逆变电源的设计范例6篇

前言:中文期刊网精心挑选了逆变电源的设计范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

逆变电源的设计

逆变电源的设计范文1

关键词 太阳能 全桥逆变电路 保护电路

0前言

目前,能源结构仍以煤、石油、天然气等一次能源为主,随着能源需求的增加,这些一次能源储量正在日趋枯竭。同时,煤、石油、天然气等常规能源在满足能源需求的同时,也对生态环境造成了严重的破坏。因而,要解决能源需求问题,实现可持续发展,只能依靠科技进步,大规模开发利用可再生能源和新能源。

小型高效率太阳能逆变电源将太阳能转换为电能,经过能量存储、变换、控制等环节,向负载提供交流电源,可应用于各种功率较低的电器,如照明设备等,对于节能环保具有重大意义。

1太阳能电池板储能

太阳能电池板作为太阳能逆变电源中的核心部分,将太阳能电池通过光电效应或者光化学效应把光能转化成电能,进而用蓄电池中存储起来,其结构如图1所示。

储能蓄电池一般为铅酸电池,有12V和24V这两种,也可用镍氢电池、镍镉电池或锂电池。本设计采用24V铅酸电池。

2逆变电路设计

逆变主电路拓扑结构主要有全桥、半桥、推挽等结构。本文所设计的逆变电源采用全桥结构,电路如下图2所示。

逆变电源结构由全桥逆变电路、升压变压器及LC滤波电路构成。其中,全桥逆变电路的每个桥臂由可控器件MOSFET以及反并联的二极管组成,桥臂VT1、VT4为一对,桥臂VT2、VT3为一对,对角桥臂轮流控制导通,二极管实现续流作用;升压变压器可将电压升高到系统所需的电压等级,具有电气隔离、升压和储能的作用;滤波电路由电感Lf和电容Cf构成,滤除输出电压中的高次谐波分量, 实现正弦波输出。

3保护电路设计

为保证电路正常工作,除了主电路之外,还需设计必要的保护电路。

3.1蓄电池反接保护

蓄电池反接保护如图3所示, D0为防反二极管,FU为保险丝。二极管D0及保险丝FU构成蓄电池反接保护电路,当蓄电池反接时,二极管D0及保险丝FU构成短路回路,过大的短路电流使保险丝L1快速熔断,从而保护了蓄电池充电电路中的其它元器件。

3.2 MOSFRT过压保护

为了抑制MOSFET关断时的过电压并减小其关断损耗,需设置关断缓冲吸收电路。常见的关断缓冲吸收电路分为充放电型和放电阻止型两类。而充放电型的吸收效果好于放电阻止型,本设计采用RCD充放电型关断缓冲吸收电路,电路结构如图4所示。

RCD吸收电路并联在MOSFET的漏极和源极两端,关断时吸收电容C的电压从零开始充电上升,具有较好的过电压吸收效果。但电容C从零电压开始充放电的电流通过电阻R,造成其功耗较大,当运行频率较高时,会严重影响装置的运行效率。

4小结

随着电力电子器件的进步及各种新型电路拓扑结构的研究,太阳能逆变电源的应用将有更为广阔的发展前景。本设计中的太阳能逆变电源还有值得改进的地方,在调试中将进一步完善。

参考文献

[1] 史卫华,陈玉.独立式太阳能光伏逆变电源的研究[J].信息与电脑:理论版,2010(3).

[2] 肖啸,许德富,等.太阳能电池的光学管理基本概念[J].四川大学学报(自然科学版),2015(5).

逆变电源的设计范文2

【关键词】三相逆变电源;DSP IC;全数字控制;设计

在当前,随着电力电子技术的高速发展,尤其是逆变技术在多领域的广泛应用,人们对逆变电源的性能要求也较过去有了较大程度的提高,不仅要求输出的波形质量尽量好,而且对其稳态与动态性能的要求也日益更高。基于此,本研究成功设计了一种基于DSP IC全数字控制的三相逆变电源,现对其技术方案简要陈述如下,以供业内人士参考。

1.本三相逆变电源的总体设计思路

在本设计方案中,主要包括的几个部分为:

①括主控制电路;

②驱动保护电路;

③工作电源;

④三相逆变电路;

