电力继电保护原理范例6篇

前言:中文期刊网精心挑选了电力继电保护原理范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

电力继电保护原理

电力继电保护原理范文1

关键词:微课;专业教学;教学设计

中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2014)23-0023-02

微课程,即对常规课程的微缩,是基于“微学习”而建立的“微内容”。具体地,就是用10~20分钟的教学设计,将一个知识点讲解通透,并以网络媒体作为平台展示给学习者。由于微课程具有“位微不卑”“课微不小”“步微不慢”“效微不薄”等优势,随近几年高等院校也掀起了微课程的研究之风。[1,2]但是,目前高校的微课程研究多集中于基础课程教学,而在专业课程的教学中应用甚少。因此,本文探索了电气工程及其自动化专业的“电力系统继电保护原理”专业课程的微课设计与实践,取得了一些教学心得。

一、微课的设计定位

微课程作为网络远程教学终端,服务于本校电气专业或非电气专业,甚至校外社会人群。既可以做电气工程及其自动化专业本科学生的校内课程“电力系统继电保护原理”[3]的有益补充,方便学生的课前预习、课后复习等,也可为未修过该门课程的学习者开启专业知识的大门。

此外,微课应以学习者角度设计,而非教师角度,从而充分发挥学习者自主学习的潜力。[1]

二、微课的制作方法

微课程以网络媒体为平台,终端以视频的形式呈献给学习者,因此微课的制作有如下软硬件的要求:

1.录制微课的专业录播教室

需要配备多机位的高清摄像机。按照笔者制作经历,至少需要一个针对主讲教师的机位,一个针对听讲学生的机位,如果有师生全景镜头,效果更佳。多机位的目的,是为了方便后期制作时镜头切换更加游刃有余。当然,录制风格可以不拘一格,比如有些采用“画中画”的预期方式也是不错的选择。但无论采用哪种形式,制作的效果应该是提前考虑,做到心中有数。

来自各摄像机位以及PPT自动播放的多路信号收集完毕后,需要进行合理的剪辑。此外,需要增加字幕的输出,以及制作必要的反应微课内容和教师信息等信息的片头、片尾。

3.展示微课的网络媒体平台

微课制作完成以后,需要放在一定的网络平台上展示,方便学习者使用,如本课程的微课便放在本校的BB教学平台。[4]

三、微课的选题方向

由微课的定位出发考虑,选题应偏重基本知识点。应用到本课程,比如“对继电保护的基本要求”“阻抗继电器的动作特性”等,都比较适合制作成微课形式。但是,如果是面向职业培训的微课,宜跳过基础阶段选择面向工程的具体案例来强化知识点。[5]

本文以“电力系统继电保护原理”课程为例,进行一个知识点的微课设计案例――“对继电保护的基本要求”。

1.教学背景[6]

“电力系统继电保护”是电气工程专业本科学生的必修课,设置于第七学期。先修课程主要为“电力系统基础”“供配电技术”等。

学生在学习本门课程之前,已经对电力系统的一次设备、接线方式、运行方式等有了基本的认识,也已经掌握了潮流计算、短路计算等计算方法。“电力系统继电保护”围绕电力系统二次设备,对典型集中传统保护原理进行介绍。

本次微课内容,是该课程第一章《绪论》中的第三小节,根据教学安排,是本门课程的第二次课。第一次课,学生对继电保护的基本任务有了一定的认识。这次课,承接上堂课的内容,继续讨论“对继电保护的基本要求”。

从整个课程体系来看,本节内容“对继电保护的基本要求”是贯穿全课程的最重要基本线索,处于一个纲领性的地位。

2.教学目标

本节课的教学目标:掌握“对继电保护的基本要求”,即选择性、速动性、灵敏性、可靠性。要求理解四项基本要求的含义,并能够分别举例说明。其中选择性和可靠性是难点,而选择性又是重点。

3.教学方法

授课形式采用以多媒体教学为主,板书为辅。教学手段采用启发式、案例式、类比法、阐述法、比较法、列举法等多种方法结合。

4.教学路线

在上课伊始,通过播放一个“变压器故障”的视频短片,让学生复习“电力系统故障”的概念以及“故障的危害”。通过视觉和听觉的冲击,增加学生对以上知识点的感受。

由“启发式”教学法,提出问题:为了避免以上损失,故障能否及时从电网中切除?若可以,又由谁来完成?通过上节课程可知,继电保护可以扮演这样的角色,继电保护是电力系统安全运行的三道防线之首。

再利用“启发式”教学法深化问题,进一步提出:继电保护如何能够完成基本任务,即对继电保护有何基本要求?从而自然而然地引出本节课的主要内容。

利用多媒体课件的演示,在进入正式内容之前,联系工程实际,补充了“几个位置称谓”。

同时,采用“类比”法,类比电力潮流的“上下游”的相对关系,明确“上下级”线路的关系。此时,板书演示电力潮流流向。

利用“阐述法”,介绍本节主要内容“对继电保护的四项基本要求”,即选择性、速动性、灵敏性、可靠性。同时指出选择性和可靠性是“难点”。

关于“选择性”讲解(难点之一)如下:先利用“阐述法”,介绍了“选择性”的概念;再利用“启发式”,引出进一步的探讨“什么样的保护行为是具有选择性的行为”,然后利用“案例法”借助多媒体演示(如图1)解释以上问题。继而联系工程实际,进一步考虑现场会出现的各种问题导致主保护不能动作,引出“后备保护的概念”。再利用“案例法”,借助多媒体演示,解释“近后备保护”和“远后备保护”。利用“比较法”,比较远、近后备保护的差异,取决于安装位置是异地还是本地。最后利用“类比法”总结“选择性”,用“自扫门前雪”的生活例子来类比主保护、近后备保护、远后备保护的关系,深化对选择性的认识。

