数学建模在生活中的应用范例6篇

前言:中文期刊网精心挑选了数学建模在生活中的应用范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

数学建模在生活中的应用

数学建模在生活中的应用范文1

学生在高中阶段学习数学虽然是为了高考,但更是为了使我们的生活更加便利,能用数学问题解决实际问题.在高中数学教学中构建建模意识是为了提高学生的实际应用能力,而学生创新思维的培养也是为了提高学生应用基本理论解决实际问题的能力,两者的本质是一致的,因此在高中数学教学中构建建模意识,实质上是为了培养学生的创新思维能力.构建模型是一种创造性较强的思维活动,它需要学生具备一定的基础知识和较多的实践经验,具有思维的深刻性和灵活性,有较强的独立解决问题的能力,而学生的创新思维也是在学生具备以上能力的基础上形成的,由此可知,在高中数学教学中可应用建模意识培养和提高学生的创新思维.要想在数学教学中培养学生的创新思维,需要教师在教学中发挥学生的想象力和创造力,在掌握丰富的数学知识和经过大量实践的基础上培养学生的直觉思维,让学生在解题过程中能激发潜能产生新联想和独创见解;建模意识是用数学知识解决问题,关键是把实际问题转换为数学问题,因此学生的转换能力是形成建模意识的基础,有利于提高学生的解题效率;学好数学不仅要具备丰富的理论知识,大脑中还要有大量与之联系密切的实例,数学模型的构建需要在此基础上运用自己的构造力创造性地应用已有条件和数学知识,从本质上构造出数学模型,用熟悉的数学知识解决相对陌生的生活实际问题,培养学生的创新思维.

二、培养建模意识,提升学生的数学素养

数学模型是依据事物之间的联系,用数学符号或语言描述的数学结构.教师在研究高中数学教材时要注重运用建模意识,把教材中静态的知识转化为动态的模型,用生活中学生熟悉的生活现象解释数学概念,激发学生用数学思维思考问题,提升学生的数学素养.使用教材中的素材可以建立数学模型,利用学生生活中的实际问题,也可以建立数学模型.教师在建立数学模型时要多借助学生熟悉的生活实际,让学生在熟悉的环境中树立建模意识,帮助学生把生活中的表象抽象成数学问题.丰富的表象是学生建模意识的基础,但学生要跨越直觉的经验水平,对观察的事物进行深入的思考,让他们的数学知识进行沉淀.在高中数学教学中,教师要引导学生从数学知识联想生活现象,还要帮助学生从生活现象走向数学知识,让学生的数学认知从感性上升到理性.教师通过生活实际现象解释数学概念,还要引导学生从生活实际中提炼数学知识,建立数学模型,用数学的思考方式进行分析、推理.培养学生的建模意识,教师首先要具有强烈的建模意识,利用身边的一切条件为学生创造构建数学模型的环境,让学生竖立建模的意识,然后通过思维沉淀思维意识,最后在不断应用中完善学生的建模意识.在高中数学教学中,教学要挖掘教材和生活中的建模素材,增强学生的建模意识,创设问题情境,激发学生的建模需求,用丰富的生活经验奠定建模的基础,从生活中提炼数学模型,从而使学生能运用数学知识解决生活中的问题,让数学成为学生生活中的必备工具.

三、形成建模意识,强化学生的应用意识

在高中数学教学中建立模型就是把数学与生活相联系的一种方法,学习数学的最终目的是应用数学,而建模意识的形成则可以帮助学生强化自身的数学应用意识.数学模型无论是在生活中或者其他学科的学习中都有着广泛的应用,可以帮助学生强化自身的学习能力.首先,培养学生的建模意识的前提是提高教师自身的数学素质.教师要不断进修,关注数学发展的前沿,能把最新的数学发展传达给学生.其次,还课堂给学生,在高中数学教学活动中,教师要相信学生,留给学生充足的发展空间,充分发挥他们的主观能动性,尊重他们的思维方式,让学生能用自己的方法构建模型,能把数学模型进行灵活的运用.最后,教师要从生活实际和学生自身情况出发,培养学生构建模型的能力,当需要学生发挥自己的能力参与构建模型的过程中时,他们能融入其中,提高构建的数学模型的有效性,巧妙应用模型解答问题,提高学生应用数学解决问题的能力.在高中数学教学中构建模型,可以使课堂更加生动活泼,提高学生参与教学的积极性,发挥学生的主观能动性,强化学生的数学应用意识,提高数学教学效率.