⑤输出滤波电路;

⑥稳压电路;

⑦前级处理电路。

其具体设计思路如图1所示。

图1 三相逆变电源的总体设计思路

2.硬件设计

2.1 主控制芯片的选择及其特性简述

本设计选用的是美国微芯科技公司生产的DSP IC数字信号控制器(DSC)为电源的主控芯片,同时该芯片为16位闪存单片机设计,其快速中断处理能力与对设备的切断功能均颇为强大,另还兼具了数字信号处理设备(DSP)的数据吞吐和运算功能,进而在运算速度与数字信号处理方面有非常不错的表现,对指令的执行速度甚至超过了30MIPS。此外,该芯片还配备了自编程闪存,可耐受的工作环境温度可达到工业级。

2.2 电源开关元件的选择及其特性简述

本设计采用绝缘栅双极型晶体管(IGBT)作为电源开关元件,IGBT不但具有效应管(MOSFET)的高速开关功能,而且还具有电力晶体管(GTR)的低通压降优点,是一种集多方面优点于一身的复合型开关元件。

2.3 主控制电路的设计

在主控制电路的设计中,将复位、晶振、六路PWM输出以及报警等等多项功能考虑进其中,具体详见图2所示。

图2 主控制电路原理图

2.4 逆变电源开关元件(IGBT)的驱动电路设计

IGBT的门极驱动电路在很大程度上影响着其开关时间、功耗以及承受短路电路的能力,是关系到IGBT静、动态性能的关键部件,故其对应的驱动保护电路设计尤为重要,本次详细设计如图3所示。

图3 IGBT驱动电路设计图

2.5 逆变电源的保护电路设计

一旦出现输入(出)电流与电压不稳定以及电源开关元件温度过度升高的情况,有可能对整个逆变系统造成破坏性的损坏,故在本设计中,分别设计了电源的输入过流保护电路(如图4所示)与超温保护电路(如图5所示),其中,以超温保护电路为例,一旦IGBT的温度超过了额定温度,主控芯片立即发出故障信号并自动将所有的IGBT切断,同时还将通过指示灯发出警报以提示已有异常发生。

图4 输入过流保护电路设计

图5 超温保护电路设计

2.6 逆变电路的稳压电路设计

在本设计中,为便于逆变控制系统调节输出电压的大小及波形,继而采用了闭环控制策略,具体详见图6所示。逆变电压经变压器降压整流后,再经分压电阻分压采样,形成闭环。

图6 稳压电路设计图

3.软件设计

综合借助DSPIC对数字信号的处理功能及其快速的计算能力,同时采用了SPWM脉宽调制技术,对六路PWM值实时计算,再将计算的结果传输到内部的PWM控制模块产生PWM波形。其中,开关频率选用20kHz,其周期为50μs,通过软件对所产生的PWM波形的正弦数值进行分析并生成表格,将其提前存储到控制芯片当中。存储正弦数字表为180个数值,根据波形的对称性和三相相位相互差120度的特性,在0到180的正弦数值表中加入一定计算就可以得到所需要角度的对应数值。控制芯片根据回馈采样,利用PI调节,对正弦数值表中的每个值进行重新计算后送如PWM模块,以达到稳压的目的。同时每1毫秒对所有输入采样和各种保护进行处理,若有保护信号动作,立即关闭PWM模块,使驱动波形变为无效,进而达到及时保护IGBT的目的。此外,为了最大程度减少启动器对器件产生的冲击,本设计在软件方面还特地增设了一个软启动程序,进而确保其输出的电压不会徒然升至过高。

4.实验结果

图7、图8所示为经过LC滤波前后的三相逆变电压线电压波形,频率为50HZ,符合设计要求。

图7 LC滤波前的逆变电压波形

图8 LC滤波后的逆变电压波形

5.结束语

本研究成功设计了一种基于DSPIC的全数字控制三相逆变电源,其样品目前已通过检测,检测结果显示,本产品采用DSPIC进行控制,其可控性、可靠性以及波形质量与带负载能力等,均显著优于传统电路设计,建议将其作为新一代逆变电源产品进行批量生产并推广应用。