关于“速动性”的讲解设计如下:先利用“阐述法”,介绍了“速动性”的概念;再利用“列举法”,通过多媒体演示,介绍保护动作时间和断路器的动作时间的具体要求;然后联系先修课程中关于“暂态稳定”的知识点,利用“板书”画出曲线(如图2)解释继电保护要求速动性的其中一个重要原因。

关于“灵敏性”讲解如下:先利用“阐述法”,介绍了“灵敏性”的概念;再利用“案例法”,通过多媒体演示,解释“什么叫做保护具有灵敏性”;最后提前说明后续章节内容与“灵敏度的计算”相关。

关于“可靠性”讲解(难点之二):首先利用“阐述法”,介绍了“可靠性”的概念以及“影响可靠性的因素”;然后利用“案例法”,指出可靠性中的两个方面互有矛盾。“板书”演示联系薄弱的系统和联系紧密的系统,两种情况下考虑可靠性的侧重点分别是什么。

小结“四项基本要求”:利用“案例法”,举例说明“选择性与速动性是一对矛盾体”以及“灵敏性与可靠性是一对矛盾体”,然后分别用一句话小结四项基本要求,并指出用辩证统一和矛盾对立的眼光看待四者之间的关系。

最后总结:强调“四项基本要求不仅是评价已有保护原理的标准,也是设计新型保护原理的依据,因此四项基本要求将是贯穿整门课程的线索”。

四、微课设计总结

本节微课内容围绕“对继电保护的四个基本要求”,采用启发式、案例式、类比法、阐述法、比较法、列举法等多种教学手段结合,以多媒体课件为主、板书和现场视频为辅的教学形式,对教学路线进行了精心的设计,将教学内容深入浅出地传达给学生,达到了较为理想的教学效果。

“电力系统继电保护”这门课程的特点是不仅理论性强,而且面向工程实际。因此,本节课程的设计不拘于原始教材,讲解过程中适时引入工程实际的案例,理论联系实际,以就业为导向,激发学生的学习兴趣,课堂效果更佳。

另外,本次微课的设计注意联系先修课程中的相关知识点作为新内容的支撑。而且,对本门课程后续内容也适时引导,有助于帮助学生养成“温故而知新“的学习习惯。

本次微课内容中,关于四项基本要求的辩证统一和矛盾对立的关系,也是一种哲学思想,可以启迪学生的哲学思维,养成科学的世界观、价值观、人生观。

综上,本次微课的教学设计会推动教师对整门课程的深入思考,具有重要的现实意义。

参考文献:

[1]张一春.微课建设研究与思考[J].中国教育网络,2013,(10).

[2]梁乐明.微课程设计模式研究[J].开放教育研究,2013,(19).

[3]张保会,尹项根.电力系统继电保护[M].北京:中国电力出版社,

2009.

[4]王颖.我校电力系统类课程教学实践的思考[J].电气电子教学学报,2012,(34).

[5]程岚.微课教学设计思路探讨[J].江西电力职业技术学院学报,

电力继电保护原理范文2

关键词:继电保护装置;运行特点;装置性能;装置触点

中图分类号:TM774 文献标识码:A 文章编号:1009-2374(2013)31-0110-02

随着人们生活水平的不断提高,加大了对电能的需求,对电力供应质量提出了更高的要求。在电力系统中使用继电保护装置,对于保障电力系统的安全稳定运行、降低用电故障出现的频率以及提高电力系统的经济效益具有十分重要的作用。因此,通过对继电保护装置运行的特点、原理以及问题进行分析,提出了相应的解决策略,进而推动电力系统的安全稳定运行。

1 继电保护装置运行的特点

1.1 继电保护装置能够及时、快速地处理电力系统

故障

当电力系统出现故障时,继电保护装置能够及时、快速地对信号进行传递,并准确地将动作反映出来,有效地将电力系统的故障控制在一定范围中,并切断故障。在电力系统的正常运行过程中,继电保护装置自身的作用不够明显,但是电力系统一旦发生故障,那么就能够保护电力系统,防止由于电力故障造成不必要的损失。

1.2 继电保护装置自身出现故障

在电力系统的运行过程中,继电保护装置自身也会出现故障,其故障主要分为两类,分别是拒动故障和误动故障。其中,误动故障指的是在电力系统的正常运行状态下,继电保护装置发出的信号与动作出现错误,进而对电力系统运行的安全稳定性产生影响。拒动故障指的是电力系统在运行中出现故障,继电保护装置自身拒绝发出动作,没有及时地保护电力系统,进而导致继电保护装置不具有保护电力系统安全、稳定运行的功能。此类故障主要出现在传统的继电保护装置中,随着继电保护技术水平的不断提高,继电保护装置朝自动化的方向发展,在电力系统中应用得更加广泛,不仅具备保护电力系统正常运行的功能,而且还能够对电力系统运行设备的参数进行实时监测和控制,具备远程控制的功能,有力地保障电力系统的安全稳定运行。

