高分子材料工程技术范例6篇

前言:中文期刊网精心挑选了高分子材料工程技术范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

高分子材料工程技术范文1

    一、高分子材料成型加工技术发展概况

    近50年来,高分子合成工业取得了很大的进展。例如,造粒用挤出机的结构有了很大的改进,产量有了极(大的提高。20世纪60年代主要采用单螺杆挤出机造粒,产量约为3t/h;70年代至80年代中期,采用连续混炼机+单螺杆挤出机造粒,产量约为10t/h;80年代中期以来。采用双螺杆挤出机+齿轮泵造粒,产量可以达到40-45t/h,今后的发展方向是产量可高达60t/h。在l950年,全世界塑料的年产量为200万t。20世纪90年代。塑料产量的年均增长率为5.8%,2000年增加至1.8亿t至2010年,全世界塑料产量将达3亿t,此外。合成工业的新近避震使得易于璃确控制树脂的分子结构,加速采用大规模进行低成本的生产。随着汽车工业的发展,节能、高速、美观、环保、乘坐舒适及安全可靠等要求对汽车越来越重要.汽车规模的不断扩大和性能的提高带动了零部件及相关材料工业的发展。为降低整车成本及其自身增加汽车的有效载荷,提高塑料类材料在汽车中的使用量便成为关键。

    据悉,目前汽车上100kg的塑料件可取代原先需要100-300kg的传统汽车材料(如钢铁等)。因此,汽车中越来越多的金属件由塑料件代替。此外,汽车中约90%的零部件均需依靠模具成型,例如制造一款普通轿车就需要制造1200多套模具,在美国、日本等汽车制造业发达的国家,模具产业超过50%的产品是汽车用模具。目前,高分子材料加工的主要目标是高生产率、高性能、低成本和快捷交货。制品方面向小尺寸、薄壁、轻质方向发展;成型加工方面,从大规模向较短研发周期的多品种转变,并向低能耗、全回收、零排放等方向发展。

    二、现今高分子材料成型加工技术的创新研究

    (一)聚合物动态反应加工技术及设备

    聚合物反应加工技术是以现双螺杆挤出机为基础发展起来的。国外的Berstart公司已开发出作为连续反应和混炼的十螺杆挤出机,可以解决其它挤出机(包括双螺杆和四螺杆挤出机)作为反应器所存在的问题。国内反应成型加工技术的研究开发还处于起步阶段,但我国的经济发展强烈要求聚合物反应成型加工技术要有大的发展。指交换法聚碳酸酯(PC)连续化生产和尼龙生产中的比较关键的技术是缩聚反应器的反应挤出设备,我国每年还有数以千万吨计的改性聚合物及其合金材料的生产。关键技术也是反应挤出技术及设备。

    目前国内外使用的反应加工设备从原理上看都是传统混合、混炼设备的改造产品,都存在传热、传质过程、混炼过程、化学反应过程难以控制、反应产物分子量及其分布不可控等问题.另外设备投资费用大、能耗高、噪音大、密封困难等也都是传统反应加工设备的缺陷。聚合物动态反应加工技术及设备与传统技术无论是在反应加工原理还是设备的结构上都完全不同,该技术是将电磁场引起的机械振动场引入聚合物反应挤出全过程,达到控制化学反应过程、反应生成物的凝聚态结构和反应制品的物理化学性能的目的。该技术首先从理论上突破了控制聚合物单体或预聚物混合混炼过程及停留时间分布不可控制的难点,解决了振动力场作用下聚合物反应加工过程中的质量、动量及能量传递及平衡问题,同时从技术上解决了设备结构集成化问题。新设备具有体积重量小、能耗低、噪音低、制品性能可控、适应性好、可靠性高等优点,这些优点是传统技术与设备无法比拟或是根本没有的。该项新技术使我国聚合物反应加工技术直接切人世界技术前沿,并在该领域处于技术领先地位。

    (二)以动态反应加工设备为基础的新材料制备新技术

    1.信息存储光盘盘基直接合成反应成型技术。此技术克服传统方式的中间环节多、周期长、能耗大、储运过程易受污染、成型前处理复杂等问题,将光盘级PC树脂生产、中间储运和光盘盘基成型三个过程整合为一体,结合动态连续反应成型技术,研究酯交换连续化生产技术,研制开发精密光盘注射成型装备,达到节能降耗、有效控制产品质量的目的。

