光纤通信的发展范例6篇

前言:中文期刊网精心挑选了光纤通信的发展范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

光纤通信的发展

光纤通信的发展范文1

关键词:光纤通信技术;现状;发展;前景

美国于1970年研制成功实用光纤,该光纤的损耗低于20dB/km,是光纤通信技术的发展的里程碑。随着时代的发展,光纤通信技术的发展迈向了更高的台阶,对于光纤通信技术而言,其将高频率的光波载波,通过将光纤作为介质,然后展开通信活动。总之,光纤通信技术与其它宽带相比,传播速度更快,而且容量较大,并且光纤通信技术有抗电磁干扰和损坏小的特点。基于光纤通信技术的诸多优点,下面对光纤通信技术的现状与发展前景加以分析,从而进一步提升光纤通信技术认识和应用。

1光纤通信技术概述

所谓光纤通信技术指的是将光纤作为传输媒介,光是信号传播的主要载体,光纤通信是现代一种主要的通信方式。光纤通信技术的原理的建立在光纤、光检测和光源等的有机组成基础上,由于光纤的绝缘性能较好,所以将其制作成玻璃材质的光导纤维,并且不会引发接地回路问题,不会产生串线的问题。同时,在信号传输过程中,其安全性性能和保密性能都很高。此外,光纤中的内芯较细,信号传输时所占空间小,在光纤通信系统中,频带宽度更宽,因而光纤通信的容量非常大,光波频率较高,损坏降低,在信号传输时,不用中继设备,就能够实现长距离的传输[1]。另外,光纤通信技术的抗干扰能力较强,其被广泛应用于军事领域和资源的优化配置等方面,光纤通信技术作为现代比较重要的通信方式,对社会的发展起到推动作用。

2当前光纤通信技术的发展现状

(1)光孤子通信。光孤子通信是光纤通信技术中的一种,其并不是借助于非线方式,而是通过依赖于信号的光学性质,在利用光纤通信技术进行信号传输时,光孤子利用超短光脉冲原理实现对信号的有效传输,由于光孤子有信号传递量大的特点,对长距离的信号传输具有重要意义。此外,光孤子技术的比较实用于超长距离的传输,在高速光纤通信技术中,其是比较先进的技术。光孤子技术在信号传输中的应用能够提高信号传输的速度,通过运用时域超短脉冲完成传输工作,而且频域的超短脉冲对提高通信系统的信号传递速度具有重要意义。(2)单模光纤与多模光纤。随着网络技术的不断发展,光纤通信技术已经发展更加成熟,光纤通信技术和有关系统正趋于完善。当前,人们更加关注的是信号的长距离传输,为了最大程度地满足这一需求,光纤通信方式应当采用单模和多模的光纤。对于单模光纤而言,其主要适用于远距离的传输,但多模的传输距离与单模相比传输距离更长,所以单模和多模光纤被应用于不同地区的和地域信号的传输,通常情况下,多模光纤价值较低,被应用于短距离的信号传输,而长距离的传输多采用单模光纤。(3)波分复用系统。由于波分复用系统有着传输距离远、容量大等特点,该技术的应用对提升光纤传输系统的容量具有重要意义。因此,波分复用系统应用在跨海光传输系统中,具有良好的前景。在信号技术水平不断提升的背景下,波分复用系统得到了更好的发展,当前,6Tbit的WDM系统在各个领域都有广泛的应用,而且传输距离也有了较大的提升,尤其是波分复用-1.25G波长转换盘(如图1所示),其是光时分复用系统的具体应用,通过单信道速度使得传授容量有显著的提升,而且波分复用-1.25G波长转换盘的传输速度超过了640Cbit/s,在不同领域中的应用具有重要意义[2]。