1.3 提高装置性能

和以往的继电保护装置相比,继电保护装置能够有效地提高装置的性能,准确、快速地将故障反映并切除,保证电力系统的安全稳定运行。自动化的继电保护装置通过使用计算机技术,完成复杂的工作,及时对故障进行检测,并将故障信息传递给工作人员,发出警报信息,有效地将故障解决。另外,继电保护装置抗干扰能力较弱,需要加强对继电保护装置的管理。

2 继电保护装置运行的原理

电力系统一旦出现故障,那么将会出现电流增加、电压降低、线路测量阻抗减小以及电流和电压之间的相位角发生变化等问题。通过利用这些基本参数的变化,能够形成不同原理的继电保护,例如对电流增大而动作的电流速断、反映电压降低而动作的低电压保护、过电流保护等进行反映。通常情况下,继电保护装置主要由测量部分、逻辑部分以及执行部分构成。

2.1 测量部分

进行测量时,主要对被保护对象输入的相关电气量进行测量,例如电流、电压。测量之后还要将其与相关的整定值进行比较分析,然后输出比较结果,对继电保护装置是否应该动作进行判断。

2.2 逻辑部分

针对测量部分检测出的检测量与输出逻辑关系,对其进行逻辑判断,对其是否应该将短路跳闸或者发出信号进行确定,并将相关命令输入到执行部分中。

2.3 执行部分

根据逻辑部分传递出来的信号,将继电保护装置负担的任务进行操作完成,例如操作跳闸或者发出信号等。

3 继电保护装置运行的问题

继电保护装置广泛地应用在人们的生活工作用电、工厂生产用电中,其对于电力系统的电容器、线路和主变进行保护。继电保护装置在日常运行的过程中会出现许多问题,主要表现在以下四个方面:

3.1 继电保护装置触点不稳定

继电器在对负荷过程进行切换时,其中的电接触零件叫做触点。对继电器接触稳定性产生影响的主要因素包括触点松动、触点裂开以及触点尺寸位置不正确等。在操作过程中没有对铆压力进行适当的调节、簧片与接触点的尺寸不合理以及触点材料过硬或者压力大等因素均能导致触点出现松动现象。接触点位置不同所运用的材料和工艺也就不同,例如由于材料硬度高导致的松动。

3.2 继电器的参数不正确

继电器主要运用铆对零部件进行安装,在安装的过程中,容易导致铆出现松动或者强度结合差的情况,进而导致继电器的参数比较混乱。另外,周围环境的温度也会增加继电器的参数值,由于继电器不具有抵抗冲击与机械振动的功能,进而导致参数出现错误。

3.3 继电保护装置中的铆零件变形

电磁系统中的铆装件在安装过铆之后,零件会出现弯曲、倾斜现象,进而导致铆装工序的调整、装配工作出现问题。因此,铆装工作人员要对零部件的尺寸大小、规格进行认真仔细的检查,确保安装到位和电磁系统质量达到标准。

3.4 线圈问题

由于继电保护装置的线圈种类有很多,因此,需要对其进行单件隔开放置,避免出现交连碰撞的情况,防止出现断线。因此,在对铆装电磁系统进行安装时,对压床和压力机进行适当的调整,如果压力过大,会导致线圈断线或者线圈架变形、开裂;如果压力过小,则会加大磁损,使绕线出现松动。

针对以上存在的问题,采取以下的方法进行解决:

提高继电保护装置的抗干扰水平,降低信号干扰给继电保护装置带来的操作失误。由于信号传输容易导致继电保护装置在运行时受到电磁波信号的干扰,因此,增强继电保护装置防护层上的绝缘设置,不使其和地面接触。另外,继电保护装置的元件也要选择隔离性能高与抗干扰能力强的。

继电保护装置接地设置要满足安装需求。大多数继电保护装置虽然在线路上进行了绝缘防护,但是在接地安装过程中容易受到电磁波信号的干扰。因此,工作人员在进行作业时对微机继电保护装置的接地工作进行控制。

对继电保护装置的内部参数和密码进行设置管理,在提高系统运行稳定性的基础上提高系统操作水平,降低

失误。

加强继电保护装置的维护和维修。安排专业人员对继电保护装置的日常运行定期的检查和管理,并做好清洁处理工作。另外对继电保护装置运行产生的电流和电压情况进行记录和监控。

4 结语

总而言之,继电保护装置的工作技术水平较高,因此,要求维护工作人员要具备很高的理论知识水平和高超的实践能力,进而有效地排除电力系统运行中出现的

故障。

参考文献

[1] 王翰,严进伟.电力系统继电保护与自动化装置的可靠性分析[J].中国新技术新产品,2013,3(11):14-15.

电力继电保护原理范文3

【关键词】发电机;纵差动保护;定值整定

一、比率制动式纵差保护工作原理

比率制动式纵差保护的动作电流是在变化的,它随短路电流的变化而自动变化,保证外部短路故障不误动的同时又对内部短路故障有很高的灵敏度。

以发电机一相为例,规定一次电流流入发电机为正方向。当正常运行以及发生保护区外的故障时,流入差动继电器的差动电流为零,差动继电器将不动作。当发生发电机内部故障时,流入差动继电器的差动电流将会出现较大的数值,当差动电流超过整定值时,差动继电器判为发生了发电机内部故障而动作于解列发电机。

1、比较发电机机端与中性点电流的相位和幅值来判断故障点。

(1)当正常运行或外部故障时,I1和I2方向相同,大小相等,差动电流Id=I1-I2=0;制动电流Iz=(I1+I2) /2-I。

(2)当区内故障时,I1和I2反方向,差动电流Id=I1-I2=0故障电流,与I1和I2的绝对值的和成正比;制动电流Iz与I1和I2的绝对值的差成正比。

2、为了保证外部故障时装置不误动,故采用比率制动式差动元件,使动作电流跟着制动电流而变,外部短路电流越大,继电器的动作电流也越大,确保外部故障时,继电器能够可靠制动。