    2.聚合物/无机物复合材料物理场强化制备新技术。此技术在强振动剪切力场作用下对无机粒子表面特性及其功能设计(粒子设计),在设计好的连续加工环境和不加或少加其它化学改性剂的情况下,利用聚合物使无机粒子进行原位表面改性、原位包覆、强制分散,实现连续化制备聚合物/无机物复合材料。

    3.热塑性弹性体动态全硫化制备技术。此技术将振动力场引入混炼挤出全过程,控制硫化反直进程,实现混炼过程中橡胶相动态全硫化.解决共混加工过程共混物相态反转问题。研制开发出拥有自主知识产权的热塑性弹性体动态硫化技术与设备,提高我国TPV技术水平。

    三、高分子材料成型加工技术的发展趋势

高分子材料工程技术范文2

“高分子材料与工程专业”:是培养具备高分子材料与工程等方面的知识,能在高分子材料的合成改性和加工成型等领域从事科学研究、技术开发、工艺和设备设计、生产及经营管理等方面工作的高级工程技术人才的学科。

高分子材料也称为聚合物材料,是以高分子化合物为基体,再配有其他添加剂(助剂)所构成的材料。天然高分子是存在于动物、植物及生物体内的高分子物质,可分为天然纤维、天然树脂、天然橡胶、动物胶等。

(来源:文章屋网 )

高分子材料工程技术范文3

关键词:高分子材料;功能;研究现状;发展前景

前言

在我们的日常生活中,材料随处可见,材料的发展水平直接影响我们的生活质量。高分子材料在我们日常生活的应用中拥有很多的优势,与现代化生产非常吻合,同时它也产生了很高的经济效益等,因此它在工业上发展的十分迅速。在过去,20世纪60年展起来的功能高分子材料是属于那时的一个新兴领域,这个新兴领域同时渗透到能源和电子以及生物三大领等。而如今,21世纪的科技不断创新,也有了新型有机功能高分子材料,它们在人们的生产和生活中扮演着一个越来越重要的角色。

1 功能高分子材料的定义

功能高分子材料是指同时兼顾有两种性能的复合高分子材料,性能一:传统高分子材料的所体现出来的性能,性能二:某些特殊功能的基团所体现出来的性能。一般说来,具有传递信息、转化能量和贮存物质作用的高分子及其复合材料为功能高分子材料,或者还可以理解为具有能量转换的特性、催化特性、化学反应活性、磁性、光敏特性、药理性、导电特性、生物相容性、选择分离性等功能的高分子及其复合材料,同时还具有原有力学性能的基础。

2 功能高分子材料的工程实际应用

目前,在工程上应用较广泛而且具有重要应用价值的一些功能高分子材料主要分为以下几种:光功能高分子、液晶高分子、电功能高分子、吸附分离功能高分子、反应型功能高分子、医用功能高分子、环境降解功能高分子、高分子功能膜材料等。下文中具体从这几方面阐述:

(1)光功能高分子材料。指在光的作用下能够产生物理变化,如光导电、光致变色或者化学变化,如光交联、光分解的高分子材料,或者在物理或化学作用下表现出光特性的高分子材料。光功能高分子材料主要应用在电子工业和太阳能的开发利用等方面。

(2)液晶高分子材料。液晶高分子是一种新型的功能高分子材料,它是分子水平的微观复合,由纤维与树脂基体在宏观上的复合衍生而来,也可以理解为在柔性高分子基体中以接近分子水平的分散程度分散增强剂(刚性高分子链或微纤维)的复合材料。强度高、模量大是液晶高分子材料的主要特点,它在复合材料、纤维和液晶显示技术等方面的应用非常广泛。

(3)电功能高分子材料。电功能高分子材料主要表现为在特定条件下表现出各种电学性质,如热电、压电、铁电、光电、介电和导电等性质。根据其功能划分,主要包括导电高分子材料、电绝缘性高分子材料、高分子介电材料、高分子驻极体、高分子光导材料、高分子电活性材料等。同时根据其组成情况可以分成结构型电功能材料和复合电功能材料两类。电功能高分子材料在电子器件、敏感器件、静电复印和特殊用途电池生产方面有广泛应用。