四、结语

数学建模在生活中的应用范文2

关键词:应用型人才;数学建模;教学平台

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2016)06-0035-03

一、对应用型人才内涵与数学建模实践活动的深入认识

应用型人才是一种能将专业知识和技能应用于所从事的专业社会实践的一种专门的人才类型,是熟练掌握社会生产或社会活动一线的基础知识和基本技能,主要从事一线生产的技术或专业人才。在知识结构上,应用型人才更强调复合性、应用性和与时俱进,具有复合性和跨学科的特点。在能力结构上,应用型人才强调发现问题和解决问题的能力,要求具备解决复杂问题的实践能力;在素质结构上,应用型人才直接服务于各行各业,更强调社会适应性和与社会的共处能力。应用型人才的特点:强调实践,突出应用;终身学习,知识复合;科学态度,敢于创新;责任意识,团队协作。

数学建模就是通过对现实问题的抽象、简化,确定变量和参数,并应用某些“规律”建立起变量、参数间的确定的数学问题;然后求解该数学问题,最后在现实问题中解释、验证所得到的解的创造过程。数学建模过程可用下图来表明:

因此,数学建模活动是一个多次循环反复验证的过程,是应用数学的语言和方法解决实际问题的过程。数学建模是一种联系数学与实际问题的桥梁,它突出了实践活动的重要特点,强调人才的培养应从侧重知识教育转向侧重应用能力培养。

二、应用型人才培养模式下数学建模活动在人才培养过程中的作用

应用型人才培养模式下,数学建模活动不仅包括学习数学知识,展示各应用领域中的数学问题和建模方法,提高学生学习数学的积极性,更重要的是培养学生应用数学知识解决实际问题的能力,创造有利于提高学生将来从事实际工作能力的环境。数学建模活动的教学内容和教学方法是以应用型人才培养为核心,内容取材于实际、方法结合于实际、结果应用于实际,对学生能力的培养体现在多个方面。

(一)培养学生分析问题与解决问题的能力

数学建模竞赛的题目一般由工程技术、经济管理、社会生活等领域中的实际问题简化而成,在数学建模活动中,要求首先强调如何分析实际问题,如何利用所掌握的知识和对问题的理解提出合理且简化的假设,如何将实际问题抽象为数学问题,即将实际问题“翻译”成数学模型。其次是如何建立适当的数学模型,如何利用恰当的方法求解数学模型,以及如何利用模型结果解决实际问题。对数学模型求解后,还要用数学模型的结果解释实际现象。这是一个双向“翻译”的过程,通过这个过程,让学生体验数学在解决实际问题中的作用,培养学生应用数学知识的意识和能力,从而提高学习数学的兴趣和应用数学解决实际问题的能力。数学建模本身就是一个创新的过程并且为培养学生创新精神和创造能力提供了环境。

(二)培养学生的创造精神和创新能力

创造精神和创新能力是指利用自己已有的知识和经验,在个性品质支持下,新颖而独特地提出问题、解决问题,并由此产生有价值的新思想、新方法、新成果。数学建模问题的解决没有标准答案、不局限于唯一方法,不同的假设就会产生不同的模型,同一类模型也会有很多不同的数学求解方法。数学建模的每一步都给学生留有较大的空间,在数学建模活动中,要鼓励学生勤于思考、大胆实践,不拘泥于用一种方法解决问题,尝试运用多种数学方法描述实际问题,鼓励学生充分发挥想象力、勇于创造新方法,不断地修改和完善模型,不断地积累经验,逐步提高学生创新能力,数学建模本身就是一个创新的过程并且为培养学生创新精神和创造能力提供了环境。数学建模是培养学生创造性思维和创新精神的良好平台。

(三)培养学生的学习探索能力

心理学家布鲁纳指出:探索是数学教学的生命线。培养学生的探索能力,应贯串数学教学的全过程。这一点在普通的数学课堂上往往做不到。但在数学建模的教学过程中,通常会有意识地创设探索情境,引导学生以自我为主,进行调查研究、查阅文献、制定方案、设计实验、构思模型、分析总结等方面独立探索能力的训练,促进学生创新精神、科研能力和实践技能的培养。