整定恰当的制动系数能保证区外故障可不误动,区内故障可靠动作。如图1中,采用双斜率的动作特性曲线,斜率1小些,是考虑到内部短路时有良好的灵敏度,斜率2大些,考虑到区外故障形成的巨大穿越电流会使两侧TA饱和程度不同,同时产生很大差流,提高斜率来提升制动能力,防止外部短路误动。

二、发电机纵差动保护原理

1、发电机纵差动保护动作逻辑关系

由于发电机中性点为非直接接地,当发电机内部发生相间短路故障时,会有两相或三相的差动继电器同时动作。根据这一特点,在保护逻辑设计时可作相应的考虑。当两相或三相差动继电器动作时,可判断为发电机内部发生短路故障;而仅有一相差动继电器动作时,则判断为TA断线。为了对付发生一点在区内接地而另外一点在区外接地引起的短路故障,当有一相差动继电器动作且同时有负序电压时也判定为发电机内部短路故障。这种动作逻辑的特点是单相TA断线不会动作,因此可省去专用的TA断线闭锁环节,且保护安全可靠。

2、发电机不完全纵差动保护原理

常规纵差动保护引入发电机定子机端和中性点的全部相电流和 ,在定子绕组同相相间短路时两相电流仍然相等,保护将不能动作。而通常大型发电机每相定子绕组均为两个或多个并联分支,若仅引入发电机中性点侧部分分支电流来构成纵差动保护选择合适的TA变比,就能保证正常运行及区外故障时没有差流,而发生发电机相间与匝间短路时都会形成差流,当大于整定值时,可切除故障。这种纵差动保护被称为不完全纵差动保护。

不完全纵差动保护可按下列原则选择配置中性点TA的个数

a/2≤N≤(a/2)+1

式中 N---中性点侧每相接入纵差动保护的分支数;

a---发电机每相的并联的分支总数。

由于发电机不完全纵差动保护仅引入了中性点的部分分支电流,因此在应用时要注意以下问题:

(1)TA的误差。发电机机端和中性点TA的变比不再相等,不可能使用同一型号的TA,因此TA引起的不平衡电流将会增加。

(2)误差源增加。除了通常的误差以外,不完全纵差动保护还会存在一些特别的误差源,如各分支参数的一些微小差异(气隙不对称、电机振动等)引起的不平衡。

(3)整定值。相对发电机完全纵差动保护而言,由于不完全纵差动保护的误差增加,在整定时应该考虑适当提高纵差动保护的动作门槛和比率制动系数。

(4)灵敏度。不完全纵差动保护的灵敏度与发电机中性点分支上TA的布置位置及TA的个数有密切关系。在应用不完全纵差动前应考虑进行必要的发电机内部短路故障灵敏度分析与计算。

三、发电机纵差动保护定值整定与实际中应注意的问题

1、纵差动启动电流按躲过最大负荷工况下的不平衡电流整定。最小动作电流应大于发电机额定负荷运行时的不平衡电流,即

式(3.1)

式中: ----可靠系数,取1.5;

Ie----发电机额定电流;

工程实际一般整定在0.1-0.2Ie,但若两侧TA型号不同,通常取高值,若实测差动保护中的不平衡电流大于此值,则需对定值进行重新整定。

2、斜率1应大于最大正常负荷电流下TA误差产生的不平衡电流,通常取20%。

3、拐点1是斜率1的终结点,应大于发电机最大正常运行电流。为使区内故障有高的灵敏度,希望制动电流在2.0倍的发电机额定电流以内时,动作特性斜率不要过大。

4、拐点2是过渡区的终点和斜率2的起点,应设置为使任一保护用TA开始饱和时的电流值。若保护用TA选为5P20,其饱和电流值很大,而发电机最大外部短路电流在6倍额定电流之内,一般取拐点6倍发电机额定电流。

5、实际应用中的注意事项

(1)针对发电机出口带断路器的系统,发电机纵差动保护机端TA与主变纵差动保护TA的选择要保证无死区,二者要有有交叉。当发电机检修且主变带厂用电运行时,禁止在主变纵差动保护的发电机机端侧TA通电,否则主变纵差动保护将会因试验电流而误动。

(2)按规定应定期检测发电机纵差动保护的不平衡电流,一旦其有增大趋势,应马上检查,分析原因,并做相应处理。

参考文献

[1]天津大学.电力系统继电保护原理.北京:电力工业出版社,1980.