(4)吸附分离高分子材料。吸附分离功能高分子按吸附机理分为化学吸附剂、物理吸附剂、亲和吸附剂,按树脂形态分为无定形、球形、纤维状,按孔结构分为微孔、中孔、大孔、特大孔、均孔等,吸附分离功能高分子主要包括离子交换树脂和吸附树脂。

(5)反应型功能高分子材料。反应功能高分子是有化学活性、能够参与或促进化学反应进行的一种高分子材料。它是将小分子反应活性物质通过共价键、离子键、配位键或物理吸附作用结合于高分子骨架,主要用于化学合成和化学反应。

(6)医用功能高分子材料。在生物体产生生理系统疾病时,一些特殊的功能高分子材料有对疾病的诊断、治疗、修复或替换生物体组织或器官,增进或恢复其功能的作用,此类特殊的功能高分子材料称为医用功能高分子材料。一般来说,医用功能高分子材料多用于对生物体进行疾病的诊断和疾病的治疗以及修复或替换生物体组织或器官和合成或再生损伤组织或器官,具有延长病人生命、提高病人生存质量等作用,在医疗方面被广泛应用。

(7)环境降解高分子材料。高分子材料在发生降解反应的条件有许多,如机械力的作用下发生的降解称为机械降解,此外在化学试剂的作用下可发生化学降解,在氧的作用下可发生氧化降解,在热的作用下可发生热降解,在光的作用下可发生光降解,在生物的作用下可发生生物降解等。具有此类功能的高分子称为环境降解高分子材料。

(8)高分子功能膜材料。高分子功能膜是一种具有选择性透过能力的膜型材料,同时也是具有特殊功能的高分子材料,一般称为分离膜或功能膜。使用功能膜分离物质具有以下突出的优点:具有较好的选择性透过性,透过产物和原产物位于膜的两侧,便于产物的收集;分离时不发生相变,同时也不耗费相变能。从功能的角度,高分子分离膜具有识别物质和分离物质的功能,此外,它还有转化物质和转化能量的其它功能。利用其在不同条件下显出的特殊性质,已经在许多领域获得应用。

3 功能高分子材料的发展前景

人类赖以生存和发展的物质基础离不开材料,材料的发展关系到社会发展和国民经济以及国家的安全,同时也是体现国家综合实力的重要标志。高新技术和现代工业发展的基石离不开高分子材料,国民经济基础产业以及国家安全不可或缺的重要保证同样也离不开高分子材料。而功能高分子材料由于其优越性,使得其在材料行业中发展迅速。

未来材料科学与工程技术领域研究的重要发展方向离不开功能高分子材料,材料、信息和能源理所当然的被评为新科技革命时代的三大根基,信息和能源发展离不开材料领域中功能高分子材料作为它们物质基础所起到的重要作用,新型功能高分子材料的研究与发展主要取决于现代学科交叉程度高这一特点。在传统的三大合成材料以外,陆陆续续又出现了具有光、电、磁等特殊功能的高分子材料以及功能高分子膜,同时也出现了生物高分子材料,隐身高分子材料等许多具有特殊功能的高分子材料,与此同时功能高分子材料的发展速度依然保持着加快的状态,显然它们对新技术革命影响非常之大。这些新型的功能高分子材料在我们的尖端科学技术领域和工农业生产以及日常生活中扮演着越来越重要的角色,21世纪人类社会生活必将与功能高分子材料密切相关。

4 结束语

功能高分子材料是一门研究高分子材料变化规律以及实际应用技术的一门学科,在高分子材料科学领域中的发展速度是最快的,同时也是与其它科学领域交叉最为密切的一个研究领域。它是以高分子物理、高分子化学等相关学科为基础,同时与物理学和生物学以及医学密切联系的一门学科。因此学习这门学科能让我们很好的将高分子学科的知识综合运用起来,进而使我们对高分子学科有更深刻的认识,让我们受益匪浅。

参考文献

[1]张青,陈昌伦,吴狄.功能高分子材料发展与应用[J].广东化工,2015,42(06):119-120.