3当前光纤通信技术的发展前景分析

(1)智能光联网技术。光纤通信技术的发展为我国各个领域的发展奠定了良好基础,而且在科学技术水平不断提升的背景下,光纤通信技术也有着广阔的发展前景。当前,光纤通信技术已经向智能化方向发展。ASON作为新一代的智能化光网络技术,其表明着光纤通信技术未来发展方向。在将智能光联网技术应用在实践中,能够有利于处理互联网光层上的动态、组网等问题[3]。在对智能光联网技术进行深入研究时,必须着重对ASON展开分析,通过掌握了核心技术,然后制定严格的规范,再进行实验对系统加以完善[4]。在对技术进行测试过程中,需要对ASON的总体性能和相关技术等展开全面的测试,测试的主要内容包含光网络和接口等的协议测试、功能测试和性能测试等,从而为完善智能光联网技术奠定提供有利保障。(2)网络数字同步系统和IP网结构。目前,光纤通信技术水平的提升为信息业务的发展奠定了良好基础。在信息业务发展过程中,需要将IP业务作为核心内容,所以在以光纤通信技术为前提下开发新技术和新产品时,需要在IP业务的支持下,对光纤通信技术进行完善,那么,网络数字同步系统和IP网结构则是光纤通信技术的主要发展趋势,尤其是SDH和ATM的研发,应当在IP业务的支持下,使得网络数字同步系统和IP网结构更加健全[5]。由于在IP业务量增加的情况下光纤通信技术受到一定的影响,所以在光纤通信技术未来发展过程中,IP网结构的完善是主要趋势,而且IP网结构也是未来的主要业务[6]。(3)大容量的系统。在信号传输过程中,光纤的传输量深受人们的广泛关注,所以为了使得光纤通信技术在未来有良好的发展,应当对光纤传输量加以完善。为了有效解决这一问题,需要对大容量系统进行开发,因为普通的电信复合系统在扩展上还存在诸多不足之处,因而光纤宽带的利用率较低,所以为了解决存在的问题,应当对大容量的光纤系统进行深入分析和研究,单一的光纤通过在不同的波长光信号下进行传输,进而使得光纤传输容量得到大幅度提升[7]。

4结语

由于光纤通信技术被广泛应用于军事、计算机和广电等领域,为光纤通信技术的发展创造了有利条件。为了为人们的工作、生活和其他方面提供保障,应当对光纤通信技术进一步研究和提高,加强对信息网络的建设和管理,进而提升光纤通信服务质量。

作者:黄洪州 单位:广东和新科技有限公司

参考文献:

[1]齐相军.浅谈当前光纤通信技术的现状与发展趋势[J].中小企业管理与科技,2011(24):289-289

[2]董潮云.光纤通信技术的现状及发展趋势分析[J].信号通信,2013(1):237-238

[3]姚志刚.现代光纤通信技术的现状和发展探讨[J].中国新通信,2015(4):68-69

[4]宋振华.光纤通信技术的现状及发展探析[J].企业文化(下旬刊),2012(11):165

[5]杨晓天.浅谈光纤通信技术的现状及发展[J].中国新通信,2014(9):27-27,28

光纤通信的发展范文2

【关键词】光纤通信;全光网络;波分复用技术光纤通信技术是指通过光学纤维传输信息的技术。在发信端,信息被转换成电信号,电信号控制光源,使发出的光信号具有所要传输的信号的特点,从而实现信号的电一光转换。发信端发出的信号,通过光纤传输到远方的收信端,经光一电转换成电信号,再经过处理和转换而恢复为与原发信端相同的信息,光纤通信技术尚有很大的发展空间。

1.光纤通信系统简介

光纤通信是一种利用光波作为载波来传送信息,用光纤作为传输介质的通信方式,其工作频段属于近红外光段,常用的通信窗口有0.85UM,1.31UM,1.55UM。光纤多采用石英,而常用的光源有半导体激光器和发光二级管等。

1.1基本的光纤通信系统组成包括三大部分:光发射、光纤传输和光接收

光纤通信系统既可以传输数字信号,也可以传输模拟信号,并且可以将多种不同类型的信号在一起传输,如话音,图像,数据,多媒体信息等。

1.2光纤通信的优点

例如光纤所采用的石英材料是一种电绝缘体,因此不受各种电磁z因此不受各种电磁场的干扰和闪电雷击的损坏,并且适合在易燃易爆环境中使用,光纤的重量很轻,中心折射率略高的纤芯和折射率稍低的包层组成同轴圆柱形的结构,直径一般只有125UM,即使外层经过环氧树脂或硅橡胶的涂敷,并制作成8芯的光缆,也只占同样芯数的电缆重量的1/15;此外光纤的损耗很小,容许频带宽,因此可以进行大容量长距离的传输。

2.光纤通信系统中的新技术

目前,光纤通信技术在通信网,广播电视网与计算机网,以及其他数据传输系统中,都已经得到广泛应用,新技术也不断涌现,提高了通信能力,拥有很大的需求和市场。

2.1光纤通信的发展趋势

光纤到家庭(FTTH)的发展。FTTH可向用户提供极丰富的带宽,所以一直被认为是理想的接入方式,对于实现信息社会有重要作用,还需要大规模推广和建设。FTTH所需要的光纤可能是现有已敷光纤的2-3倍,过去由于FTTH成本高,缺少宽带视频业务和宽带内容等原因,使FTTH还未能提到日程上来,只有少量的试验,近来,由于光电子器件的进步,光收发模块和光纤的价格大大降低,加上宽带内容有所缓解,都加速了FTTH的实用化进程。

