以令人深思。它说明,生命的精妙与复杂远超人类的想象,认识生命的道路任重而道远。

在对育空地区野牛化石进行研究时,由于野牛的基因序列不会发生变化,标准的基因分析无法测得表观遗传学变化,所以科学家是将研究结果与现代牛以及30年前发掘于新西兰的一具干尸化母牛的基因序列进行对比,从而了解育空野牛的表观遗传学特征变化的。科学家们认为,这项研究证明了表观遗传学特征的改变能驱动生物进化。

表观遗传学主要研究范文3

基因组印记

基因组印记是一种不遵循传统孟德尔遗传规律的表观遗传现象。这是由于来源于某一亲本的等位基因或其所在的染色体发生了表观遗传修饰,导致不同亲本来源的两个等位基因在子代细胞中表达不同。受印记机制调控而差异表达的基因称之为印记基因(imprintedgene)。目前在植物、昆虫和哺乳动物中均发现了基因组印记现象,而在鸟类、鱼类、爬行类和两栖类动物普遍认为不存在印记现象。1991年Bartolomei等采用基因敲除技术在小鼠中首次确认了类胰岛素生长因子2型受体和非编码RNAH19基因两个母源印记基因及一个类胰岛素生长因子2型父源印记基因。2007年,杜克大学的研究人员用机器学习的人工智能形式发现了156个新的印记基因,并以此为基础创造了第一张人类基因组印记基因图谱。

X染色体失活

X染色体失活是指雌性哺乳类细胞中两条X染色体的其中之一失去活性的现象,X染色体会被包装成异染色质,进而因功能受抑制而沉默化,这种现象也称为X染色体的剂量补偿(dosagecompensation)。X染色体失活的起始和选择发生在胚胎发育的早期,这个过程被X染色体失活中心(X-inactivationcenter,XIC)所控制,是一种反义转录的调控模式。这个失活中心存在着X染色体失活的特异性转录基因,当失活命令下达时,这个基因产生1个17kb不翻译的RNA与X染色体结合,介导DNA甲基化和组蛋白修饰,引发并维持X染色体的失活。X染色体失活中心还有“记数”功能,即保持每个二倍体中仅有1条X染色体有活性,其余全部失活。X染色体的失活状态需要表观遗传修饰来维持,可以通过有丝或减数分裂遗传给后代。

非编码RNA

非编码RNA是指不能翻译为蛋白质的功能性RNA分子,其中包括rRNA、tRNA、snRNA、snoRNA、microRNA等多种已知功能的RNA以及未知功能的RNA。按照它们的大小可分为长链非编码RNA和短链非编码RNA,前者在基因簇以至于整个染色体水平发挥顺式调节作用,后者在基因组水平调控基因表达并介导mRNA的降解,诱导染色质结构改变,决定细胞的分化命运,还对外源的核酸序列有降解作用以保护本身的基因组。microRNA是一类内源产生的长度约为22个核苷酸的非编码小RNA分子,广泛存在于真核生物甚至病毒中,通过调节编码蛋白的基因的表达或翻译来发挥调控作用。microRNA的功能十分广泛并且渗入到了生理病理学的各种调控途径中,包括发育周期、细胞增殖和分化、细胞凋亡、新陈代谢、神经调控、肿瘤发生以及病毒和宿主的相互作用等。在法医学应用中,由于降解后的片段长度过小,不能进行有效的PCR扩增,然而microRNA就能满足降解检材的PCR扩增,开始成为关注的热点。

表观遗传学在法医学中的应用

1表观遗传学与亲权鉴定

自1985年英国遗传学家AlecJeffreys教授首次报道DNA指纹图技术应用于法医DNA分析以来,DNA分析技术已经在多起重大的刑事犯罪侦破和民事诉讼中发挥重要的作用。目前主要是以荧光标记STR与SNP等传统遗传标记进行个体识别和亲权鉴定。但在法医学亲子鉴定中,尤其是子代为杂合子或者父(母)和子代为相同的杂合子的单亲鉴定中,亲代的必需等位基因可能无法确定,使基因座的鉴别能力下降。但通过使用亲缘特异性甲基化遗传标记可以直接判定等位基因的亲源,从而确定亲代的必需等位基因。Zhao等应用甲基化特异性PCR对被甲基化标记的母系SNP位点rs220028进行检测证明了这一观点。另外,Poon等报道,采用DNA甲基化标记可有效识别孕妇外周血中的胎儿DNA,这也为产前的亲权鉴定提供了一种非侵入性的检测方法。