参考文献

逆变电源的设计范文3

关键词:自动控制 逆变电源 逆变控制

中图分类号:TM464 文献标识码:A 文章编号:1672-3791(2012)10(b)-0105-01

随着生态环境日益恶化,世界各国都努力寻找无污染并且可以持续利用的能源,不断开发新能源以遏制环境污染的加剧。太阳能作为新型的清洁能源尤其受到人们的重视,在太阳能利用中,一般家用太阳能照明设备或者大型的太阳能厂,都需要将直流电源交流电,因此光伏逆变电源的转化效率和对电网的安全由为重要。在光伏逆变电源中电能的转换分为三种:光热转换、光电转换、光化学转换;光伏逆变就属于其中的一个。光伏逆变电源的最终目的就是能够通过防腐电源将太阳能辐射转化为电能,能够对其操控和储能,光伏逆变电源中最重要的部分就是直交转换装置,光伏逆变电源在通信、农村和边缘地区照明等方面都有广泛的应用。自动化技术在光伏逆变电源的制造、逆变电源的控制、理论应用等方面都取得了长足的发展,本文从以上几个方面阐述自动控制技术在光伏逆变电源中的应用进行比较系统的阐述。

1 逆变电源中的自动控制技术

光伏逆变电源必须具有较高的效率和安全的可靠性,由于太阳光度的大小会随着太阳角度的变化、天气状况的变化而变化,产生的电能大小也会随之发生变化,并且随着电源电池的老化输出终端电压也会发生波动,因此光伏电源处理的电压能力必须具有较宽的适应范围。在这个不断变化和外来影响的情况下需要采用自动控制技术对整个电流、电压实时监测和调整,使得输出的电压能够保证在需求范围内。例如大型的太阳能发电厂发需要实现光伏电源的并网逆变,即将发出的直流电源转化为可以入电网的交流电,电网的运行必须具有安全性和可靠性,由于太阳能输出的不稳定性可能会对整个电网的稳定运行带来致命的冲击,因此我们可以在逆变电源中加装单片机等自动控制方法对电源的整个状态进行监控和调整,达到并网的目的。随着电力电子和自动控制技术的快速发展,光伏逆变电源制造朝着智能化、全数字化、网络化的方向发展,光伏逆变电源的自动控制策略能够实现各种控制功能,不需要变更硬件的电路,只需要修改单片机等相应的软件参数即可,这大大缩短了研发的周期,而且可以应用一些新型的复杂的应用策略,这给光伏逆变电源进一步发展提供了基础,并最终保证可靠性高的大规模光伏逆变电源并联运行。

2 对光伏逆变电源的控制应用

对逆变电源的控制应用是指在已经制造的光伏逆变电源的基础上,应用自动控制技术对光伏逆变进行自动控制操作。随着光伏逆变电源的功能的衰退或者其他原因导致光伏电源本身的控制系统不能很好进行自动控制操作,或者需要对原有的光伏逆变电源进行管理升级,因此就需要在已经运行的光伏逆变电源进行自动化改造或升级,特别大型的太阳能发电厂对的光伏电源的自动化控制更为重要。目前工业控制计算机技术在光伏逆变电源中的应用研究已经被重视,将工业控制的自动化技术引入光伏逆变电源的控制能够对光伏逆变电池进行最大功率点跟踪和控制,是光伏逆变电池能够最大功率的的将太阳能转化为电能。因此采用工业控制计算机技术能够很好的使用光伏逆变并网控制的需要。在光伏逆变电源控制中控制监测系统也充分应用可自动控制技术,监测系统通过工控计算机系统、环境数据监测和相关的数据软件,能够采集并记录相关运行数据,如电性能参数,设备状况和太阳辐射气象资料等,在执行操作中可以进行太阳能光伏逆变电源方阵的输出和跟踪控制。工控计算机还能对光伏逆变电源的故障进行自我保护,记录和保存故障信息发出故障报警信号,还可以实现远程监控功能。