2.2光器件的集成化

光电子器件的发展趋势就是集成化,小型化。要实现全光通信网络,器件的集成必不可少。光子集成芯片的制造需要将激光器,检测器,调制器和其他器件都集成到芯片中,这些集成需要在不同材料多个薄膜介质层上重复地沉积和蚀刻,这些材料包括砷化甸镓,磷化铟等。尽管这是一种复杂的技术,但是由于互联网语音和视频业务的不断增长,传统的IM-6M互联网接入带宽变得不足,介理通过增加设备来提高速度扩大带宽已经不现实,因此光器件的集成是必须的,也是保证互联网持续增长的重要因素。

2.3光交换技术

商用光纤通信系统,单信道传输速度率已超过10GB/S。实验WDM系统的传输速率已超过3.28TB/S。现有网络中,高速光纤通信系统仅仅充当点对点的传输手段,网络中重要的交换功能还是采用电子交换技术,但是传统电子交换机的端口速率只有几MB/S到几百MB/S,因此成为了整个通信网速率提高的瓶颈。彻底解决这个问题的办法,就是实现全光交换。

目前,光交换技术可分成光的电路交换和光分组交换两种主要类型。光交换技术可分成光的电路交换和光分组交换两种主要类型。

2.4光纤通信的市场

FTTH毕竟是信息社会的需求,光纤通信的市场一定有美好的情景,发达国家的FTTH已经开始建设,已经有相当的市场,大体上看,器件和设备随市场的需要,其利润会逐步回升,2007-2008年可能良好,但光纤产业,尽管反倾销成功,目前价格也仍低迷不起,利润甚微,实际上,在世界范围内,光纤的生产规模过大,而FTTH的发展速度受社会环境、包括市民的经济条件和数字电视的发展的影响,上升缓慢。

3.光纤通信的展望与前景

3.1通信速度超高速化

光纤通讯经历了诞生、低速发展,只是常态使用化的过程,期间最明显的就是传输速度不断的得以提高,从最初的时分复用方式其传输速度一般在45Mbps到10Gbps,这个速度的增加也是大概用了十几年的发展时间,目前成熟的系统主要是ETDM技术,可以达到160Gbp,同时进入新世纪信息革命时代,越来越多的科研工作者和企业把提高传输速度当成一项重要课题得以研究,其速度有50Gbps的系统,640Gbps的OTDM等等。但有的目前还在实验室模拟阶段,真正用到实际生活中还有很长的时间要走。

3.2向超大容量超长距离波分复用系统的发展

WDM传输光信息的基本原理是根据单根光钎的传输能量来决定的,在已经铺设的光钎上进行传输可以有效的提高利用率,而且可以根据项目要求实时的增加光传输设备或者弃用老的设备。这样可以解决光传输过程的传输能力问题。可以对系统的容量进行随时增加。

3.3多节点融合技术

在光路传输过程中必须经过交换技术,光的传输部分,光电转化部分,以及数字转化、波分复用等多个中间环节,而每一个环节融合的好坏直接影响光路传输质量。所以为了解决光路传输过程节点过多问题,科研工作者提出了传输节点融合技术,即one box传输融合技术,该技术主要将各种光路传输系统有效的进行物理实体结合,统一管理和控制,减少了各节点之间的独立操作时间,以及减少设备成本,有效地进行了成本压缩,同时可以节约电缆降低功耗,达到节能环保的效果。

3.4光传送整体联网

进入90年代以来,我们一直使用点对点的波分复用技术来进行光纤通信,其优势和缺点同样明显,优势是有着巨大的传输能力在,这是由其传输特点决定的。然而随着系统的越来越复杂庞大,波分复用的改进速度明显跟不上时代的转变需求,所以迫切需要一种全新的联网系统来代替DXC系统。

光传送联网系统随之诞生,这是世界光纤通信的又一次大改革,极大的提高了光纤通信各方面的性能,随着系统的不断完善和发展,其资本市场开始显现,而且我国重视信息产业化建设,有利于光传送系统的灵活化,透明话的发展。对于我国提高信息产业技能和信息产业链条有着极大的促进作用。

3.5新一代全波光纤

要实现光纤传输质量,就要在各个方面下功夫,新型的全波光纤成为一个很好的突破口。随着科技的不断进步,我们的传输速度和距离都得不断增加。而且业务量会不断的变复杂和庞大,怎样有效的管理和支持良好的传输效果,是摆在科研工作者面前的一道难题。研究新型光钎成为流行的课题之一。

全波光纤的研究过程中,科研工作者采用了新的生产工艺,使其的噪音进一步减弱,过滤因其传输衰减的波段,增加波段传输范围,同时尽可能多的应用各种光学器件融合在光路中,使整个系统整体代价减低。同时这种全波光纤具有很好的使用寿命。

4.结束语

光纤通信以其众多优点已经成为当今通信网络中的中坚力量,随着信息技术的发展,人们对大容量长距离通信系统的需求越来越大,而光纤通信还有很大的潜力可挖,必将迎来更大的发展和应用。

【参考文献】

[1]刘增基等编著.光纤通信[M].西安:西安电子科技大学出版社.2006.