2表观遗传学与年龄推断鉴定

个体年龄推断一直是法医学研究的重要内容。目前实际工作中,个体年龄推断主要依据人类学方法,通过测量与年龄相关的骨骼、牙齿标志等,根据相关模型进行推算。近年来,许多研究者发现表观遗传学为个体年龄推断的研究提供了一种新的思路。DNA甲基化随年龄变化的特点为利用甲基化标记进行年龄推断提供了可能。陈培利等利用人胚肺二倍体成纤维细胞(humanembryoniclungdiploidfibroblast,2BS)进行体外培养,发现其p16基因启动子区及外显子Ⅰ处的DNA甲基化水平随个体细胞代龄的增加而降低。Tra等用限制性标记基因组扫描(restrictionlandmarkgenomescanning,RLGS)技术对T淋巴细胞2000个基因座的甲基化年龄变化情况进行了调查,发现29个基因座有变化,其中23个增加,6个降低。由于甲基化标记数目众多,从中可以筛选出一组适合于法医学应用的、年龄变化有规律的座位,应用于微量检材的年龄推断。尹慧等用高效液相色谱(HPLC)法对94个健康个体DNA甲基化水平的检测发现,5-甲基胞嘧啶(5-methylcytosine,5mC)含量随年龄增加而降低,50岁以上与50岁以下年龄组5mC含量差异具有统计学意义。2010年,Teschendorff等通过对261个绝经后妇女全血样本约14000个基因启动子区超过27000个CpG的甲基化状态进行分析,证实干细胞多梳蛋白家族(polycombgroup,PcG)靶基因比非靶基因更容易随年龄发生甲基化,并且变化不依赖于组织类型、疾病状态和甲基化水平。

Bocklandt等通过分析唾液中的DNA甲基化标记,可以预测一个样本组成员的年龄,结果与实际年龄相差大约在5岁范围内。这项技术如果被确证,可能会成为法医取证方面很有用的一种工具。同时,它还表明了一种可能性:DNA甲基化修饰或许可以提供一种比计算生日更具医学相关性的年龄测定方法。

2010年,NorenHooten等在外周血单核细胞中的800个microRNA标记中筛选出9个与年龄相关的基因,但发现其中5个与疾病有关,该研究表明microRNA可以作为推断年龄以及和年龄相关疾病的诊断指标。

2011年,国内Jin等首次报道了通过体细胞发挥功能的组蛋白修饰基因对衰老这一重要生物学过程的调控作用。这项研究通过生物化学、分子生物学、遗传学和系统生物学相结合的方法,发现组蛋白H3K27me2/3去甲基酶UTX-1/UTX对衰老发挥了重要的调控作用。在秀丽线虫中,该基因的杂合突变体及野生型的RNAi敲降后都能极大地延长线虫寿命,使其抗逆性也大大加强。遗传学分析发现其功能依赖于胰岛素样信号通路。这种通过重新建立组蛋白修饰模式的方式,揭示了细胞的重编程在抑制衰老过程中的重要作用,并提示其作用机制在哺乳动物细胞中同样存在。

3表观遗传学与双生子的鉴别

同卵双生子(monozygotictwins,MZ)是由一个受精卵经过卵裂产生两个单独的细胞,并发育为完全独立的个体,因此同卵双生两个个体的遗传背景完全相同,享有共同的DNA序列。在法医DNA分析领域,现有的DNA分析手段尚不能有效鉴别同卵双生个体。

但是近年来,众多研究都已证实,同卵双生子的表观遗传学水平存在一定的差异。Fraga等对西班牙的40对同卵双生子个体进行研究,发现他们在DNA甲基化、X染色体失活、组蛋白位点特异性乙酰化上存在差异,并且这种差异会随年龄增长而增加。Kaminsky等对114对同卵双生子个体的DNA甲基化的研究显示,血白细胞、口腔黏膜上皮细胞和肠道组织中的甲基化状态均存在差异。