3 自动控制理论在光伏逆变电源中的应用

对于自动控制理论在光伏逆变电源中应用,主要包含控制方法的研究、模糊控制理论等等。首先控制方法研究,在控制方法中随着大规模集成微电子技术的发展,专用的波形产生芯片和智能芯片逐步取代了小规模的元器件,这种方法有利于对波形的参数修改和完善,由此产生一系列的逆变控制方法,其中SPWM技术被广泛的运用。在智能的光伏逆变电源中,一般采用智能控制器和传感器,使光伏逆变电源充电和放电更合理,同时能够延长蓄电池的寿命,在信号处理的算法解决中采用相关的拓补结构,系统效率得以提高,满足电网的要求。其次模糊控制理论在光伏逆变电源中的应用,在光伏逆变电源并网中采用模糊控制理论,能够将参考电流和误差电流作为系统的参考控制量,运用较少的模糊控制参数,减少模糊判断的时间,具备更好是使用性能达到最佳的控制效果。再次是模数控制理论的应用,这种理论是采用模拟电路和数字电路混合的来实现逆变电源电压的同步、跟踪控制,基于这种理论可以选择合适的单片机和数模转换芯片,并应用电路给定电路结构,在大范围内对逆变电源进行细致的调解。这样有利于逆变电源并网的稳定运行,利用功能简单的单片机结合数模控制的方法构成数模控制系统,能够达到并网逆变的控制要求。最后是复合控制理论在光伏逆变电源中的应用。复合控制的方案就是把作用于系统外的动力学模型放入逆变电源的控制器,形成具有高精度反馈的逆变电源,这种控制理论也是基于内模原理的控制策略。在控制思想方面主要是给定一个周期的输出,并且波形发生变化在下一个周期产生影响,控制器通过给定相应的指令对反馈的信号进行修订和校正,并将此信号加载到原来的控制信号上同时对下一个信号进行畸变校正。当输入信号是零,复合控制还能够不断的对输出信号进行累加,保持输入波形的稳定。

参考文献

[1] 朱淼,刘飞飞,穆芳芳.单片机控制光伏并网逆变器的设计及其应用[J].数字技术与应用,2009(11):73-74.

[2] 施佳锋,沈燕,程彩艳,等.光伏发电有功自动控制技术[J].宁夏电力,2012(1)1-5,57.

[3] 周志敏太阳能光伏发电系统设汁与应用[M].北京:电子工业出版社,2010.

逆变电源的设计范文4

关键词:孤岛;无功功率;频率

中图分类号:TP274文献标识码:A文章编号:1009-3044(2010)18-4903-02

Based on Reactive Power and Frequency of the Islanding Detection

SUN Mei-ling, GUO Yong

(Qinhuangdao Institute of Technology, Qinhuangdao 066100, China)

Abstract: inverter islanding detection methods to analyze the circumstances under which the island can not be high/low frequency (OFR/UFR) protection device to detect the reasons for the application of proposed reactive power and frequency detection of isolated islands of methods and simulation verification.

Key words: island; reactive power; frequency

随着对低碳绿色能源的需求,分布式发电系统中的电源也采用了多种形式,如太阳能、燃料电池组、氢能、风能以及潮汐能等。其中分布式发电系统中的大部分电源均采用逆变器与电网连接,因此应用的孤岛检测是基于逆变器的孤岛检测。通常我们可以采用过/欠电压(OVR/UVR)和高/低频率(OFR/UFR)保护装置作为孤岛的检测装置。

1 分析孤岛不能被检测到的原因

如图1所示为基于逆变器孤岛检测的测试电路图。在逆变器和电网中间,RLC谐振电路模拟反孤岛检测负载,改变负载大小可以检测逆变装置的反孤岛可靠性。用S的开和关模拟并网和断网工作状态。

1)当并网工作时根据其功率平衡可得公式1和公式2:

(1)

(2)

式1中电网电压用Ug表示,逆变电源输出的有功功率用P表示,逆变电源输出的有功功率和负载的有功功率的差值用ΔP表示,式2中电网电压波形的角频率用ωg表示,逆变电源输出的无功功率用Q表示,而逆变电源输出的无功功率和负载的无功功率差值用ΔQ表示。

2)当电网断开时根据其功率关系可以得到公式3和公式4:

(3)

(4)

式3中逆变电源输出电压用Uinv表示,式4中逆变电源输出电压波形的角频率用ωinv表示。

由公式1~公式4可得到公式5:

(5)