[2]王磊,裴丽.光纤通信的发展现状和未来[J].中国科技信息.2006.

光纤通信的发展范文3

【关键词】 光纤通信技术、传送工具、光波、传输媒介

Introduction to the present situation and development of optical fiber communication technology

Abstract: Optical fiber communication technology is a kind of communication technology is now developing very rapidly, and has become one of the main pillars of modern communication. Optical fiber communication technology as an important symbol of the world new technology revolution and the information of the main tools in the future information society, it has profoundly changed the face of the telecommunication network, become one of the most solid foundation of modern information society, and to show our beautiful future. Optical fiber communication is based on light wave as information carrier, optical fiber as transmission medium of a way of communication.

Keyword: Fibre Optical Communication Technology、means of conveyance、optical wave、transmission medium

一、引言

在光纤通信系统中,作为载波的光波频率比电波的频率高得多,而作为传输介质的光纤又比同轴电缆或导波管的损耗低得多,所以说光纤通信的容量要比微波通信大几十倍。光纤是用玻璃材料构造的,它是电气绝缘体,因而不需要担心接地回路,光纤之间的串绕非常小;光波在光纤中传输,不会因为光信号泄漏而担心传输的信息被人窃听;光纤的芯很细,由多芯组成光缆的直径也很小,所以用光缆作为传输信道,使传输系统所占空间小,解决了地下管道拥挤的新问题。

二、光及其特性

1.光是一种电磁波。

可见光部分波长范围是: 390~760nm(毫微米),大于760nm部分是红外光,小于390nm部分是紫外光。光纤中应用的是:850,1300,1550三种。

2.光纤结构及种类:(1)光纤结构:光纤裸纤一般分为三层: 中心高折射率玻璃芯(芯径一般为50或62.5μm),中间为低折射率硅玻璃包层(直径一般为125μm),最外是加强用的树脂涂层。(2)数值孔径:入射到光纤端面的光并不能全部被光纤所传输,只是在某个角度范围内的入射光才可以。这个角度就称为光纤的数值孔径。光纤的数值孔径大些对于光纤的对接是有利的。不同厂家生产的光纤的数值孔径不同(AT&TCORNING)。

3.光纤的种类:按光在光纤中的传输模式可分为: 单摸光纤和多模光纤。

按最佳传输频率窗口分:常规型单模光纤和色散位移型单模光纤。

按折射率分布情况分:突变型和渐变型光纤。

4.光纤制造与衰减:(1)光纤制造:现在光纤制造方法主要有:管内CVD(化学汽相沉积)法,棒内CVD法,PCVD(等离子体化学汽相沉积)法和VAD(轴向汽相沉积)法。(2)光纤的衰减:造成光纤衰减的主要因素有: 本征,弯曲,挤压,杂质,不均匀和对接等。

5.光纤的优点:(1)光纤的通频带很宽.理论可达30亿兆赫兹。(2)无中继段长,几十到100多公里,铜线只有几百米。(3)不受电磁场和电磁辐射的影响。(4)重量轻,体积小。例如:通2万1千话路的900对双绞线,其直径为3英寸,重量8 吨/KM。而通讯量为其十倍的光缆直径为0.5英寸,重量450P/KM。(5)光纤通讯不带电,使用安全可用于易燃,易暴场所。(6)使用环境温度范围宽。(7)化学腐蚀,使用寿命长。

三、光缆

1.光缆的制造。光缆的制造过程一般分以下几个过程:(1)光纤的筛选:选择传输特性优良和张力合格的光纤。(2)光纤的染色:应用标准的全色谱来标识,要求高温不退色不迁移。(3)二次挤塑:选用高弹性模量,低线胀系数的塑料挤塑成一定尺寸的管子,将光纤纳入并填入防潮防水的凝胶,最后存放几天(不少于两天)。(4)光缆绞合:将数根挤塑好的光纤与加强单元绞合在一起。(5)挤光缆外护套:在绞合的光缆外加一层护套。

2.光缆的种类:按敷设方式分有:自承重架空光缆,管道光缆,铠装地埋光缆和海底光缆。按光缆结构分有:束管式光缆,层绞式光缆,紧抱式光缆,带式光缆,非金属光缆和可分支光缆。按用途分有:长途通讯用光缆、短途室外光缆、混合光缆和建筑物内用光缆。

四、连接和检测

1.光缆的连接:

方法主要有永久性连接、应急连接、活动连接。

永久性光纤连接(又叫热熔):这种连接是用放电的方法将连根光纤的连接点熔化并连接在一起。一般用在长途接续、永久或半永久固定连接。

应急连接(又叫)冷熔:应急连接主要是用机械和化学的方法,将两根光纤固定并粘接在一起。

活动连接:活动连接是利用各种光纤连接器件,将站点与站点或站点与光缆连接起来的一种方法。

2.光纤检测:

光纤检测的主要目的是保证系统连接的质量,减少故障因素以及故障时找出光纤的故障点。检测方法很多,主要分为人工简易测量和精密仪器测量。

人工简易测量:这种方法一般用于快速检测光纤的通断和施工时用来分辨所做的光纤。它是用一个简易光源从光纤的一端打入可见光,从另一端观察哪一根发光来实现。

精密仪器测量:使用光功率计或光时域反射图示仪(OTDR)对光纤进行定量测量,可测出光纤的衰减和接头的衰减,甚至可测出光纤的断点位置。这种测量可用来定量分析光纤网络出现故障的原因和对光纤网络产品进行评价。

五、光纤的应用及系统设计

1.光纤的应用:

人类社会现在已发展到了信息社会,声音、 图象和数据等信息的交流量非常大。以前的通讯手段已经不能满足现在的要求,而光纤通讯以其信息容量大、保密性好、 重量轻体积小、无中继段距离长等优点得到广泛应用。其应用领域遍及通讯、交通、工业、医疗、教育、航空航天和计算机等行业,并正在向更广更深的层次发展。光及光纤的应用正给人类的生活带来深刻的影响与变革。

2.光纤的优点:

通信容量大(传输频带宽,可达到10GB/S),距离长(传输距离可达到100KM),损耗低,不受电磁干扰,不带电使用安全可靠。

光纤通信的发展范文4

关键词:光纤通信技术特点发展趋势光纤链路现场测试

一、光纤通信技术

光纤通信是利用光作为信息载体、以光纤作为传输的通信方式。可以把光纤通信看成是以光导纤维为传输媒介的“有线”光通信。光纤由内芯和包层组成,内芯一般为几十微米或几微米,比一根头发丝还细;外面层称为包层,包层的作用就是保护光纤。实际上光纤通信系统使用的不是单根的光纤,而是许多光纤聚集在一起的组成的光缆。由于玻璃材料是制作光纤的主要材料,它是电气绝缘体,因而不需要担心接地回路;光波在光纤中传输,不会发生信息传播中的信息泄露现象;光纤很细,占用的体积小,这就解决了实施的空间问题。

二、光纤通信技术的特点

2.1频带极宽,通信容量大。光纤的传输带宽比铜线或电缆大得多。对于单波长光纤通信系统,由于终端设备的限制往往发挥不出带宽大的优势。因此需要技术来增加传输的容量,密集波分复用技术就能解决这个问题。

2.2损耗低,中继距离长。目前,商品石英光纤和其它传输介质相比的损耗是最低的;如果将来使用非石英极低损耗传输介质,理论上传输的损耗还可以降到更低的水平。这就表明通过光纤通信系统可以减少系统的施工成本,带来更好的经济效益。

2.3抗电磁干扰能力强。石英有很强的抗腐蚀性,而且绝缘性好。而且它还有一个重要的特性就是抗电磁干扰的能力很强,它不受外部环境的影响,也不受人为架设的电缆等干扰。这一点对于在强电领域的通讯应用特别有用,而且在军事上也大有用处。

2.4无串音干扰,保密性好。在电波传输的过程中,电磁波的传播容易泄露,保密性差。而光波在光纤中传播,不会发生串扰的现象,保密性强。除以上特点之外,还有光纤径细、重量轻、柔软、易于铺设;光纤的原材料资源丰富,成本低;温度稳定性好、寿命长。正是因为光纤的这些优点,光纤的应用范围越来越广。

三、不断发展的光纤通信技术

3.1SDH系统光通信从一开始就是为传送基于电路交换的信息的,所以客户信号一般是TDM的连续码流,如PDH、SDH等。伴随着科技的进步,特别是计算机网络技术的发展,传输数据也越来越大。分组信号与连续码流的特点完全不同,它具有不确定性,因此传送这种信号,是光通信技术需要解决的难题。而且两种传送设备也是有很大区别的。

3.2不断增加的信道容量光通信系统能从PDH发展到SDH,从155Mb/s发展到lOGb/s,近来,4OGB/s已实现商品化。专家们在研究更大容量的,如160Gb/s(单波道)系统已经试验成功,目前还在为其制定相应的标准。此外,科学家还在研究系统容量更大的通讯技术。

3.3光纤传输距离从宏观上说,光纤的传输距离是越远越好,因此研究光纤的研究人员们,一直在这方面努力。在光纤放大器投入使用后,不断有对光纤传输距离的突破,为增大无再生中继距离创造了条件。

3.4向城域网发展光传输目前正从骨干网向城域网发展,光传输逐渐靠近业务节点。而人们通常认为光传输作为一种传输信息的手段还不适应城域网。作为业务节点,既接近用户,又能保证信息的安全传输,而用户还希望光传输能带来更多的便利服务。