此外,Ollikainen等对新生儿不同组织相关的4个差异甲基化区域的甲基化状态进行了研究,发现甲基化水平存在显著差异。从上述研究成果中可以看出,研究人员已经把目光投入到了法医DNA分析的全新领域,尤其是DNA甲基化在同卵双生子中的研究。这些都为采用DNA甲基化这一表观遗传学标记进行同卵双生子个体甄别的可能性提供了强有力的理论支撑。

4表观遗传学与组织来源鉴定

在常见的法医学案件中,有时需要对生物检材的组织来源进行鉴定。传统的形态和生化方法信息含量少,容易受各种条件的影响,因此常常受到限制。随着分子生物技术的发展,以表观遗传学为基础的组织鉴定方法存在明显优势,越来越为人们所关注。

例如,富含CpG的Alu重复序列,在体细胞中是甲基化的,在生殖细胞中却是低甲基化的,有一个在进化上比较年轻的Alu亚族在中几乎是完全没有甲基化的。通过对这一Alu亚族甲基化的分析,就可以判断检材是否含有。范光耀应用联合亚硫酸氢盐的限制酶法,调查、常见体液、分泌液和组织的DEAD盒多肽4[DEAD(Asp-Glu-Ala-Asp)boxpolypeptide4,DDX4)]基因启动子甲基化水平,发现中的甲基化水平显著高于非组织。因此,选择一个合适的界值,可以根据DDX4甲基化水平有效地鉴别(斑)的种属来源。

Hanson等运用RT-PCR技术,根据microRNA的细胞组织特异性对血液、、唾液、阴道分泌液和经血进行来源鉴别,并通过与21种人体组织比对验证了各种斑痕microRNA表达的特异性,用于检测RNA的模板量最低可达50pg。Zubakov等运用微阵列和Taqman定量PCR技术确证了一些能运用于法医学实践识别血痕和精斑的稳定的microRNA标记。该项研究不仅将灵敏度提高到相当于单细胞水平的0.1pgRNA模板量,而且在新鲜与陈旧样本的比对中发现其microRNA分子绝对含量未发生明显变化。

5其他

近年来,随着学者们对RNA在法庭科学领域的研究逐渐广泛和深入,发现microRNA在法医学领域的应用价值也日益重要。2007年王芬等发现有6个microRNA分子在H2O2诱导PC12细胞凋亡后表达显著下调,这一结果为法医病理学者研究脑缺血再灌注损伤中神经细胞凋亡的机制提供了理论依据。2010年李文灿等在研究大鼠心肌组织microRNA降解与死亡时间的相关性时发现,其含量在机体死后120h内保持相对稳定的水平,可作为内参指标反映其他生物指标的变化水平。

随着分子生物学技术的飞速发展,法医工作者又面临一项新的挑战,即如何在日常的亲缘鉴定和个体识别工作中有效甄别伪造DNA。用于伪造DNA常使用PCR扩增的方法,因此使用亲缘特异性甲基化遗传标记,可以在进行亲子鉴定和个体识别的同时,检测样本的甲基化状态,从而鉴别样本是否为人工伪造DNA。因此DNA甲基化遗传标记在鉴定DNA是否人工伪造中发挥着重要的作用。

表观遗传学主要研究范文4

新的医学理论提示:有影响

众所周知,胚胎是精卵结合的产物,为胚胎提供了50%的遗传物质。质量的好坏不仅决定了男女双方是否可以顺利受孕,对受孕后胚胎的质量,甚至子代的健康状态也产生重要影响。能否受孕属于的早期效应,而受孕后对胚胎质量乃至子代健康状态的影响属于的晚期效应。现代医学的 “健康与疾病发育起源”理论学说指出:除了遗传和环境因素,如果生命在发育过程的早期(包括胎儿和婴幼儿时期)经历不利因素(子宫胎盘功能不良、营养不良等),将会增加其成年后患肥胖、糖尿病、心血管疾病、[瘤等慢性疾病的风险,这种影响甚至会持续好几代人。该理论现在已扩展到配子时期,即孕前或卵子的状态也会对子代产生上述影响。