当逆变电源与电网断开时,如果ΔP≠0,ΔQ≠0则由公式5可以推出,当逆变电源输出的频率发生变化超过设定的阈值时,就可以应用高/低频率(OFR/UFR)保护装置检测到孤岛,从而关闭逆变器。如果ΔP=0,ΔQ=0,带入公式5可得公式6:

(6)

解公式6,可以得到ωinv=ωg,由于逆变电源输出的频率变化太小,以至于不能应用高/低频率(OFR/UFR)继电保护装置检测到孤岛发生。

2 无功功率和频率的关系

当开关S断开,模拟逆变系统与电网断开情形,此时系统处于孤岛运行状态,负载端电压变化的大小将由逆变电源与负载的有功功率的不匹配程度决定。而频率变化的大小将由逆变电源与负载无功功率的不匹配程度决定。由公式(7)、公式(8)表示其负载特性。

(7)

(8)

从公式(8)中我们可以推出,当负载电压V增大或减小时,ω也会发生相应的变化。即当ΔP≠0时,负载电压增大或减小,如果此时逆变电源的无功功率没有变化,则ω依据公式8相应的减小或增大。如果此时逆变电源输出的功率因数等于1,即Qload=Qpv=0。则可得到公式(9):

(9)

从公式(9)中可以得出电感电容发生谐振,其谐振频率为。如果功率因数不等于1,即使逆变电源输出的无功功率与负载所需求的无功功率相等,此时角频率ω的大小将由无功补偿的匹配程度决定。在一定负载条件下,系统无功功率平衡时的电压变化可以用图2来描述。

负载电压特性由1曲线和1'曲线两条曲线表示; 电力系统Q-V特性由2曲线和2'曲线两条曲线表示,两者的交点A为系统平衡点。当增加负载无功功率需求时,由1曲线升高到1'曲线,如果此时系统提供的无功功率也相应增加,则2曲线可升高到2'曲线,若系统电压仍维持在VA,则系统平衡点将由点A变为点C;如果电压变小即由,则系统平衡点将由点A点变为点A'。再根据公式7和公式8所示的负载特性,我们就可以得到无功功率和频率之间的关系,从而应用此关系检测孤岛。

3 应用无功功率和频率之间的关系检测孤岛的仿真实验

系统并网运行时,电网频率恒定在50Hz。当分布式发电系统与电网断开处于孤岛运行状态时,如果逆变电源输出的无功功率和负载需求的无功功率不匹配时,负载频率将发生变化。本仿真实验中对并网运行时负载需求的无功功率进行相应设计,使逆变系统提供的无功功率和负载所需求的无功功率不匹配,即部分无功功率由电网提供。这样就可以使系统发生孤岛时,频率由于ΔQ≠0而发生相应变化,从而应用高/低频率(OFR/UFR)保护装置能够检测出孤岛发生。本实验中应用Matlab进行仿真,其实验仿真如图3所示。实验中系统仿真时间设定为1.6s。在0.2s时3-Phase Break控件设定为断开即逆变系统与电网断开,使逆变系统运行在孤岛状态。

1)当负载为纯电阻时,值为1000 W(P),频率下降约为0.22Hz。如图4所示。

图4 纯电阻频率仿真

2)当负载为电阻电感电容并联时,值为1000 W(P)+1000 Var(QL)+1000 Var(QC),频率下降约为0.25Hz。其频率仿真图如图5所示。

参考文献:

[1] 赵为,余世杰.光伏并网发电系统的孤岛效应与防止策略[J].太阳能学报,2003,(z1):94-97.

逆变电源的设计范文5

关键词:逆变电源;DSP;SPWM;PID控制;保护电路

中图分类号:TM464 文献标识码:A 文章编号:1009-2374(2011)04-0106-02

随着新能源产业的发展,对逆变电源输出特性和稳定性的要求也越来越高。而目前的逆变电源的控制趋势是往数字化发展,数字化可以实现电路的简化,输出特性和效率的提高。本文设计并研制了1kw样机,实验结果表明在减少谐波和提高响应速度方面具有优越性。

一、逆变器原理和结构

逆变系统电能变换主要由二部分组成:前级的DC-DC变换器以及后级的DC-AC变换器。前级需要将地输入的直流电压升压直420V以上,通过直流母线的连接,再利用DC-AC变换器将直流输入转变成220VAC的交流输出。DC-DC升压部分选择推挽结构,DC-AC逆变部分采用全桥逆变结构。