(四)培养学生的洞察力和抽象概括能力

数学建模的模型假设需要根据对实际问题的观察和分析,透过现象看本质,将错综复杂的实际问题简化,再进行高度的概括,抽象出合理、简化、可行的假设条件。数学建模促进了对学生的洞察力和抽象概括能力的培养。

(五)培养学生利用计算机解决实际问题的能力

在数学建模中,很多模型的求解都面临着复杂的数学推导及大量的数值计算,同时所建模型是否与实际问题相吻合也常常需要通过计算或模拟来检验,能熟练使用计算机计算数学问题是对学生的必要要求。数学建模将数学、计算机有机地结合起来,逐步培养学生利用数学软件和计算机解决实际问题的能力。

(六)培养学生论文写作和语言表达的能力

数学建模的考核内容一般包括基本建模方法的掌握、简单建模问题的求解和实际问题的解决,考核方式往往采取闭卷与开卷相结合、理论答卷与上机实验相结合、笔试与答辩相结合的方法。因此,数学建模答卷需要学生具有一定的描述问题的能力、组织结构的能力以及文字表达的能力。而数学建模竞赛成绩的好坏、奖项的高低,其评定的唯一依据就是数学建模论文,假设是否合理,建模方法是否有特色,重点是否突出,模型结果是否正确,论文撰写是否清晰等是对论文成绩评定的主要标准。通过数学建模确实能培养学生的论文写作能力和语言表达能力。

(七)培养学生的交流与合作能力和团队精神

数学建模中的实际问题涉及多个学科领域,所需知识较多,因此集体讨论、学生报告、教师点评是经常采用的教学方式。数学建模竞赛活动是一个集体项目,比赛要求参赛队在3天之内对所给的问题提出一个较为完整的解决方案,具有一定规模的建模问题一般都不可能由个人独立完成,这就需要三个人积极配合,协同作战,要发挥每个人的长处,互相弥补短处,是培养学生全局意识、角色意识、合作意识的过程,也是一个塑造学生良好个性的过程。在此过程中,既要发挥好学生各自特点,又要有及时妥协的能力,目的是发挥整体的最好实力。作为对学生的一种综合训练,除了三个人都要有数学建模的基础知识外,成员之间的讨论、修改、综合,既有分工,又有合作。只有充分的团队合作,才能取得成功,凡是参加过竞赛的每一个人都能深刻体会到这种团队精神的重要性,认识到这一点对学生以后的成长是非常有帮助的。

数学建模在以上九个方面培养了学生的能力,促进了学生应用能力的养成。有目的、有计划、有针对性地开展数学建模教学将会使其对应用型人才的培养更具实效性。

三、应用型人才培养模式下数学建模三级教学平台的构建与实施

(一)将数学建模思想方法融入工科数学基础课,实现数学建模教学常态化

我们在开设《数学建模》选修课及必修课的基础上,积极探索将数学建模的思想方法融入到工科数学基础课教学之中,并进行了有益的教学实践。在相关课程的教学中,适当引入一些简单的实际问题,应用有关方法,通过建立具体的数学模型,利用模型结果解决实际问题。以向学生展示某些典型的数学方法在解决实际问题中的应用及应用过程,既巩固了相关知识又提高了处理问题的能力,比单纯的求解应用问题更有效。

1.在《高等数学》课程中,讲授函数的连续性时,引入方桌平稳问题,把实际问题转化为连续函数的零值点的存在问题;曲面积分时引入“通讯卫星的覆盖面积问题”,建立在距地面一定高度运行的卫星覆盖地球表面面积的曲面积分公式,并通过计算面积值确定为了覆盖地球表面所需卫星的最少数目;讲授微分方程时引入“交通管理中的黄灯时间问题”,通过简单分析黄灯的作用、驾驶员的反应等,建立汽车在交通路口行驶的二阶微分方程,通过求解方程计算给出应该亮黄灯的时间;在讲授无穷级数时,引入银行存款问题。

2.在《线性代数》课程中,讲授矩阵有关知识时引入“植物基因分布问题”,在简单地了解基因遗传的逐代传播过程基础上,引入基因分布状态向量,建立状态转移模型,通过矩阵运算求出状态解,进而分析基因分布变化趋势,确定植物变化特征。