电力继电保护原理范文4

关键词:变压器;纵差保护;不平衡电流

前言 纵差保护是一切电气主设备的主保护,它灵敏度高、选择性好,在变压器保护上运用较为成功。但是变压器纵差保护一直存在励磁涌流难以鉴定的问题,虽然已经有几种较为有效的闭锁方案,又因为超高压输电线路长度的增加、静止无功补偿容量的增大以及变压器硅钢片工艺的改进、磁化特性的改善等因素,变压器纵差保护的固有原理性矛盾更加突出。

1.变压器纵差保护基本原理

纵差保护在发电机上的应用比较简单,但是作为变压器内部故障的主保护,纵差保护将有许多特点和困难。变压器具有两个或更多个电压等级,构成纵差保护所用电流互感器的额定参数各不相同,由此产生的纵差保护不平衡电流将比发电机的大得多,纵差保护是利用比较被保护元件各端电流的幅值和相位的原理构成的,根据KCL 基本定理[1],当被保护设备无故障时恒有各流入电流之和必等于各流出电流之和。

当被保护设备内部本身发生故障时,短路点成为一个新的端子,此时 电流大于0,但是实际上在外部发生短路时还存在一个不平衡电流。事实上,外部发生短路故障时,因为外部短路电流大,特别是暂态过程中含有非周期分量电流,使电流互感器的励磁电流急剧增大,而呈饱和状态使得变压器两侧互感器的传变特性很难保持一致,而出现较大的不平衡电流。因此采用带制动特性的原理,外部短路电流越大,制动电流也越大,继电器能够可靠制动。

另外,由于纵差保护的构成原理是基于比较变压器各侧电流的大小和相位,受变压器各侧电流互感器以及诸多因素影响,变压器在正常运行和外部故障时,其动差保护回路中有不平衡电流,使纵差保护处于不利的工作条件下。为保证变压器纵差保护的正确灵敏动作,必须对其回路中的不平衡电流进行分析,找出产生的原因,采取措施予以消除。

2. 纵差保护不平衡电流分析

2.1 稳态情况下的不平衡电流

变压器在正常运行时纵差保护回路中不平衡电流主要是由电流互感器、变压器接线方式及变压器带负荷调压引起。

(1)由电流互感器计算变比与实际变比不同而产生。正常运行时变压器各侧电流的大小是不相等的。为了满足正常运行或外部短路时流入继电器差动回路的电流为零,则应使高、低压两侧流入继电器的电流相等,即高、低侧电流互感器变比的比值应等于变压器的变比。但是[1],实际上由于电流互感器的变比都是根据产品目录选取的标准变比,而变压器的变比是一定的,因此上述条件是不能得到满足的,因而会产生不平衡电流。

(2)由变压器两侧电流相位不同而产生。变压器常常采用两侧电流的相位相差30°的接线方式(对双绕组变压器而言)。此时,如果两侧的电流互感器仍采用通常的接线方式(即均采用Y形接线方式),则二次电流由于相位不同,也会在纵差保护回路产生不平衡电流。

(3)由变压器带负荷调整分接头产生。在电力系统中,经常采用有载调压变压器,在变压器带负荷运行时利用改变变压器的分接头位置来调整系统的运行电压。改变变压器的分接头位置,实际上就是改变变压器的变化[2]。如果纵差保护已经按某一运行方式下的变压器变比调整好,则当变压器带负荷调压时,其变比会改变,此时,纵差保护就得重新进行调整才能满足要求,但这在运行中是不可能的。因此,变压器分接头位置的改变,就会在差动继电器中产生不平衡电流,它与电压调节范围有关,也随一次电流的增大而增大。

2.2 暂态情况下的不平衡电流

(1)由变压器励磁涌流产生

变压器的励磁电流仅流经变压器接通电源的某一侧,对差动回路来说,励磁电流的存在就相当于变压器内部故障时的短路电流[3]。因此,它必然给纵差保护的正确工作带来不利影响。正常情况下,变压器的励磁电流很小,故纵差保护回路的不平衡电流也很小。在外部短路时,由于系统电压降低,励磁电流也将减小。因此,在正常运行和外部短路时励磁电流对纵差保护的影响常常可忽略不计。但是,在电压突然增加的特殊情况下,比如变压器在空载投入和外部故障切除后恢复供电的情况下,则可能出现很大的励磁电流,这种暂态过程中出现的变压器励磁电流通常称励磁涌流。

(2)由变压器外部故障暂态穿越性短路电流产生

纵差保护是瞬动保护,它是在一次系统短路暂态过程中发出跳闸脉冲。因此,必须考虑外部故障暂态过程的不平衡电流对它的影响。在变压器外部故障的暂态过程中,一次系统的短路电流含有非周期分量,它对时间的变化率很小,很难变换到二次侧,而主要成为互感器的励磁电流,从而使互感器的铁心更加饱和。

3.变压器纵差保护中不平衡电流的克服方法

从上面的分析可知,构成纵差保护时,如不采取适当的措施,流入差动继电器的不平衡电流将很大,按躲开变压器外部故障时出现的最大不平衡电流整定的纵差保护定值也将很大,保护的灵敏度会很低。若再考虑励磁涌流的影响,保护将无法工作。因此,如何克服不平衡电流,并消除它对保护的影响,提高保护的灵敏度,就成为纵差保护的中心问题。

(1)由电流互感器变比产生的不平衡电流的克服方法

对于由电流互感器计算变比与实际变比不同而产生的不平衡电流可采用2种方法来克服:一是采用自耦变流器进行补偿。通常在变压器一侧电流互感器(对三绕组变压器应在两侧)装设自耦变流器,将LH输出端接到变流器的输入端,当改变自耦变流器的变比时,可以使变流器的输出电流等于未装设变流器的LH的二次电流,从而使流入差动继电器的电流为零或接近为零。二是利用中间变流器的平衡线圈进行磁补偿。通常在中间变流器的铁心上绕有主线圈即差动线圈,接入差动电流,另外还绕一个平衡线圈和一个二次线圈,接入二次电流较小的一侧。适当选择平衡线圈的匝数,使平衡线圈产生的磁势能完全抵消差动线圈产生的磁势,则在二次线圈里就不会感应电势,因而差动继电器中也没有电流流过。采用这种方法时,按公式计算出的平衡线圈的匝数一般不是整数,但实际上平衡线圈只能按整数进行选择,因此还会有一残余的不平衡电流存在,这在进行纵差保护定值整定计算时应该予以考虑。