核心控制电路使用TMS320F28023,输出SPWM控制信号,控制后级驱动芯片。

图1为逆变电源主体结构图:

DC-DC升压部分采用推挽结构,通过输出互补两路的PWM信号控制开关管,通过高频变压器进行升压到420V。图2为推挽升压示意图:

逆变部分采用全桥结构,同样利用DSP输出PWMgg号,驱动后级驱动芯片,实现对开关管的控制,通过输出的滤波整形,达到正弦波输出。该电路主体结构如图3所示。

二、SPWM的实现方法

在采样控制理论中有一个重要结论:冲量相等而形状不同的脉冲,加在具有惯性环节上,其效果基本相同。基于这个理论,将一组幅度相等,宽度不等的脉冲,使脉冲的中点和相对的正弦等分的中点重合,且使脉冲面积和相应的正弦部分冲量相等,就可以得到一组SPWM波形。如果把期望的目标波形作为调制信号,把受调制信号作为载波,通过对载波的调制可以得到期望的SPWM波。

(一)SPWM调制模式下ZVS的实现

由于开关频率的提高,传统硬开关模式存在以下一些主要问题:开关损耗问题,容性开通问题和感性关断问题,二极管反向恢复问题,引起整体电路EMI问题。而软开关ZVS技术在这个方面能够有效的防止或者减少以上问题的产生。理想状态下ZVS开通过程是:电压下降到零后,电流再缓慢上升到通态值,开通损耗近似为零。因功率管开通前电压已下降到零,其结电容上的电压即为零,故解决了容性开通问题,同时二极管已经截止,其反向恢复过程结束,因此二极管的反向恢复问题亦不存在。关断过程为:电流先下降到零,电压再缓慢上升到断态值,所以关断损耗近似为零。由于功率管关断前电流已下降到零,即线路电感中电流亦为零,所以感性关断问题得以解决。图4为ZVS软开关示意图。

(二)SPWM软件控制实现

产生SPWM的方法有硬件法和软件法,其中的软件法是通过实时计算来生成SPWM波,利用DSP实现软件法而且其电路简单通用,可编程能力强,是性价比最好的SPWM生成方法。虽然软件法要求建立数学模型而且对MCU的运算能力要求高,但是DSP的特点在于运算能力强大,同时提供专用的PWM通道,因此是理想的控制处理器。

三、PlD控制

PID控制的特点是控制方式简单,参数易于整定。但是在逆变电源上运用PID却是存在很大的不足:如果控制策略中采用简单的输出电压瞬时值反馈,负载为非线性负载时,动态性能将不会令人满意。若采用庞大的模拟控制电路,将使得控制系统的可靠性下降,而且也不易于参数的整定。针对传统的PID控制的种种不足,引入DSP控制芯片,利用DSP的运算能力可以得到改善。

四、保护电路

逆变电源的基本结构除上述的升压,逆变电路和控制电路外,还有系统保护电路。

蓄电池充放电控制电路:当蓄电池的电压过高时,将停止充电,相反,当蓄电池的电压过低时,太阳能电池输出电压就对蓄电池充电。负载短路保护:承受负载短路的电路保护,当负载发生短路时切断电源。反接保护:承受负载、太阳能电池组件或蓄电池极性反接的电路保护。雷击保护:承受在多雷区由于雷击引起的击穿保护,防止雷击击穿。欠压保护:当蓄电池电压低于“欠压点”时,为了避免过放电而损坏蓄电池,设备将自动切断逆变输出。过载保护:如果交流输出功率超过额定功率时,设备将自动切断逆变输出。

五、实验技术参数

通过1kW样机的制作,对样机进行容性负载的实验,在太阳能板输入电压为:40-60VDC的条件下,输出电压达到:2204±10%VAC,输出频率:50±0.5%Hz,输出波形畸变度:≤5%,功率因数:≥0.7,输出效率:≥91%。基本满足行业标准,验证了本系统的可行性。