3.5互联网发展需求与下一代全光网络发展趋势近年来,互联网业发展迅速,IP业务也随之火爆。研究表明,随着IP业的迅速发展,通信业将面临“洗牌”,并孕育着新技术的出现。随着软件控制的进一步开发和发展,现代的光通信正逐步向智能化发展,它能灵活的让营运者自由的管理光传输。而且还会有更多的相关应用应运而生,为人们的使用带来更多的方便。综上所述,以高速光传输技术、宽带光接入技术、节点光交换技术、智能光联网技术为核心,并面向IP互联网应用的光波技术是目前光纤传输的研究热点,而在以后,科学家还会继续对这一领域的研究和开发。从未来的应用来看,光网络将向着服务多元化和资源配置的方向发展,为了满足客户的需求,光纤通信的发展不仅要突破距离的限制,更要向智能化迈进。

四、光纤链路的现场测试

4.1现场测试的目的对光纤安装现场测试是光纤链路安装的必须措施,是保证电缆支持网络协议的重要方式。它的目的在于检测光纤连接的质量是否符合标准,并且减少故障因素。

4.2现场测试标准目前光纤链路现场测试标准分为两大类:光纤系统标准和应用系统标准。①光纤系统标准:光纤系统标准是独立于应用的光纤链路现场测试标准。对于不同的光纤系统,它的标准也不同。目前大多数的光纤链路现场检测应用的就是这个标准。②光纤应用系统标准:光纤应用系统标准是基于安装光纤的特定应用的光纤链路现场测试标准。这种测试的标准是固定的,不会因为光纤系统的不同而改变。

4.3光纤链路现场测试光纤通信应用的是光传输,它不会受到磁场等外界因素的干扰,所以对它的测试不同于对普通的铜线电缆的测试。在光纤的测试中,虽然光纤的种类很多,但它们的测试参数都是基本一致的。在光纤链路现场测试中,主要是对光纤的光学特性和传输特性进行测试。光纤的光学特性和传输特性对光纤通信系统对光纤的传输质量有重大的影响。但由于光纤的特性不受安装的影响,因此在安装时不需测试,而是由生产商在生产时进行测试。

4.4现场测试工具①光源:目前的光源主要有LED(发光二极管)光源和激光光源两种。②光功率计:光功率计是测量光纤上传送的信号强度的设备,用于测量绝对光功率或通过一段光纤的光功率相对损耗。在光纤系统中,测量光功率是最基本的。光功率计的原理非常像电子学中的万用表,只不过万用表测量的是电子,而光功率计测量的是光。通过测量发射端机或光网络的绝对功率,一台光功率计就能够评价光端设备的性能。用光功率计与稳定光源组合使用,组成光损失测试器,则能够测量连接损耗、检验连续性,并帮助评估光纤链路传输质量。③光时域反射计:OTDR根据光的后向散射原理制作,利用光在光纤中传播时产生的后向散射光来获取衰减的信息,可用于测量光纤衰减、接头损耗、光纤故障点定位以及了解光纤沿长度的损耗分布情况等。从某种意义上来说,光时域反射计(OTDR)的作用类似于在电缆测试中使用的时域反射计(TDR),只不过TDR测量的是由阻抗引起的信号反射,而OTDR测量的则是由光子的反向散射引起的信号反射。反向散射是对所有光纤都有影响的一种现象,是由于光子在光纤中发生反射所引起的。

虽然目前光通信的容量已经非常大,但仍有大量应用能力闲置,伴随着社会经济和科学技术的进一步发展,对信息的需求也会随之增加,并会超过现在的网络承载能力,因此我们必须进一步努力研究更加先进的光传输手段。因此,在经济社会发展的推动下,光通信一定会有更加长久的发展。

参考文献:

[1]王磊,裴丽.光纤通信的发展现状和未来[J].中国科技信息.2006.(4).

[2]何淑贞,王晓梅.光通信技术的新飞跃[J].网络电信.2004.(2).

光纤通信的发展范文5

光纤通信是利用光作为信息载体、以光纤作为传输的通信方式。可以把光纤通信看成是以光导纤维为传输媒介的“有线”光通信。光纤由内芯和包层组成,内芯一般为几十微米或几微米,比一根头发丝还细;外面层称为包层,包层的作用就是保护光纤。实际上光纤通信系统使用的不是单根的光纤,而是许多光纤聚集在一起的组成的光缆。由于玻璃材料是制作光纤的主要材料,它是电气绝缘体,因而不需要担心接地回路;光波在光纤中传输,不会发生信息传播中的信息泄露现象;光纤很细,占用的体积小,这就解决了实施的空间问题。