[2]武帅,鲁云华.功能高分子材料发展现状及展望[J].化工设计通讯,2016,42(04):82.

[3]赖承钺,郑宽,赫丽萍.高分子材料生物降解性能的分析研究进展[J].化学研究与应用,2010,03(01):1-7.

高分子材料工程技术范文4

关键词:高分子材料与工程;特色化;人才培养模式;林业院校

中图分类号:G640 文献标识码:A 文章编号:1002-4107(2015)10-0066-02

随着科技的不断进步,各国都在不断创新和研发新的材料,而每一种新材料的使用,都能够引起一次技术上的重大变革,而这种变革可能是世界性的。现代人类社会的“三大支柱”领域分别为材料、能源和信息。正是在这种背景下,高分子材料与工程专业在短短的二十年时间内发展迅速。1998年,教育部调整了高等学校本科专业目录,将与高分子材料相关的工科类专业统一为高分子材料与工程专业。教育部出台的专业建设指导精神明确指出,要重点发展高分子材料产业[1]。

东北林业大学高分子材料与工程专业,始建于2000年10月,专业的建立基于东北林业大学木材科学与技术学科在天然高分子材料的加工与利用等条件成熟的基础上,由我国木材胶黏剂领域知名专家顾继友教授组织创办。在十几年的不断实践探索中,建立了具有自己特色的人才培养模式,并依托东北林业大学的发展平台,明确培养目标,凸显了林业院校的特色和优势,培养了一大批兼具知识、能力和实践动手能力的高素质人才。

一、依托院校优势,打造品牌专业

东北林业大学创建于1952年,是国家“211工程”和“优势学科创建平台”项目重点院校。学校是以林科为发展优势,以林业工程为办学特色的综合性大学。高分子材料与工程专业在建立之初就显示出专业的优势,它是在天然高分子开发利用、生物质复合材料、高聚物合成、合成树脂胶黏剂的开发等领域都较成熟完备的基础上发展起来的,具有厚基础的专业优势。专业发展迅速,于2003年获批建立“生物材料工程”博士点学科,2006年该学科被评为黑龙江省重点学科,2010年进入“985”优势学科平台建设行列,目前是东北林业大学的重点专业。专业涵盖了胶黏剂、生物质复合材料、天然与合成高分子材料和生物质功能材料四个具有学科优势和特色的方向。其中胶黏剂是本专业的主要特色,尤其是木质基材料用胶黏剂的研究、开发和推广方面处于世界先进、国内领先的行列;专业的另一个特色是生物质复合材料的研究,尤其是在木塑复合材料、木质素、蛋白质、淀粉等生物质材料的开发利用方面具有较大优势。

高分子材料与工程专业为黑龙江省重点专业,教学理念先进,师资力量雄厚,具有丰富的教学管理经验,本专业有三门课程“胶黏剂与涂料”、“生物质材料”和“材料科学与工程基础”入选东北林业大学重点课程建设项目。东北林业大学作为林业院校的领跑者,有着林业院校的优势。为此,东北林业大学高分子材料与工程专业在人才培养模式的制定上以林业院校优势为依托,支撑学科“生物材料工程”在科研方面以天然高分子为核心,以生物质复合材料、胶黏剂、天然与合成高分子材料以及生物质功能材料四个特色研究方向为重点。与之相适应的专业人才培养模式既注重高分子材料与工程专业的基础,更体现林业院校相关专业的优势特色。在近十几年的人才培养过程中,专业也在不断的调整修订人才培养方案,既重基础,又宽口径,注重素质和能力培养,突出林业院校品牌专业的特色和优势。

二、特色化人才培养模式的构建

人才培养模式作为高等院校人才培养活动的实践规范和基本样式,是高等院校对本科人才培养目标、培养过程、培养途径以及培养方法等要素的综合概括。随着目前人才市场化程度的日益高涨,如何造就适应社会需要的应用创新型人才是亟待解决的难题[2]。不同的学校、专业应根据人才需求、本身专业特色以及学校优势等方面探索一条适合自己的人才培养模式,并且要经过一定的实践检验,千万不能照搬照抄、生搬硬套。