六、结 语

相对普通单片机而言,以DSP作为主控芯片,能够充分利用其强大的运算能力,在减少谐波和提高响应速度方面具有优越性,满载最高效率达到92%,可以看出DSP在逆变电源的运用上,有着强大的优越性,适用于对输出特性要求较高的场合。

参考文献:

[1]李宏,王崇武,现代电力电子技术基础[M],机械工业出版社,2008

[2]徐科军,陶维青,汪海宁,DSP及其电气与自动化工程应用[M],北京航空航天大学出版社,2010

逆变电源的设计范文6

1一体化

智能变电站交直流一体化电源系统的主要的特点是一体化,这种一体化不仅表现在外观上的一致性,更主要的是在系统的设计安装方面减少了组屏的数目,这样使得整个电源系统之间的联系更加的紧密和美观。这样的一体化设计使得电源系统的流程更加简单,也为后期的维护工作提供了方便。一体化电源系统还缩短了工厂的生产周期,各种型号模块可提前生产,理论上为现货,大大缩短供货时间。

2网络化和智能化

智能变电站交直流一体化电源系统主要是采用电子信息和电子设备相结合的特点,其由几个子系统构成,每个系统之间通过网络进行连接,并且都是受到相同的监控系统的监控,这样也就使得各个子系统通过监控系统建立起了联系,从而实现了智能电源系统内部自动化控制,使得运行的各参数能够很好的配合和调整。此外一体化电源系统在开关方面也是使用了智能化,将低压开关、传感器等放在同一个箱体内,可监测开关位置、事故跳闸告警、负荷电流、漏电流等,使得模拟量的采集或是开关控制等都在箱内解决,使电源监测不再有盲点。这种开关的智能化将使得单个的柜体能够安装更多的开关,实现开关智能化的检测或是控制。同时也会使得维护更加的方便,

3安全性高

交直流一体化电源系统采用全模块设计,绝缘防护更好,并且没有外引二次接线,无跨屏二次电缆;同时由于使用了模块化设计,一般故障模块可以实时更换,无需停电,不需检修二次线。相同参数模块可以互换,模块内一次、二次部分可独立检修,单个开关可独立更换,使得设备检修更便捷、更安全。交直流一体化电源系统还对蓄电池、各开关之间做防爆、防酸、防燃处理,即使蓄电池放在主控制室内,也不会对其他设备的安全运行造成影响。

智能站用变直流一体化电源系统的应用

1智能站用交直流一体化电源系统的概念

一般来讲,智能站用交直流一体化电源系统,主要是指将站用交流电源系统、直流电源系统、逆变电源系统、通信电源系统统一设计,并且进行相应的调试和服务,之后通过网络通信、优化、系统联动、设备档案统一管理的方法,实现站用电源安全和智能,从而实现站用电源的“交钥匙”工程。

2智能站用交直流一体化电源系统的应用

站用智能交流系统已经成功在大多数的变电站运行,其直流核心充电模块应用移相谐振软开发技术,风冷、自冷有机结合。逆变电源正常时进行交流供电,交流断电之后切换直流逆变。一体化应用成熟的交流技术、直流技术,在技术上不存在风险。通信电源部分应用直流输入充电模块,比传统的充电模式省掉了整流环节。直流的220V电压经过高频的开关转换为48V的电压,并没有采用变压器进行转换,其中的220V和48V的电压之间并没有直接通过电气进行连接,保障了两种电压之间的隔离。蓄电池部分是采用阀控铅酸蓄电池,110kV及以上变电站使用2到3组的蓄电池,蓄电池的一体化,避免逆变电源和通信电源在进行维护时出现的不精确的问题,同时减少蓄电池组配置组数,蓄电池室也可取消,简化主控楼的设计,同时解决了UPS电池和通信蓄电池的日常维护和管理问题,也使得实现智能变电站交直流一体化电源系统成为了可能。

3安全性应用

原始的变电站的站用电源系统当有一处出现问题时整个系统可能受到影响,这样很容易导安全事故的发生,然而智能变电站交直流一体电源系统将很好地解决这一问题.通过对变电站站用电源的一些线路的走向进行调整,将直流和交流完全的进行隔离开来,这样将会减小由于电流的冲撞导致的事故发生。并且一体化电源系统还统一进行防雷配置,以提高雷击过电压或者操作过电压时,设备安全运行的能力。

小结