2光纤通信技术的特点

2.1频带极宽,通信容量大。光纤的传输带宽比铜线或电缆大得多。对于单波长光纤通信系统,由于终端设备的限制往往发挥不出带宽大的优势。因此需要技术来增加传输的容量,密集波分复用技术就能解决这个问题。

2.2损耗低,中继距离长。目前,商品石英光纤和其它传输介质相比的损耗是最低的;如果将来使用非石英极低损耗传输介质,理论上传输的损耗还可以降到更低的水平。这就表明通过光纤通信系统可以减少系统的施工成本,带来更好的经济效益。

2.3抗电磁干扰能力强。石英有很强的抗腐蚀性,而且绝缘性好。而且它还有一个重要的特性就是抗电磁干扰的能力很强,它不受外部环境的影响,也不受人为架设的电缆等干扰。这一点对于在强电领域的通讯应用特别有用,而且在军事上也大有用处。

2.4无串音干扰,保密性好。在电波传输的过程中,电磁波的传播容易泄露,保密性差。而光波在光纤中传播,不会发生串扰的现象,保密性强。除以上特点之外,还有光纤径细、重量轻、柔软、易于铺设;光纤的原材料资源丰富,成本低;温度稳定性好、寿命长。正是因为光纤的这些优点,光纤的应用范围越来越广。

3不断发展的光纤通信技术

3.1SDH系统光通信从一开始就是为传送基于电路交换的信息的,所以客户信号一般是TDM的连续码流,如PDH、SDH等。伴随着科技的进步,特别是计算机网络技术的发展,传输数据也越来越大。分组信号与连续码流的特点完全不同,它具有不确定性,因此传送这种信号,是光通信技术需要解决的难题。而且两种传送设备也是有很大区别的。

3.2不断增加的信道容量光通信系统能从PDH发展到SDH,从155Mb/s发展到lOGb/s,近来,4OGB/s已实现商品化。专家们在研究更大容量的,如160Gb/s(单波道)系统已经试验成功,目前还在为其制定相应的标准。此外,科学家还在研究系统容量更大的通讯技术。

3.3光纤传输距离从宏观上说,光纤的传输距离是越远越好,因此研究光纤的研究人员们,一直在这方面努力。在光纤放大器投入使用后,不断有对光纤传输距离的突破,为增大无再生中继距离创造了条件。

3.4向城域网发展光传输目前正从骨干网向城域网发展,光传输逐渐靠近业务节点。而人们通常认为光传输作为一种传输信息的手段还不适应城域网。作为业务节点,既接近用户,又能保证信息的安全传输,而用户还希望光传输能带来更多的便利服务。

3.5互联网发展需求与下一代全光网络发展趋势近年来,互联网业发展迅速,IP业务也随之火爆。研究表明,随着IP业的迅速发展,通信业将面临“洗牌”,并孕育着新技术的出现。随着软件控制的进一步开发和发展,现代的光通信正逐步向智能化发展,它能灵活的让营运者自由的管理光传输。而且还会有更多的相关应用应运而生,为人们的使用带来更多的方便。

综上所述,以高速光传输技术、宽带光接入技术、节点光交换技术、智能光联网技术为核心,并面向IP互联网应用的光波技术是目前光纤传输的研究热点,而在以后,科学家还会继续对这一领域的研究和开发。从未来的应用来看,光网络将向着服务多元化和资源配置的方向发展,为了满足客户的需求,光纤通信的发展不仅要突破距离的限制,更要向智能化迈进。

4光纤链路的现场测试

4.1现场测试的目的对光纤安装现场测试是光纤链路安装的必须措施,是保证电缆支持网络协议的重要方式。它的目的在于检测光纤连接的质量是否符合标准,并且减少故障因素。

4.2现场测试标准目前光纤链路现场测试标准分为两大类:光纤系统标准和应用系统标准。①光纤系统标准:光纤系统标准是独立于应用的光纤链路现场测试标准。对于不同的光纤系统,它的标准也不同。目前大多数的光纤链路现场检测应用的就是这个标准。②光纤应用系统标准:光纤应用系统标准是基于安装光纤的特定应用的光纤链路现场测试标准。这种测试的标准是固定的,不会因为光纤系统的不同而改变。

4.3光纤链路现场测试光纤通信应用的是光传输,它不会受到磁场等外界因素的干扰,所以对它的测试不同于对普通的铜线电缆的测试。在光纤的测试中,虽然光纤的种类很多,但它们的测试参数都是基本一致的。在光纤链路现场测试中,主要是对光纤的光学特性和传输特性进行测试。光纤的光学特性和传输特性对光纤通信系统对光纤的传输质量有重大的影响。但由于光纤的特性不受安装的影响,因此在安装时不需测试,而是由生产商在生产时进行测试。