在人才培养目标的定位上,我们总结了一些地方院校人才培养的偏差,积极探索出“强化基础、因材施教、分类培养”的指导思想,考虑到学生的基础水平,发展方向、内在潜质,按照发展方向和个人选择的不同对学生进行分类,大致分为就业、继续深造、出国深造等几种类型,以此为前提在课程设置、实践动手能力、毕业论文和设计、教师培养等方面进行适当的改革,使培养出的学生知识结构广泛,基础扎实,动手能力强,能在聚合物合成、胶黏剂、生物质复合材料等领域从事生产、开发研究、管理的工程技术人才,探索出一种具有特色的人才培养模式。

三、特色化人才培养的具体措施

(一)规范培养过程,提升教育实力

学科之间的相互影响与渗透逐渐成为发展趋势,通过各学科之间的彼此渗透,相互关联成更大的、完整的学科体系[3]。这就要求现代大学教育要有更广博的知识背景,更敏捷的思维创新能力及开阔的学科视野。只有在大学科平台上和开放的学习氛围中采用灵活创新的教育模式,才能完成创新人才培养的目标要求[4]。

为满足国家林业科技的战略需求、学校建设高水平特色大学的要求以及社会对不同人才的需求,东北林业大学重点突出“林产”特色,构建相关的学科课程体系。本着厚基础、宽专业的主导思想,构建学科基础课;结合专业方向的特色,构建专业基础课和特色课程;同时完善交叉学科的渗透,构建开放性的选修课程,学生可自由选修,实现资源共享。学校和学科带头人广泛听取学生意见,制定了一系列切实可行的专业管理制度,加快重点专业建设步伐;加强教师队伍建设,构建专业教师团队;聘请国内外专家教授、学者定期在学院及学校范围内进行专题讲座;鼓励学生进行创新思维训练,以专业教师牵头,鼓励学生自主开发,大胆创新,认真观察;创建具有自己学科发展特色的高分子材料与工程创新实验室,建立以专业教师牵头,本科生为主体的创新训练团队,在保证验证性和设计性实验教学的基础上,增加本科生专业技能综合训练;从大一新生开始实行“导师制”,提倡因人施教,对学生进行启发式教育,鼓励学生开展批判式学习,用与时俱进的思想运用知识,用发散的思维研究知识[5]。

(二)产学研相结合

“产学研结合”是东北林业大学高分子材料与工程专业培养创新型人才的重要途径。“产学结合”是指学生的毕业设计和毕业论文来自于生产实际,学生通过走进工厂、校企合作单位帮助解决生产实际问题。一方面锻炼了学生实际解决问题的能力,培养了独立解决问题的意识,凡事不再依赖教师、依赖课本,是完全意义上的实践;学生通过实习较早地熟悉了工作岗位,积累了工作经验,对待就业问题不再盲目,缩短了学生适应工作岗位的时间。另一方面,工厂在实际生产中也遇到各种各样的问题,新鲜血液的注入也为企业解决了遇到的实际问题,节约了用人成本,并在经济效益方面有所收获。“研学结合”是学生的毕业论文或毕业设计选题大部分来源于指导教师的研究课题,导师的课题研究具有前瞻性及实践性,学生通过参与导师课题,导师指导学生更直接、更具体,锻炼了学生的科研能力,对于继续深造或是出国留学的学生来说锻炼了他们的创新思维能力和科学素养。结合科研实践培养专业人才是专业建设大力提倡的,专业教师积极以科研带动教学,以教学促进科研,学生积极参与教师课题研究工作对学生未来的发展大有裨益。

(三)突出专业实践特色建设

高分子材料与工程专业的特色是培养学生的实践能力和较强的创新意识,实践能力的培养不仅仅在课堂和实验室,高质量、充分的专业实践是人才培养必不可少的重要环节。在实践教学中,学生可以到企业现场观摩,根据企业现有的生产条件将理论和生产结合,学生将学习的书本知识融会贯通到实践中,同时在理论的指导下,学生撰写实习报告反馈实习内容。学校非常重视实践教学,出台了一系列的制度方案,健全实习质量保障体系。为此,专业积极拓展实践基地,依据指导教师的特长进行分工指导,邀请具有培训经验的一线工程技术人员进行现场讲解和模拟。学生的整个实践环节与毕业论文和设计紧密结合,实践过程为论文的撰写提供第一手资料,也锻炼了学生解决实际问题的能力。总之,不断探索高等学校专业与社会实践有机结合的长效机制,建立健全校外实践基地,是学生磨炼意志、增长才干、理论与实践相结合的重要载体。