目前认为,其机制主要与表观遗传有关。所谓的表观遗传,是指携带遗传信息的基因序列并没有发生改变,但是基因的活性却发生了变化。在人的基因中,有一部分是有害基因,有的导致肿瘤、有的导致糖尿病、有的导致肥胖等,但这类基因只要处于静止、不活动的状态,不会给健康带来不良影响;只有当这类基因被激活、处于活动状态时,才会导致相关疾病的发生。表观遗传研究的正是可以对基因的活性进行调控的一种遗传方式。 简而言之,有没有致病基因不关键(谁都有),关键是致病基因处于什么状态(活动还是静止)。致病基因处于活动状态,意味着疾病易于发生。

男方健康如何影响子代健康

身体健康状态对浓度、活力、形态等都有明显影响。当健康状态不佳,如疲劳、困倦,或有慢性疾病时,反映质量的指标,如活力、正常形态百分比、DNA完好程度等往往出现明显异常。临床上经常遇到这种情况:做检查时,如果前几天有熬夜、加班等情况,检查结果往往不正常;而经过充分休息,身体恢复后再次检查,指标可以恢复正常。此外,欧洲大样本的回顾性研究分析表明,质量的好坏与男性寿命相关,即质量越好的男性,越长寿,而质量越差,则意味着寿命减少。换言之,男性的质量是身体健康状态的晴雨表。在身体处于疲劳状态下,不仅不容易受孕,不健康受孕的概率也会增加,不利于优生。

再看一下质量与子代健康的关系。一方面,质量差的时候, DNA有损伤的比例会增加,而DNA损伤的受孕后,除会导致胎发育停滞、自然流产概率增加外,还与胎儿畸形以及出生后多种疾病,如儿童期肿瘤、骨骼疾病、精神疾病等有关。此外,根据“健康与疾病发育起源”理论,受孕前的(或卵子)具有预知适应反应能力,并可将相关信息遗传给下一代甚至第2代、第3代。

2014年,著名的《细胞》杂志封面文章报道,前1天或2天,在雄性果蝇的饮食中增加糖类物质,可以通过使胚胎糖代谢相关基因活性发生变化,导致出生的子代果蝇出现肥胖。这说明受孕前的受到高糖这一信息刺激后,误以为子代也会处于高糖环境中,从而调控了与上与糖代谢相关基因的活性,并通过表观遗传机制传递给子代,从而导致子代的肥胖。

表观遗传学主要研究范文5

十年如一日 醉心肿瘤研究

应建明医师于1998年获北京医科大学医学学士学位后免试保送攻读北京大学医学部病理学系研究生,2000年7月毕业获医学硕士学位后分配到中国医学科学院肿瘤医院病理科工作。 2003年公派前往美国约翰霍普金斯大学医学院新加坡研究中心工作,从事肿瘤表观遗传学的研究。2004年7月在香港中文大学医学院临床肿瘤学系攻读博士学位。2007年博士毕业后面临继续在国外任职的选择,应建明内心依旧难以释怀的肿瘤情结使他回到中国医学科学院肿瘤医院病理科工作,现任病理科分子病理实验室主管。目前已发表论著40余篇,其中SCI论文20余篇,曾获北京市科技进步三等奖和2006-2007年度香港中文大学研究生最佳研究成绩奖。2009年入选北京市科技新星计划。

应建明医师的科研工作方向为肿瘤表观遗传学及肿瘤标记物的鉴定和应用。现承担及参与国家自然科学基金、院所科研项目基金6项,并为国内外多种著名肿瘤杂志的特约审稿人。肿瘤表观遗传学改变是肿瘤发生和发展最关键的分子机制之一。应建明医师主要从事发现和鉴定被表观遗传学机制尤其是DNA甲基化沉默的新抑癌基因。以国内常见肿瘤如食管癌、鼻咽癌、结肠癌、胃癌、肺癌等为肿瘤模型,应用各种技术如表观遗传学方法、基因组学、杂交消减、微距阵杂交等鉴定新的候选抑癌基因。部分研究成果发表于国际著名肿瘤学研究杂志。发现并研究这些被表观遗传学调控失活的抑癌基因,不但有利于了解肿瘤发生和发展的分子机制,而且为开发新的肿瘤生物标记物用于肿瘤早期诊断、预后评估及肿瘤分子治疗提供了科学基础和依据。

分子病理学的“践行者”