光纤通信的发展范文6

关键词:光纤通信;信息技术;发展趋势

随着光纤光缆及通讯技术的不断发展,光纤通讯技术也有了大幅度的完善,光纤光缆具备的优势使得它在通讯领域的使用范围不断被拓宽,就目前情况而言光纤光缆的主要应用领域包括石油通信、邮电通信、电力通信、广播通信和军用通信等。

1 光纤通信

随着各国接入网市场的逐渐开放以及电信管制政策的放松,通信领域的竞争也日益加剧,新业务的出现带动了各种通讯技术的发展,而光纤接入网技术也凭借其独特的优势进入人们的视野。光纤接入网技术作为一种以光纤为主要传输媒介的接入网技术,它具有较大的通信容量和较强的抗电磁干扰能力,稳定的性能以及较强的保密性使得它一跃成为干线通信接入网技术中的领导者。

2 光纤通信的关键技术

2.1 波分复用技术

波分复用技术可以通过对单模光纤通信低损耗区的充分利用带来巨大的宽带资源,可以将两种或者是多种各自携带信息的不同波长的光载波信号,在发射端经波分复用器汇合,并将其耦合在一根光线中进行传输,速率可以达到40G-100Gbit/s,在接收端在通过波分复用器对各波长的光载波信号进行分析,然后由光机收机作进一步处理。密集波分复用技术是为了能够解决超高速率、超大容量和超长中继距离等问题而产生的。密集波分复用技术的应用,不仅使得每对光纤的传输容量得到了大幅度的提升,还达到了经济节约的效果。

2.2 光源波长稳定技术

在波分复用的光纤通信中,光发送机所用半导体激光刺激器光源,其工作线宽必须窄,波长必须具有稳定性,这样才能够充分的避免信道间信号的相互串扰的情况的出现。但在目前的条件下,显然是无法满足这样的条件的。因此在光纤通信中为了能够提供稳定的光源波长,就需要开发出光源波长稳定技术,让波分复用光纤通信系统可以可靠、稳定的进行工作。目前主要采用的两种方法:一是波长反馈控制法,一是温度反馈控制法。

2.3 掺铒光纤放大器(EDFA)

掺铒光纤放大器(EDFA)的研制成功是推动波分复用技术发展的重要因素,它让高速率、大容量以及长距离的光纤通信成为了可能。EDFA在光纤系统中也得到了广泛的应用。首先在前段将发射机的输出光进行方法,然后在进行分配以提供各个方向的光纤干线传输,然后再远离前端处接入EDFA,来作为线路的放大器,实现对于分支损耗的补偿。

3 光纤通信技术的发展趋势

3.1 超大容量、超长距离传输技术

波分复用技术在光纤中的运用使得光纤传输容量有了极大的提高,其超长传输距离的优势使得它在未来跨海光传输领域将会有良好的应用前景。而波分复用系统的高速发展使得1.6Tbit/的WDM系统逐渐趋向于商业化,其传输距离也在大幅度扩展。借助光时分复用技术可有效提高光纤的传输容量,实现单信道速率传输的最大化,但光时分复用技术和密集波分复用技术的提升能力有限,因而只有将多个光时分复用信号集中使用进行波分复用,才能实现传输容量的大幅提高。WDM/OTDM混合系统包含了许多关键性技术,同时也是解决传输容量的关键。

3.2 光孤子通信

光孤子通信是一种全光非线性通信方案,利用光纤折射率的非线性效应导致对光脉冲的压缩,可以与群速色散引起的光脉冲展宽相平衡,当光纤的反常色散区与脉冲光功率密度达到一定条件时,光孤子能够长距离不变形的在光纤中传输。这种传输不受距离的限制,但环境条件很重要。随着对光孤子技术研究的深入,我们预备将光孤子的运行效率从10~20Gbit/s提高至100Gbit/s以上,而传输距离方面则采用重新定时、再生、整形等技术以降低自发发射,传输距离提高至100000km以上。

3.3 全光网络

随着通讯技术对信息传输效率要求的不断增高,高速通信网成了大家关注的一个热点,光纤通信技术的发展极致也就是全光网。传统的全光网是对节点进行全光化,但在实际的网络应用中节点仍使用的是电器件,它对通信网干线的容量造成了一定的影响,因此全光网的节点是关键。改良后的全光网用光节点取代了电节点,节点间完全实现了全光化,信息与数据之间的传输和交换始终都是以光的形式完成,用户信息的处理也是根据其波长来决定。

4 结语

在信息技术平台中光通信技术是通信领域的重要组成部分,随着信息技术的不断发展,光通信技术将成为通信领域今后发展的主要方向。尽管全球光通信刚经历了低谷,目前尚处于恢复时期,但光通讯技术具备的优势使得它在光通信市场仍呈现上升的趋势。通过对现代通信发展趋势的分析以及相关数据统计,在未来通信发展中光纤通信将成为通信技术的主流,它的成熟为全光网络时代的到来奠定了基础。

[参考文献]