无论是林业院校还是各类地方高校,都在努力地积极探索高分子材料与工程专业特色化人才培养的模式,东北林业大学在特色化人才培养方面也在不断实践中,既结合了传统的专业优势,又不断挖掘新思路、新方法、新观念,这是知识经济时代对人才培养的需要,也是林业院校人才培养的需求。

参考文献:

[1]中华人民共和国教育部高等教育司.普通高等学校本科

专业目录和专业介绍(1998年颁布)[Z].北京:高等教

育出版社,1998.

[2]周泉兴.人才培养模式的理性思考[J].高等理科教育,

2006,(1).

[3]曹赛先.一流大学的大学科观[J].当代教育论坛,2004,(1).

[4]陈峥滢,秦毅红.大材料学科研究性学习和创新能力培

养研究[J].理工高教研究,2010,(1).

[5]熊建辉,付刚.林业特色学校的世界一流大学建设之路

高分子材料工程技术范文5

关键词:高分子材料与工程;人才培养;教学改革

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2014)09-0041-02

高分子材料是材料领域中的新秀,它的出现带来了材料领域的重大变革,在诸多行业中已逐渐成为不可替代的关键材料。高分子材料与工程专业具有跨学科、综合性的特点,既与化学、石油化工、精细化工等基础学科紧密联系,又和汽车、电子、环境等应用学科相辅相成[1]。

闽江学院高分子材料与工程专业建设以课程建设为中心,从改革课程体系、强化实践教学、改进教学方法等方面系统深入地开展建设,以达到“重基础理论、重创新精神、强实践技能、强综合素质”的人才培养要求。

一、优化课程结构

本专业的教学体系包括理论教学体系和实践教学体系。在理论教学体系中,课程结构又可分为校级公共基础课程、学科基础课程、专业核心课程等[2]。其中,公共基础课、学科基础课和专业核心课程分别安排63、29和4分,在总学分中分别占比35%、17%和28%。通过进一步深化教学内容改革,构建以专业核心课程和学科基础课程相结合、有利于学科交叉与融合、与经济社会发展相适应的课程体系。此外,还鼓励教师努力建立主干课的课程网站并加强精品课程建设。

在实践教学体系中,遵循从入学军训、金工实习、科研训练、认识实习、专业课程设计、毕业实习到最终的毕业论文(设计)的循序渐进过程,共计34学分,在总学分中占比20%,结合本科四年各课程的实验教学内容,形成较为完整的实践教学体系[3]。同时,为了使高分子材料与工程专业的毕业生具有更强的实践技能,还设计了创新实践环节,其中安排了与本专业相关的社会服务活动、开放实验室活动、专业学术讲座、学科竞赛以及创新创业实践计划项目等。

二、加强实践教学改革

实践教学是高等学校人才培养体系的重要组成部分,与理论教学起着相辅相成的作用。国内外对高分子材料实验实践教学提出多种想法,朱晶心等[4]把加强专业实验教学、提高实验质量、培养创新人才、提高创新能力等作为教学改革的重点。龚建良等[5]研究了高分子材料与工程专业实验教学体系的现状和不足,提出了高分子材料与工程专业实验教学新体系。付一政等[6]认为专业实验既要注意基础知识的综合应用和基本实验技能的训练,又要强调分析问题、解决问题、独立工作、协同配合、富于创新等综合能力的培养。在加强教学实践的建设工作中,结合近年来高分子专业实践教学经验,我们系统地规划和改革“高分子材料与工程专业”的学科基础和专业实践课程体系,使实践教学体系具有基础宽厚、层次分明、循序渐进的特点。