3.在《概率论与数理统计》课程中,讲授随机变量时引入“报童的策略问题”,设定随机变量(购进报纸份数)、建立报童收益函数的数学期望、求数学期望的最大值,给出报童购进报纸的最佳份数。引导学生从实际问题中认识随机变量,并将其概念化,进而解决一定的问题。另外,还是学生认识了连续型和离散型随机变量在描述和处理上的不同。

总之,通过一些简单的数学建模案例介绍,让学生了解相关知识的实际应用,解决学生不知道所学数学知识到底有什么用,以及该怎么去用的问题;另一方面,使学生初步了解运用数学知识解决实际问题的简单过程和方法,并鼓励学生积极地去学数学、用数学。通过将数学建模思想融于低年级数学主干课教学中,培养学生的建模兴趣。激发学生科学研究的好奇心、参与探索的兴趣,培养学生学数学、用数学的意识。

(二)广泛开展学生数学建模课外科技活动,实现数学建模实践经常化

在数学建模课程教学和数学建模竞赛培训的基础上,以数学建模实验室为平台开展经常性的学生数学建模课外科技活动,包括教师讲座和问题研究。在每年三月初至五月初,开设《数学建模》课程,进行数学建模方法普及性教育;在五月下旬至六月末,开设数学建模讲座,内容主要包括一些专门建模方法讲解、有关案例介绍和常用数学软件介绍;在七月下旬至八月上旬,进行建模竞赛培训,准备参加全国竞赛。

全国竞赛之后,组织学生开展数学建模问题研究。问题来源于现有建模问题和自拟建模问题,其中自拟题目来自学生的日常生活、专业学习以及现实问题和教师研究课题等,针对自拟问题,建模组教师进行集体讨论,形成具体的建模问题;然后,教师指导学生完成问题研究,并尝试给出实际问题的解决方案。把这一活动与大学生科技立项研究项目结合起来。数学建模课外科技活动期间,实验室对学生开放、建模问题对学生开放、指导教师对学生开放。

从建模课程、建模讲座、竞赛培训、参加竞赛,到建模研究、学生科技立项等,数学建模活动从每年三月初开始至下一年的二月止,形成了以一年为一个周期的经常性的课外科技活动,实现了数学建模实践的经常化。很多学生从大一下学期开始连续一年半或两年参与建模活动,在思维方法、知识积累和建模能力等方面获得了极大的提高,为其后期的专业学习与实践打下了良好的基础。

(三)将数学建模思想方法引入专业教学与实践,实现数学建模应用专业化

无论是数学建模课程教学、数学建模讲座、建模竞赛培训,还是数学建模研究,所有过程大多定位于数学建模思想的传授、数学建模方法的应用,所针对的问题多数来自于社会生活、经济管理、工程管理等领域,专业背景不强。如何培养学生应用数学建模解决专业应用领域中的实际问题,这是数学建模应用的深层次研究问题,也是理工科专业学生创新型能力培养的重要内容,需要结合专业教学与实践得以实现。

首先,需要理工科专业教师的积极参与。数学建模教师主要承担数学建模和数学实验的课程教学、数学建模竞赛的培训与指导,教师队伍的构成基本上都是单一的数学专业教师,很少有其他专业的教师参与进来。教师队伍在知识的结构、实践动手能力上都有相当大的局限性,教师很难做到既了解实际问题、懂得专业知识,又熟悉有关算法与程序。因此,数学建模教师队伍需要在专业结构上多元化发展,吸引理工科专业的教师对数学建模的兴趣,引导其他专业教师的积极参与。

其次,要实现数学建模融入学生培养的各个环节和各个阶段,就必须在专业课教学、课程设计及毕业设计指导等阶段注重数学建模思想与方法的运用,注重对学生建模能力的培养。因此,通过一定的途径,比如,交叉学科教师间的交流活动、针对一些具体问题的教师共同探讨、建模教师帮助专业教师解决一些科研问题等,在专业教师中传播数学建模的思想与方法,使其了解数学建模的作用,并掌握一些数学建模知识。通过专业教师指导进入专业课学习、课程设计及毕业设计阶段的学生,去解决一些具有一定专业背景的实际问题,将数学建模的思想方法融入到工科专业领域,以实现数学建模应用的专业化。在问题解决的过程中,学生在专业领域的数学建模应用能力得以提高,专业教师对数学建模有了更深入的认识和了解,数学建模教师对专业理论知识也有了较多的理解,促进了数学建模向专业领域的应用拓展,并能逐步实现数学建模教学对创新型人才培养从通识性教育向专业性教育转换的目标调整。与专业老师相配合,实现在多学科教师共同研究指导下培养学生在专业领域中的数学建模能力的目的,也可逐步改善数学建模教师队伍的知识结构,为数学建模在专业领域中的深入应用探索思路。