(2)由变压器两侧电流相位不同而产生的不平衡电流的克服方法

对于由变压器两侧电流相位不同而产生的不平衡电流可以通过改变LH接线方式的方法(也称相位补偿法)来克服。对于变压器Y形接线侧,其LH采用形接线,而变压器形接线侧,其LH采用Y形接线,则两侧LH二次侧输出电流相位刚好同相。但当LH采用上述连接方式后,在LH接成形侧的差动一臂中,电流又增大了3倍,此时为保证在正常运行及外部故障情况下差动回路中没有电流,就必须将该侧LH的变比扩大3倍,以减小二次电流,使之与另一侧的电流相等。

(3)由变压器外部故障暂态穿越性短路电流产生的不平衡电流的克服方法

在变压器外部故障的暂态过程中,使纵差保护产生不平衡电流的主要原因是一次系统的短路电流所包含的非周期分量,为消除它对变压器纵差保护的影响,广泛采用具有不同特性的差动继电器。

对于采用带速饱和变流器的差动继电器是克服暂态过程中非周期分量影响的有效方法之一。根据速饱和变流器的磁化曲线可以看出,周期分量很容易通过速饱和变流器变换到二次侧,而非周期分量不容易通过速饱和变流器变换到二次侧。因此,当一次线圈中通过暂态不平衡电流时,它在二次侧感应的电势很小,此时流入差动继电器的电流很小,差动继电器不会动作。

另外,采用具有磁力制动特性的差动继电器。这种差动继电器是在速饱和变流器的基础上,增加一组制动线圈,利用外部故障时的短路电流来实现制动,使继电器的起动电流随制动电流的增加而增加,它能可靠地躲开变压器外部短路时的不平衡电流,并提高变压器内部故障时的灵敏度。因此,继电器的启动电流随着制动电流的增大而增大。通过正确的定值整定,可以使继电器的实际启动电流不论在任何大小的外部短路电流的作用下均大于相应的不平衡电流,变压器纵差保护能可靠躲过变压器外部短路时的不平衡电流。

由于励磁涌流产生的不平衡电流仍然是纵差保护的重点,不平衡电流的影响导致纵差保护方案的设计也不尽相同。因此,在实践的变压器差动保护中,应结合不同方案进行具体的设计。

参考文献

[1] 许实章,电机学,机械工业出版社[M],1995

[2] 王维俭,电气主设备继电保护原理与应用[M],中国电力出版社,1996

[3] 陈德树,计算机继电保护原理与技术[M],水利电力出版社,1992

[4] 周玉兰、詹荣荣,全国电网继电保护与安全自动装置运行情况与分析[J],电网技术,2004

电力继电保护原理范文5

中图分类号:TU99文献标识码:A文章编号:1003-2738(2011)12-0290-01

摘要:电动机保护器作为拖动系统中的重要组成部分,对电动机的起动和运行中保护起着至关重要的作用。本文分析了电动机保护器保护及构成原理,并阐述了电动机保护器在发展过程中的应用及选择原则。

关键词:电动机;保护器;保护原理;应用

一、引言

电动机是当前应用最广泛的动力设备,是其他机电设备的动力源泉,电动机正常的输出是其驱动的机电设备正常工作的前提,如今已被广泛应用于工农业、交通运输、国防等领域。电动机所带的负载种类繁多,且往往是整个设备中的关键部分,因而确保电动机的正常运行就显得十分重要。电动机保护器(电机保护器)是发电、供电、用电系统的重要器件,是跨行业、量大面广、节能效果显著的节能机电产品[1]。电动机保护器的作用是给电机全面的保护控制,在电机出现过流、欠流、断相、堵转、短路、过压、欠压、漏电、三相不平衡、过热、接地、轴承磨损、定转子偏心时、绕组老化予以报警或保护控制。如今电动机保护器几乎渗透到所有用电领域,在国民经济和节能事业中有着不可替代的重要地位和作用。

二、电动机保护器的保护原理与构成

对电动机来说,其故障形式从机械角度可以分为绕组损坏和轴承损坏两方面。造成绕组损坏的主要原因有:1.电动机长时间的电、热、机械和化学作用下,绕组的绝缘老化损坏,定转子绕组匝间短路或是对地短路。2.电网供电质量差,电源电压三相不平衡、电压波动大、电网电压波形畸变、高次谐波严重或者电动机断相运行。3.电源电压过低使得电动机启动转矩不够,电动机不能顺利启动或者是在短时间内重复启动,电动机长时间承受过大的启动电流导致电机过热。4.因机械故障或其它原因造成电动机转子堵转。5.某些大型电机冷却系统故障或是长时间工作在高温高湿环境下造成电机故障。

电动机保护原理的研究是保证电动机保护器性能高低的关键,根据三相对称分量法的理论,三个不对称的向量可以唯一分解成三组对称的向量,分别为正序分量、负序分量和零序分量。对称分量的计算公式如下:

(1)