1.实验教学建设。实践教学的初始阶段应该是在学校内掌握基础实验技能,因此对本科阶段实验教学改革应特别重视。在实验教学中,从基础化学中精选出操作性强的实验,安排在本科一、二年级学习阶段对学生集中进行基本实验技能训练。专业实验课程主要安排在本科三、四年级进行,进一步培养学生的专业实验技能。以“循序渐进”为原则,以综合、创新能力的培养为目标,在完成单元性实验教育后,增设单元性设计实验(应用性实验),最后进入综合设计性实验,形成由浅入深、循序渐进的实验教育模式。在实验内容上,鼓励实验教师将自己的科研成果与综合设计性实验相结合,拓展学生对本专业发展前沿的认识。

在教学方法上,重点加强基本实验技能的训练,如组织学生参与专业实验准备、开放实验室训练、社会服务活动等均加深了学生对实验原理和流程的认识。此外,强调教学中激发学生对实验的兴趣。如让学生自行设计方案,引导学生到图书馆查阅相关文献及手册,设计实验方案等。通过积极思考和热烈讨论,不少学生都迫切希望马上进实验室验证自己的观点,从而激发了他们浓厚的实验热情。富有启发意义的实验教学方式发展了学生的创造思维,发挥了主观能动性,培养了独立思考能力,进而强化他们的综合专业素养[7]。

2.生产实习基地建设。由于历史原因,我系原有实习基地大多数是国有化工企业,目前普遍经营情况较差,设备陈旧,实习环境差。在这些单位实习,尽管联系方便、费用低,但实习效果不佳。而一些效益较好、技术先进、环保意识强的合资及独资企业担心学生来厂实习会影响生产,不愿积极配合学校完成实习的组织安排;即使接受了实习的任务,也只是让学生站在一旁观看,鲜有动手实践的机会。因此,我专业通过两条途径解决实习基地问题。一是针对效益差的国有化工企业,开展科研活动,与企业合作,走产学研相结合的路子。二是积极与新兴的合资企业、私营企业及乡镇企业联系,签订合作协议,为他们提供技术咨询,帮助他们培训一线操作工人。这样,企业就比较乐意接受学生到这些单位进行专业实习,让学生顶岗操作,视学生为本单位职工。学生在这样的实习单位实习,学习热情高,很好地巩固了专业知识。

三、突出专业特色建设

具有较强的创新意识和实践能力,是高分子材料与工程专业努力塑造的专业特色。在专业建设中,通过企业实习,利用生产现场的实际条件,将专业理论和生产实际相结合,最大限度地满足后续课程学习和人才培养目标的需求。专业教学团队注重生产实习基地的开发,健全实习质量保障体系,保障相对稳定的生产实习教师队伍,出版内容适当的生产实习教材。为保证实习教学质量,指导小组根据教学内容、实习地点进行了合理分工,发挥每位教师的长处,做好教学和组织管理工作。在实习单位内组织相对固定的对生产技术了解深入、有一定培训经验的一线工程技术人员组成实习教学队伍,在实习中发挥了巨大的作用。

结合科研实践培养专业人才,推进教学与研究一体化,是本专业建设的另一特色。为增加学生对专业发展的认识,培养他们创新思路和实践能力,本专业积极落实以教学促科研、以科研带教学的思路,组织学生参与专任教师的科研课题研究工作。目前由本专业12位教师主持的课题共30余项,其中省部级以上科研项目7项,市厅级项目19项,校企合作项目5项,每一项课题都有高年级本科生参与。此外,吸收部分专业学习热情较高的学生参与创新实践训练。目前本专业教师共承担12项大学生创新创业训练计划项目,其中国家级2项,省级5项,校级5项,科研实践工作的开展显著提高了本专业学生的专业素养和动手能力。

四、总结

闽江学院高分子材料与工程专业建设的成果表明,加强专业教学体系和实践体系改革,不仅能增强学生的动手能力,更重要的是能激发学生的求知欲,培养学生的创新意识和实践能力。我们不仅要对现有实验教学内容、教学方法及创新能力的培养方面提出改革要求,还要通过多层次开展实践教学,提高综合性实验和设计性实验等创新内容教学比例,进一步增强学生在实验中的主动性和创造性,以培养出更多具有创新能力的高素质专业人才。

参考文献:

[1]赵长生,顾宜.高分子材料与工程专业发展与现状[J].塑料工业,2008,36(1):70-71.