四、结论与展望

数学建模在大学生创新能力培养中的重要作用已得到广泛共识,如何使这种作用得到充分发挥还需要深入探讨,本文从数学建模教学常态化、实践经常化和应用专业化的角度出发,我们探讨了数学建模教学的三级模式,更多的细节工作还有待于进一步探讨。

参考文献:

[1]姜启源,谢金星,叶俊.数学模型[M].北京:高等教育出版社,2013.

[2]钱国英,本科应用型人才的特点及其培养体系的构建[J].中国大学教学,2005,(9):54-56.

数学建模在生活中的应用范文3

关键词:小学数学;模型思想;渗透探究

模型思想在小学数学教学中科学、灵活的渗透,不仅有利于引导学生深刻理解、掌握数学问题内涵,并将其准确、灵活地运用到解决实际问题中,也能够进一步提升解题效率,所以,该思想的产生与渗透,也获得了越来越多数学教育工作者的关注。

一、数学模型思想内涵

数学模型思想主要是指将日常生活中的一些问题,合理地转化为相应的数学理论,并采用已学知识寻找实际量和数学理论量之间的关系,然后再运用相关数学概念、定理和性质等数学知识,建立相应的模型,之后再利用数学模型来妥善解决各种实际问题。

新课程改革强调在指导学生学习、探究相关数学基础知识的同时,还应适当强化对学生实践性应用能力的指导,促进学生在实践学习、探究中逐渐形成良好的数学思维。而将模型思想科学、灵活地渗透到小学数学教学中,不仅能够通过指导学生建立、完善数学模型来促进其数学感知、空间思维以及实际应用能力的不断提升,也在不断优化学生数学知识结构的基础上,帮助学生建立起一个完善的数学知识结构体系,也为其未来的学习、发展奠定良好基础,从整体上提高小学生的数学综合素养。

二、小学数学教学中模型思想的渗透

1.构建生活情景,增强学生建模兴趣

数序知识来源于生活,而很多实际生活问题也需要采用数学知识来解决,所以,每一个数学模型都拥有与之相适应的“生活模型”,为了进一步加强学生对数学知识的理解与掌握,全面激发小学生的建模兴趣,就必须要注重数学知识与实际生活的有机整合。在实际教学中,教师可以结合具体教学内容,构建恰当的生活情景,通过对相关情景的模拟,引导学生科学运用数学建模的来解决相关问题。比如:在讲解“统计”的相关内容时,教师就可以结合学生已有生活经验和认知水平,为其创建一个生活中小学生去商店购买商品的情景。如,“小红买了1瓶果汁、2袋糖果和1个面包,请同学们计算出小红一共买了几份食品?”等问题情景,引导学生逐步喜欢采用数学模型思想来思考、解决相关问题,并促进其形成相应的“统计”模型结构,进一步提升课堂教学效率,活跃教学氛围。

2.加强课堂指导,培养学生建模习惯

在课堂教学中,广大小学数学教师应不断加强对学生的课堂学习引导,让学生在不断的学习过程中,逐渐形成良好的建模习惯,以及数学模型思维结构,从而引导其更快、更好地掌握数学知识,并将其准确、灵活地运用到解决实际问题当中。比如:在讲解“平行和相交”的相关内容时,教师就可以通过引导学生思考“为什么两条直线永远都不会相交”等问题,促进学生积极主动地投入到自主探究当中,并通过设计、组织比较判断、画图操作等思维活动,引导学生将所学知识科学地运用到问题解答过程中,进而实现从思考到构建完整模型的过程,促进学生建模能力的不断提升。