通过应建明医师的讲解使我们了解到,在肿瘤诊治过程中,外科从术前、术中到术后,放化疗从诊断到选择治疗方案,病理诊断的指导作用贯穿始终,包括疗效评价以及判断预后。然而,人类对肿瘤发生发展的认识是局限的,在肿瘤发展的长期连续过程中,传统病理诊断依靠肿瘤组织形态的表现已经不能满足对不典型或少见肿瘤的诊断和鉴别诊断。随着分子生物学和生物医学的不断发展,人们对肿瘤的分子机制逐渐得以阐明,病理学诊断步入了新的分子水平异常检测和鉴别。应建明医师凭借着十余年的潜心研究和艰苦磨砺,在新的挑战面临时毅然承担了建设和完善了分子病理实验室的重任,在担任实验室主管的一年内逐步开展了以原位杂交、荧光原位杂交(FISH)、PCR、RT-PCR、DNA测序、流式细胞术等技术为主的十余项分子病理检测项目。这些检测项目的建立为肿瘤患者的诊断鉴别及促进个体化治疗提供了有力的帮助。

肿瘤病理诊断依靠组织形态结合当前较完善的免疫组化技术可以对大部分肿瘤做出正确判断,但对于某些类型肿瘤尤其是少见类型需要依赖分子病理检测才能对其良恶性作出判断,例如,克隆性基因重排检测用于协助判断良性淋巴结反应性增生和恶性淋巴瘤;针对肿瘤的特异性染色体易位检测用于协助鉴别软组织肿瘤的组织来源。显而易见,分子病理检测的应用成为对这部分肿瘤的确诊和鉴别分类不可缺少的关键性依据,即所谓肿瘤分子分型,直接关系到后续的治疗方案选择。

随着分子生物学、生物医学的不断发展和分子靶向药物的出现,分子靶向治疗已经成为了肿瘤治疗的未来发展方向,而这种治疗必须以肿瘤特异的分子靶点检测为前提。这些分子靶点在同一种肿瘤的不同个体之间、甚至同一个体的肿瘤发展的不同阶段是存在着差异的,必须根据患者的分子病理检测结果进行治疗方案和药物的选择。如检测HER2基因的表达/扩增状态、EGFR和KRAS基因的突变状态是选择分子靶向药物曲妥珠单抗、西妥昔单抗和易瑞沙治疗乳腺癌、结直肠癌和肺腺癌的前提。大量的临床研究已证实这些药物对有适应症的患者具有很好的疗效,反之则有毒副作用。

应建明医师告诉我们,分子病理检测项目的建立只是个开始,要确保这些检测结果的长期准确性和可靠性必须进行严格的质量控制,避免检测结果的假阳性和假阴性。病理科非常注重分子病理检测的室内外质控,并率先在乳腺癌的检测项目中贯彻流程管理理念,从标本的收集、固定到检测实现了严格的规范化操作优化流程。目前应建明医师还担任着北京市病理质量控制和改进中心的荧光原位杂交(FISH)检测管理工作组职务。