[2]胡治元.高分子材料应用技术专业教改的思路与实践[J].洛阳工业高等专科学校学报,2007,17(6):42-46.

[3]王慧敏,郑耀臣,崔孟忠,等.高分子材料与工程专业实验教学的改革与实践[J].化工高等教育,2007,(5):39-41.

[4]朱晶心,马彦龙.高分子材料专业的教学改革实践与思考[J].太原理工大学学报(社会科学版),2001,19(12):77-78.

[5]龚建良,吴宇雄,谭惠平,等.高分子材料与工程专业实验教学体系改革初探[J].高教论坛,2006,(4):56-58.

[6]付一政,李迎春,刘亚青,等.高分子材料与工程综合实验教学探索与实践[J].太原科技,2008,(3):90-91.

[7]彭进,夏绍灵,刘国勤.高分子材料与工程专业实践教学改革研究[J].新乡师范高等专科学校学报,2007,21(5):102-104.

高分子材料工程技术范文6

金属材料工程

本专业培养具备金属材料科学与工程等方面的知识,能在冶金、材料结构研究与分析、金属材料及复合材料制备、金属材料成型等领域,从事科学研究、技术开发、工艺和设备设计、生产及经营管理等方面工作的高级工程技术人才。

主要课程:金属学、材料工程基础、材料热力学、材料力学性能、金属工艺学、金属热处理、材料固态相变、材料分析技术、金相技术、金属材料学、金属学实验等。

就业方向:从事金属材料及其他在机械、能源、汽车、冶金和航空航天等领域中的应用研发工作,或者材料的生产及经营、技术管理和材料的检测、失效分析等技术工作。

专业点评:未来几年,我国将在国产大飞机、航空母舰、航空发动机等领域投入巨资,本专业人才将迎来更大的发展机遇。相关企业主要分布在东北、陕西、河北等地。由于此专业工科性质很强,男生较好就业(女生可以选择材料研究方向)。

推荐院校:哈尔滨工业大学、燕山大学、西安工业大学、辽宁科技大学、南昌航空大学、河南科技大学、江西理工大学应用科学学院。

无机非金属材料工程

本专业与金属材料工程研究范围有所交叉,但重点培养具备无机非金属材料及其复合材料科学与工程方面的知识,并且使学生掌握各类土木工程材料在建筑工程中的应用技术、测试方法和开发能力。

主要课程:材料力学、工程制图与CAD、无机化学、有机化学、粉体工程、材料制备原理、热工过程与设备、无机材料工艺学、材料工艺性能实验、建筑施工技术与组织、工程测量等。

就业方向:在无机非金属材料结构研究与分析、材料的制备、材料成型与加工等领域,从事科学研究、技术开发、工艺和设备设计、生产及经营管理等方面工作。

专业点评:本专业分混凝土、陶瓷、新材料等多个研究方向。混凝土的研究已经很成熟,人才需求大,本科学历就足以找到好工作;陶瓷研究近几年才兴起,生物陶瓷、特种陶瓷等研究前景广阔,就业或考研皆宜;高性能、多功能无机非金属新材料在发展现代武器装备中起到十分重要的作用,这方面的高水平人才在我国尤为紧缺。

推荐院校:华南理工大学、武汉理工大学、陕西科技大学、河北联合大学、洛阳理工学院、景德镇陶瓷学院(国家品牌特色专业)、巢湖学院。

高分子材料与工程

与金属材料工程、无机非金属材料工程专业研究对象有所区别,高分子材料与工程专业的研究对象是高分子材料。作为发展最为迅速的三大材料之一,本专业面向传统和新兴的诸如塑料、橡胶、纤维、涂料、石油化工、生物医学、新能源、海洋、国防等各类行业,培养具有理工交叉特点的人才。

主要课程:高分子化学、高分子物理、高分子工程、高等有机化学、物质结构、材料科学基础、聚合物成型加工与应用、功能高分子材料、特种复合材料等。

就业方向:主要在日化、石化、汽车、家电、航空航天等领域的相关企业、科研部门,从事设计、新产品开发、生产管理、市场营销工作。