3.重视实践拓展,发展学生建模能力

在对小学生数学学习、探究活动进行科学指导和过程中,教师应充分重视对学生实践操作能力的培养与锻炼,组织学生积极参与和所学数学知识相关的课外活动,进一步拓展学生的学习视野,为其提供更多发现、建立数学模型的机会。在实践教学中,面对各种数学问题,教师应善于引导学生利用数学模型思想去分析、解决,进而在不断优化、提升学生思考与建模能力的基础上,促进其逐渐形成良好的独立思考、分析和解决问题的能力。比如,若具备相应条件,教师可以带领学生去超市参观学习,在遇到价格计算、统计等问题时,教师应鼓励学生积极采用模型思想来妥善解决其问题,并在分析、解决实际生活问题过程中,进一步优化自身的理论知识结构,将所学知识科学、灵活地应用到解决实际问题中,而非被动、机械地掌握相关知识,也为小学生未来的数学学习奠定良好基础。

综上所述,小学数学教师应正确认识到加强模型思想的渗透,对增强课堂教学效果,培养、发展学生数学思维和综合学习能力的重要性。因此,在日常教学中,教师应对教学内容进行深入钻研,准确把握模型思想的渗透契机,从而为学生构建出更加生动、愉快的学习氛围。

参考文献:

[1]徐友新.合理定位有效渗透:小学数学教学中渗透模型思想的思考[J].河北教育(教学版),2013(10):15-17.

数学建模在生活中的应用范文4

【关键词】高校数学建模教学方法

随着经济社会的发展和进步,数学已成为支撑高新技术快速发展和广泛应用的基础学科。由于社会各生产部门均需借助于数学建模思想和方法,用以解决实际问题。因此,高校在数学建模教学过程中,必须注重将实际问题和建模思路加以有效结合,完善数学建模教学思路,创新教学方法,以培养学生的综合能力,为社会源源不断地输送优秀实践性人才。

1、数学建模的内容及意义

数学建模,指的是针对特定系统或实践问题,出于某一特定目标,对特定系统及问题加以简化和假设,借助于有效的数学工具,构建适当的数学结构,用以对待定实践状态加以合理解释,或可以为处理对象提供最优控制决策。简而言之,数学建模,是采用数学思想与方法,构建数学模型,用以解决实践问题的过程。数学建模,旨在锻炼学生的能力,数学建模就是一个实验,实验目标是为了使学生在分析和解决问题的过程中,逐步掌握数学知识,能够灵活运用数学建模思想和方法,对实际问题加以解决,并能够将其用于日后工作及实际生活中。数学建模特点如下:抽象性、概括性强,需善于抓住问题实质;应用广泛性,在各行各业均有广泛应用;综合性,要求应具备与实际问题有关的各学科知识背景。数学建模不仅需要培养学生扎实的数学基础,还要求培养学生对数学建模的兴趣,积淀各领域学科知识,培养学生的综合能力,包括发现问题、解决问题的能力,计算机应用及数据处理能力,良好的文字表达能力,优秀的团队合作能力,信息收集与处理能力,自主学习能力等。由此可见,数学建模对于优化学生学科知识结构,培养学生的综合能力具有重要的促进作用。

2、完善高校数学建模教学方法的必要性

作为多学科研究工作常用基本方法,数学建模是实际生产生活中数学思想与方法的重要应用形式之一。上文已经提到,数学建模过程中,多数问题并没有统一答案和固定解决方法,必须充分调动学生的创造能力及分析解决问题能力,构建数学模型来解决问题,这要求高校数学建模教学过程中,必须注重培养学生的创新意识与能力。但是,当前我国多数高校数学建模教学过程中所采用的教学手段落后,教学改革意识薄弱,教学方法单一,缺少多样性。数学建模教学中,教师多对理论方法加以介绍,而且重点放在讲解与点评方面,学生独立完成建模报告的情况较少,如此落后的教学方法,导致高校数学建模教学实效性差,难以充分发掘和培养学生的创新意识和创造能力。为此,有必要加快创新和完善高校数学建模教学方法,积极探索综合创新型人才培养模式。

3、创新高校数学建模教学方法的策略

3.1科学选题

数学建模教学效果好坏,很大程度上依赖于选题的科学与否,当前,可供选择的教材有许多,选择过程中教师必须考虑到教学计划、学生水平及教材难易程度。具体而言,在高校数学建模教学选题时,必须遵循如下原则:1)价值性原则。即所选题目应具有足够的研究价值,能够对实际生活中的现象或问题进行解释,包括开放性、探索性问题等;2)问题为中心的原则。是指建模教学中应注重培养学生发现问题、分析问题、构建模型解决问题的能力,在选择题目时,必须坚持这一原则,将问题作为中心,组织大家开展探究性活动;3)可行性原则。要求所选题目必须源自于生活实际,满足学生现有认知水平及研究能力,经学生努力能够加以解决,可以充分调动学生的研究积极性;4)趣味性原则。所选题目应为学生感兴趣的热点问题,能够调动学生的建模兴趣,同时切忌涉及过多不合实际的复杂课题,考虑到学生的认知水平,确保学生研究过程能够保持足够的积极性。