上式是以A相为例,其中 为算子,即 , 分别是A相电流用对称分量法分解得到的正序电流、负序电流和零序电流。

根据(1)式,电动机在发生对称故障和不对称故障时,电动机的三相电流都会发生变化。电动机故障条件流过绕组的电流过大,超过电动机的额定电流,因此可根据这一特征来对电动机过电流进行保护。电机过载、断相、欠压都会造成绕组电流超过额定值。电源电压欠压,运行电流上升的比例将等于电压下降的比例;电机过载时,常造成堵转,此时的运行电流会大大超过额定电流。针对以上情况,电动机保护器可通过对三相运行电流进行检测,根据运行电流的不同性质来确定不同的保护方式,从而对电机予以的断电保护。电动机的故障类型分为过流保护、负序电流保护、零序电流保护、电压保护和过热保护等几种。

通过对电动机保护器的保护原理分析可以看出,理想的电动机保护器应满足可靠、经济、方便等要素,具有较高的性能价格比。经过发展和更新,如今电动机保护器一般由电流检测电路、温度检测电路、基准电压电路、逻辑处理电路、时序处理电路、启动封锁及复位电路、故障记录电路、驱动电路、电动机控制电路组成。电动机保护器的构成原理如图l所示。

图1 电动机保护器组成模块和构成原理图

三、电动机保护器的类型及应用分析

目前我国普遍采用的电动机保护器主要有热继电器、温度继电器和电子式电动机保护器。热继电器是五十年代初引进苏联技术开发的金属片机械式电动机过载保护器,它在保护电动机过载方面具有反时限性能和结构简单的特点[2]。但存在功能少,无断相保护,对电机发生通风不畅,扫膛、堵转、长期过载,频繁启动等故障不起保护作用。这主要是因为热继电器动作曲线和电动机实际保护曲线不一致,失去了保护作用。且重复性能差,大电流过载或短路故障后不能再次使用,调整误差大、易受环境温度的影响误动或拒动,功耗大、耗材多、性能指标落后等缺陷。温度继电器是采用双金属片制成的盘式或其他形式的继电器,在电动机中埋入热元件,根据电动机的温度进行保护,但电动机容量较大时,需与电流监测型配合使用,避免电动机堵转时温度急剧上升,由于测温元件的滞后性,导致电动机绕组受损。温度继电器具有结构简单、动作可靠,保护范围广泛等优点,但动作缓慢,返回时间长,3KW以上的三角形接法电动机不宜使用。目前在电风扇、电冰箱、空调压缩机等方面大量使用。电子式电动机保护器通过检测三相电流值和整定电流值,采用电位器旋钮或拔码开关操作来实现对电动机的保护,电路一般采用模拟式,采用反时限或定时限工作特性。

除了上述三种常见的电动机保护器,磁场温度检测型继电器和智能型电动机保护器也在电动机故障保护中得到普遍应用。磁场温度检测型保护器通过在电动机中埋入磁场检测线圈和温度探头,根据电动机内部旋转磁场的变化和温度的变化进行保护,主要功能包括过载、堵转、缺相、过热保护和磨损监测,保护功能完善,缺点是需在电动机内部安装磁场检测线圈和温度传感器。智能型电动机保护器能实现电动机智能化综合保护,集保护、测量、通讯、显示为一体。整定电流采用数字设定,通过操作面板按钮来操作,用户可以根据自己实际使用要求和保护情况在现场自行对各种参数修正设定,采用数码管作为显示窗口,或采用大屏幕液晶显示,能支持多种通讯协议,目前高压电动机保护均采用智能型

四、电动机保护器应用选择原则

选用电动机保护装置的目的,既能使电动机充分发挥过载能力,又能免于损坏,而且还能提高电力拖动系统的可靠性和生产的连续性。合理选用电机保护装置,既能充分发挥电机的过载能力,又能免于损坏,从而提高电力拖动系统的可靠性和生产的连续性。具体的功能选择应综合考虑电机的本身的价值、负载类型、使用环境、电机主体设备的重要程度、电机退出运行是否对生产系统造成严重影响等因素,力争做到经济合理。在能满足保护要求的情况下首先考虑最简单保护装置,当简单的保护装置不能满足要求时,或对保护功能和特性提出更高要求时,才考虑应用复杂的保护装置,做到经济性和可靠性的统一。

五、结束语

如今电动机保护器已发展到了微电子智能型时代,电动机保护器也朝着多元化方向发展。这就需要我们的工作人员在选型时应充分考虑电动机保护实际需求,超前、准确、及时地判断电动机的故障,合理选择保护功能和保护方式,实现对电动机的良好保护,达到提高设备运行可靠性,减少非计划停车,减少事故损失的目的。

参考文献

电力继电保护原理范文6

关键词:电力系统;继电保护;故障原因;分析处理

中图分类号:TM77 文献标识码:A

1 电力系统继电保护故障检测的重要作用

电力系统的继电保护一旦出现故障,其整个系统就无法正常工作,继电保护主要就是保障电力系统的正常运营,它对整个系统的各大设备和元件都能起到一个保护的作用。如果电力系统中的设备出现了故障,继电保护装置能够第一时间发现故障,然后通过自身的判断,判断出哪些元件或者设备是在正常运行的范畴之外的,继而能够有选择性地对哪些有故障的元件发出指令,使其切断电路,从而暂时停止工作。在某些元件或者设备被迫停止工作后,就能够引起工作人员的注意,工作人员就能够及时有效地对发生故障的机械设备进行检查,进行维修,从而使其继续正常地工作。继电保护的存在能够使电力系统的安全性得到最为有效地保证,在电力系统元件发生故障时,及时发现及时处理,能够最大程度地避免整个系统遭受损害。因为出现故障的元件在继电保护的作用下,能够最为及时地脱离工作系统,不会对其它正常的设备造成影响,直至其恢复正常的状态。