表观遗传学主要研究范文6

    心肌缺血时,有氧代谢发生障碍,葡萄糖利用减少,脂肪酸利用增多,使氧利用率下降,心脏供能不足;同时,无氧代谢导致的酸性代谢产物增加,引起细胞内酸中毒。此外,心肌缺血还能引起氧自由基及钙离子超载,诱导心肌细胞凋亡,导致严重的临床症状。因此,改善能量代谢,清除自由基,减轻钙超载,抵抗细胞凋亡,实现心肌保护作用成为改善心肌缺血的重要途径[10]。研究表明,针灸在实现心肌保护方面具有自身的优势。一方面,针灸可通过改善能量代谢,实现心肌保护。心肌缺血时,能量代谢相关酶发生改变,电针能提高心肌组织糖原、琥珀酸脱氢酶和三磷酸腺苷酶的活性,纠正心肌相关酶的异常,增强能量代谢,改善心肌缺血。另一方面,针灸可减少自由基,缓解心肌缺血症状。热休克蛋白(HSP)属应激蛋白,能减少氧自由基释放,减轻心肌缺血损伤,从而保护机体[11]。研究证明电针“内关”穴可以增强缺血心肌细胞HSP90和HSP70mRNA表达,以减少氧自由基的释放,从而缓解家兔心肌缺血症状[12-13];而且,针刺“内关”穴能抑制细胞内Ca2+超载,实现心肌细胞保护,电针“内关”通过上调心肌钙泵和钠泵基因表达,增强钙泵和钠泵活性,降低心肌细胞内Ca2+含量,从而达到抑制钙超载,实现对心肌组织的保护作用,表现为促进心电活动、改善心肌组织形态和超微结构[14]。大量研究表明,针刺可以调控凋亡基因的表达水平,延长细胞周期,减少细胞凋亡,保护缺血心肌细胞。有研究指出电针可以调节诱导细胞凋亡因子Bax和抗凋亡因子Bcl-2在家兔缺血心肌中的表达,即抑制凋亡基因Bax和促进抗凋亡基因Bcl-2的表达,抑制心肌细胞凋亡,从而达到保护心肌细胞的作用[15]。c-fos基因是一种原癌基因,参与调节体内许多过程,如细胞周期、细胞分化、肿瘤转化及细胞凋亡等,正常情况下细胞内c-fos表达呈低水平状态,心肌缺血可激活c-fos基因的表达从而启动心肌细胞凋亡。研究表明,电针可降低c-fos基因表达,改善急性心肌缺血的过程[16-17]。所以不难看出,针灸能通过多种途径实现心肌细胞保护。总之,针灸干预心肌缺血的疗效和机制已初步得到证实和揭示,但尚未完全阐明,在一定程度影响了针灸治疗心肌缺血在临床的应用和推广。因此,需要引进新的理念、新的方法技术进行深入探索。

    2表观遗传调控在针灸治疗心肌缺血的机制研究中的应用

    目前主要涉及的表观遗传调控包括CG辅酶甲基化、组蛋白转录后修饰、RNA干扰等,具体可分为DNA甲基化、蛋白质共价修饰、染色质重塑、微小RNA调控4个方面[18-19]。越来越多的研究表明,表观遗传调控在心肌缺血过程中扮演重要角色,参与了疾病的发生、发展及预后的全部过程,因此,我们探讨从该角度开展针灸治疗心肌缺血机制研究的新方向。2.1表观遗传调控与心肌缺血的相关性以动物和人为载体的研究都表明,心肌缺血与表观遗传调控密切相关。表观遗传标记物在心肌缺血发生发展过程中的变化,反映出DNA甲基化、组蛋白修饰、染色质重塑及微小RNA是调控心肌缺血的关键因素。大鼠神经甲基化系统在心肌缺血中受到抑制,可导致缺血部位的儿茶酚胺浓度升高,作用于心脏,使心率加快,收缩力增强,心输出量增加;怀孕期间的营养不良会改变DNA甲基化,增加成年后患心血管病的风险,且DNA甲基化在6个特殊位点对产前环境很敏感,可能提高妇女患心肌缺血的风险[20-22]。同时,有研究认为,组蛋白H3赖氨酸4甲基化(H3K4me)转移酶和它们的辅助因子是调控胚胎发育及细胞特异性的重要因素[23];而Smyd2作为一种组蛋白甲基转移酶,介导H3K4甲基化,改变心肌细胞组蛋白甲基化修饰和心肌细胞靶基因的转录调控,促进心肌细胞分化和发育[24-25]。最新研究报道组蛋白H3赖氨酸27去甲基化酶赖氨酸K特异性脱甲基6A(UTX)可以促进心肌细胞生长发育,UTX基因敲除小鼠因心脏发育障碍死于胚胎发育早期[26]。除甲基化之外,组蛋白的乙酰化在心肌缺血中的作用受到广泛关注。发生心肌缺血后,心肌细胞蛋白发生了去乙酰化,抑制去乙酰化则能减少其损伤,组蛋白去乙酰化酶(HDAC)抑制剂通过组蛋白去乙酰化酶Sirt1介导,后者含量增加,能有效促进心肌缺血耐受,诱导心肌保护[27-29]。HDAC-7抑制剂可与缺氧诱导因子(HIF)结合影响基因转录,增强HIF活性,从而促进心脏血管新生[30-31]。同时,HDAC抑制剂曲古柳菌素A可降低缺血心肌凋亡基因Caspase3表达,抑制心肌细胞凋亡,也可促进干细胞向心肌细胞分化,介导心肌细胞再生[32-33]。进一步研究发现,组蛋白H3赖氨酸9乙酰化(H3K9ace)与缺血心肌保护密切相关,通过调节血管再生因子、细胞凋亡因子和HSP基因表达达到抗缺血性损伤效果。其中VEGF、Sirt1与组蛋白赖氨酸乙酰化关系最为密切[34-39]。除组蛋白修饰之外,microRNA上调或下调通过作用于靶基因激活相应的分子信号通路参与心肌保护,调控心肌缺血损伤。染色体重塑也被证明与心肌细胞生长发育相关[40-41]。