3.2多层面联合

在数学建模教学过程中,应注重建模方法的各个层面,做到多层面联合。一方面,应着重突出建模步骤。对不同步骤的特点、意义及作用,以及不同步骤之间的协作机制及所需注意的问题进行阐述,并从建模方法层面上,对情境加以创设、对问题进行理解、做出相应的假设、构建数学模型、对模型加以求解、解释和评价。在各步骤教学过程中,必须围绕着同一个建模问题展开,着重对问题的背景进行分析、对已知条件进行考察,对模型构建过程加以引导和讨论,力图对不同步骤思维方法加以展现,使学生能够正确地理解各步骤及相互间的作用方式,便于学生整体把握建模方法与思路,以更好地解决实际问题,为学生构建模型提供依据和指导。另一方面,必须注重广普性建模方法的应用,包括平衡原理方法,类比法,关系、图形、数据及理论等分析方法。同时,善于利用数学分支建模法,包括极限、微积分、微分方程、概率、统计、线性规划、图论、层次分析、模糊数学、合作对策等建模方法。在针对各层面建模方法进行教学的过程中,应将各层面分化为具体的建模方法,选择对应的实际问题加以训练,实现融会贯通,必要时可构建“方法图”,从整体层面研究各建模方法、步骤及其同其他学科方法间存在的多重联系,从而逐步形成立体化的数学建模方法结构体系。

3.3整合模式

所谓的“整合”,即关注系统整体的协调性,充分发挥整体优势。数学建模整合模式指的是加强大学各年级的知识整合,对其相互间的连续性与衔接性加以探索,以便提高数学建模教学实效性。在模式整合过程中,必须重点关注核心课程、活动及潜在课程的整合,其中,核心课程包括微积分、数学模型、数学实验等课程;潜在课程主要指的是单科或多科选修课;建模活动,指的是诸如大学生建模竞赛、CUMCM集训、数学应用竞赛、社会实践活动等。与之所对应的建模教学结构,包括如下模块:应用数学初步、建模基础知识、建模基本方法、建模特殊方法、建模软件、特殊建模软件、经济管理等学科数学模型、机电工程数学模型、生物化学数学模型、金融数学模型、物理数学模型及综合类数学模型等。本文提出“三阶段”数学建模教学模式:第一阶段,针对的是大一到大二年级的学生,该阶段旨在培养其应用意识,使其掌握简单的应用能力。教学结构包括应用数学初步、建模入门、软件入门、高数、线性代数案例及小实验。第二阶段,面向的是大二到大三年级的学生,该阶段用以培养学生的建模及应用能力。教学结构主要包括建模基础知识、建模基本方法、建模软件,以及经济管理学科数学模型,或机电工程数学模型、生物化学数学模型、金融数学模型、物理数学模型。通过开设建模课程、群组选修建模课程、讲座、CUMCM活动等教学模式开展;第三阶段,面向的是大三到大四年级的学生,用以培养学生综合研究意识及应用能力。教学结构包括建模特殊方法、特殊建模软件、综合类数学模型等模块。通过CUMCM集训、毕业论文设计及相关校园文化活动与社会实践活动开展。

3.4分层进行

数学建模教学应分层进行,根据学生掌握、运用及深化情况,分别以模仿、转换、构建为主线来进行。

3.4.1模仿阶段。

在建模教学中,培养学生的建模模仿能力必不可少。在这一阶段的教学过程中,应着重要求学生对别人已构建模型及建模思路进行研究,研究别人所构建模型属于被动性的活动,和自我探索构建模型完全不同,因此,在研究过程中,应侧重于对模型如何引入和运用加以分析,如何利用现有方法从已知模型中将答案导出。在建模教学过程中,这一阶段的训练很重要。

3.4.2转换阶段。

指的是将原模型准确提炼、转换到另一个领域,或将具体模型转换为综合性的抽象模型。对于各种各样的数学问题而言,其实质就是多种数学模型的组合、更新与转换。因此,在教学过程中,应注重培养学生的模型转换能力。