除了及时发现发生故障的设备,强行命令其停止运营外,继电保护的另外一大重要作用主要体现在对电力系统中的二次装置进行实时有效的监测,并且控制电力系统中的各大电网。电网一旦出现任何异常现象,继电保护通过自身的装置和设备,能够迅速地分析出故障,并且能够精准无误地判断出发生异常现象的故障区域,该区域范围可以精确到很小的数值。这一功能度电力系统的正常工作和运营是极其重要的,因为电网的分布范围非常广泛,而且工作系统复杂,如果发生了故障,却无法迅速判断出具体的故障区域,将会带来很大的麻烦,给人们的生活工作以及工农业的生产都造成极大的不便。

在电气设备出现不正常工作状态时,根据不同的设备运行维护条件,及时发出信号,对运行异常的设备进行检修处理。在无值班人员的情况下,继电保护装置还能自动做出相应的调整。电力系统继电保护必须具备灵敏性和可靠性,从而保证电力系统正常运行。作为保障电力系统安全运行的重要手段,继电保护系统自身如果出现故障,必然会导致较大面积的电力系统故障,造成极其严重的后果。导致电网系统崩溃的原因有很多,而继电保护的故障则是这些原因中的重要一点,在这种情况下,肯能会造成难以预料的损失。为了确保在不利的条件中电力系统依旧能够正常运行,电网必须要正确运作以及安全运行,采取相应的解决措施,从而保持正确和安全。

2 电力系统继电保护故障原因分析

要高度重视电力系统的继电保护,对其故障发生的原因要认真分析和总结,不断地完善继电保护,在继电保护故障原因分析中,主要可以通过对监视二次回路节点的直流电压、电位变化来确定故障的起源点,这一方法主要用于检查开关控制回路中的各大故障。例如,当断路器处于分闸的位置,而控制室却发出控制回路线,光字牌,则说明跳闸位置与合闸位置继电器常闭接点均已接通,如果在任一回路处测量对地电位跳闸位置的继电器接点损坏,则可能是跳闸线圈损坏或测量开关接点不通。可初步判断为此处连接线或开关接点不通,再检查常闭辅助接点两头电位,则可以得出最终结果。

为了准确并合理地判断怀疑有故障的元件或插件好坏,可以采用相同的正常元件进行替代测试,从而可以迅速缩小故障查找范围。这是处理保护装置内部故障最为常用的方法。当继电保护插件发生故障,或对于内部回路复杂的单元继电器,用备件替代,如果故障消失,则说明换下的元件是故障点。

在电网运行过程中,如果看到有线头等直观现象或继电器内部明显发黄,可迅速确认故障点,更换损坏的元件即可。高频通讯未能正常工作时,而结合滤波器上桩头却正常的情况下,通常是滤波器内的芯线断线所致。电网检修人员可直接分析和检查改动,判断该环节是否存在故障和问题,操作断路器命令下发后,跳闸线圈电气回路没有问题,故障可能在机构内部。

一旦发生故障,应该从出现故障的出错点开始查找,环相扣的查找,直至找出故障区域,通过带负荷检查,可以发现电网交流回路故障。在使用这一方法时,要选择好参考对象,测量相位应该以母线电压为参考电压,在没有电压的情况下,也可以选择电流,如果本开关的不能作为参考,则应选择对侧或者本侧所对应的串联开关或几个断路器潮流之和,同时还要注意电压的大小和相位要一致。

3 电力系统继电保护故障处理

对继电保护故障按独立的装置类型进行统计,对目前系统运行的各种线路保护装置以及其他保护或安全自动装置等,将其故障按照装置类型在微机中进行统计,而不采用罗列记录或按站统计等方式。

继电系统的故障可以分为几类,在对其进行分类统计后,可以根据故障危害程度,根据分轻重缓急,从而更好地安排消缺,便于对故障归类,从根本上解决故障再次发生的可能性。为了逐步掌握设备运行规律,并不断提高继电保护人员的运行维护水平,就必须对继电保护设备出现的各种故障进行及时全面的统计,除了及时统计继电保护人员自己发现的故障外,还必须及时统计值班人员发现的故障。为此,必须要明确责任,将责任落实到具体的人员上,同时,还要确保故障的及时统计,通过缺陷管理寻找设备运行规律,从而奠定最为坚实的基础。

确保电力系统继电保护正常运行的措施,合理的人员配置,使人员调度和协助能顺利进行,明确人员工作目标,保证电力正常运行。完善规章制度,根据继电保护的特点,健全和完善规章制度,继电保护设备运行维护、缺陷处理等档案,应逐步采用计算机管理,实行跟踪检查和监督考核。对二次设备实行状态监测方法,对综合自动化变电站而言,更加容易实现继电保护状态监测。

结语

我国的经济的发展促进者电力系统的前进步伐,与此同时,电力系统的不断发展又能够带来更大的经济效益,因此,它们之间是相互促进的作用。但是,正因为电力系统的规模在逐渐扩大,它运营的安全性也将面临极大的挑战。继电保护对电力系统的重要作用可见一斑,正因为如此,一旦它的运行过程中出现故障,将会带来严重的安全问题。所以,分析并查找继电保护的故障是非常必要和必须的,并要采取及时有效的解决措施,将故障可能产生的损失降低到最小,从而带来电力系统的更为长远的发展,实现效益最大化。

参考文献