    总之,DNA甲基化、组蛋白修饰、微小RNA等表观遗传调控在心肌缺血过程中具有重要意义。2.2表观遗传调控与针灸防治心肌缺血机制研究从上述表观遗传调控与心肌缺血的相关研究成果可知,表观遗传调控介导细胞凋亡、心肌细胞保护和心脏血管再生,在心肌缺血发生发展过程中具有特殊地位,是目前医学研究的热点。从该角度切入进行针灸防治心肌缺血研究,必然是今后研究的一个新方向。同时,结合表观遗传调控自身特性,即强调除了DNA和RNA序列以外,还有许多调控基因信息,虽然本身不改变基因的序列,但其通过基因修饰、蛋白质与蛋白质、DNA和其它分子的相互作用,多层次、多途径影响和调节遗传基因的功能和特性,这些调节同时存在可逆性。这与针灸作用整体性、综合性、双向性、多靶点的特点具有一定的相似性。因此,将表观遗传学的理念和技术引入针灸抗心肌缺血机制研究,乃至整个针灸研究领域,都具有较强的可行性。结合针灸自身优势特点,以及其抗心肌缺血研究现状,融合上述表观遗传调控在心肌缺血发生发展过程的作用特点,我们认为,今后的研究可从两个方面进行,一是针灸对心肌缺血疾病的预防。治未病思想历来是中医理论的核心,早在《黄帝内经》中就强调“不治已病治未病”。现代研究证实,针刺具有提高机体机能的作用,如实施心肌缺血再灌注手术前针灸“内关”穴,能提高心肌细胞耐缺血能力,延长动物生存期,这无疑为心肌缺血患者赢得了宝贵的抢救时间[42]。而表观遗传调控与之密切相关,HDAC直接参与耐缺血,如果以此进行深入研究,一旦得以证实,将为临床进行再通手术前实施针灸干预的应用提供科学依据[43]。另一方面,则是在现有的研究基础上,继续深入探讨针灸抗心脏缺血机制研究。根据心肌缺血的不同阶段,有重点地开展相应研究。如急性期、亚急性期,主要围绕针灸促心肌细胞存活、抑制细胞凋亡,以及改善能量代谢,从而实现心肌细胞保护进行研究。针灸能有效调控心肌组织中Sirt1、HSP70、Caspase3、c-fos、Bcl-2等物质的表达,实现保护心肌目的,但其背后的调控机制如何,尚未得到证明。研究表明,HDAC能有效调控Caspase3表达,H3K9ace能影响HSP70水平等,从这些角度深入揭示针灸促心肌保护机制,将为针灸的更广泛应用提供基础。在慢性期,则主要围绕促进血管新生开展。已有的研究证实针灸能促缺血区域的血管新生,且与VEGF密切相关,但调控VEGF表达发生改变的机制并未得到证明。肿瘤存在大量的新生血管,研究中发现,H3K9ace在此过程中扮演重要角色,我们可以推测,在针灸促VEGF表达,介导血管新生过程中,H3K9ace可能具有重要意义。同时,也可以充分结合针灸抗心肌缺血机制研究成果,着重筛选出相应优势靶点,进行新药开发,或许可能成为新药开发的新靶点。除此之外,还可进行相应的拓展。研究表明,心脏中存在心肌干细胞,在某些影响因素干预下,能不断增殖、分化形成新的心肌干细胞。这个过程中表观遗传调控发挥重要作用[44]。针灸有促体内干细胞增殖、分化的能力,比如促脑内神经发生,实现脑保护[44-45]。那么针灸是否也能促进心脏干细胞增殖、分化,实现心肌保护?从表观遗传学的角度研究,也将成为我们关注的方向。