3.4.3构建阶段。

在对实际问题进行处理时,基于某种需求,需要将问题中的条件及关系采用数学模型形式进行构建,或将相互关系通过某一模型加以实现,或将已知条件进行适当简化、取舍,经组合构建为新的模型等,再通过所学知识及方法加以解决。模型构建过程属于高级思维活动,并没有统一固定的模式和方法,需要充分调动学生的逻辑、非逻辑思维,还要采用机理、测试等分析方法,经分析、综合、抽象、概括、比较、类比、系统、具体,想象、猜测等过程,锻炼学生的数学建模能力。因此,在教学中除了需要加增强学生逻辑及非逻辑思维能力的培养以外,还应注重全面及广泛性,尽量掌握更多的科学及工程技术知识,在处理实际问题时,能够灵活辨识系统、准确分析机理,构建模型加以解决。

4、结束语

总而言之,数学建模是联系数学与生产生活实践的重要枢纽。在高校数学建模教学中,必须注重确立学生的教学主体地位,关注学生需求及兴趣,积极完善教学方法,深入挖掘学生的创造潜能。为了切实提高学生分析和解决问题的能力,必须引导学生大胆探索和研究,鼓励大家充分讨论和沟通,使其知识火花不断碰撞,求知欲望逐步提高,创新能力进一步增强。

参考文献:

[1]杨启帆,谈之奕.通过数学建模教学培养创新人才———浙江大学数学建模方法与实践教学取得明显人才培养效益[J].中国高教研究,2011,12(11):84-85+93.

[2]王宏艳,杨玉敏.数学教育在经济领域人才培养中的作用———经济类高校数学课程教学改革的思考与探索[J].河北软件职业技术学院学报,2012,02:38-40.

[3]胡桂武,邱德华.财经类院校数学建模教学创新与实践[J]衡阳师范学院学报,2010,6(6):116-119.

数学建模在生活中的应用范文5

一、精拟建模问题

问题是数学建模教与学的基本载体,所选拟问题的优劣在很大程度上影响数学建模教学目标能否实现,并影响学生对数学建模学习的态度、兴趣和信念。因此,精心选拟数学建模问题是数学建模教学的基本策略。鉴于高中学生的心理特点和认知规律,结合建模课程的目标和要求,选拟的建模问题应贴近学生经验、源自有趣题材、力求难易适度。

1.贴近学生经验

所选拟的问题应当是源于学生周围环境、贴近学生生活经验的现实问题。此类问题的现实情境为学生所熟悉,易于为学生所理解,并易于激发学生兴奋点。因而,有助于消除学生对数学建模的神秘感与疏离感,增进对数学建模的亲近感;有助于激发学生的探索热情,感悟数学建模的价值与魅力。

2.源自有趣题材

所选拟的问题应当源自富有趣味的题材。此类问题易于激起学生的好奇心,有助于维护和增强学生对数学建模课程的学习兴趣与探索动机。为此,教师应关注学生感兴趣的热点话题,并从独到的视角挖掘和提炼其中所蕴含的数学建模问题,选取学生习以为常而又未曾深思但结论却又出乎意料的问题。

3.力求难易适度

所选拟的问题应力求难易适度,应能使学生运用其已具备的知识与方法即可解决。如此,有助于消除学生对数学建模的畏惧心理,平抑学生源于数学建模的学习压力,增强学生对数学建模的学习信心,优化学生对数学建模的学习态度,维护学生对数学建模的学习兴趣。为此,教师在选拟问题时,应考虑多数学生的知识基础、生活背景及理解水平。所选拟的问题要尽量避免出现不为学生所熟悉的专业术语,避免问题过度专业化,要为学生理解问题提供必要的背景材料、信息与知识。

二、聚焦建模方法

数学建模方法是指运用数学工具建立数学模型进而解决现实问题的方法,它是数学建模教与学的核心,具有重要的教学功能。掌握一定的数学建模方法是实现数学建模课程目标的有效途径。为此,数学建模教学应聚焦于数学建模方法。

1.注重建模步骤

数学建模方法包含诸如问题表征、简化假设、模型构建、模型求解、模型检验、模型修正、模型解释、模型应用等多个步骤。数学建模教学中,教师应通过数学建模案例,注重对各步骤的基本内涵、实施技巧及各步骤之间的内在联系和协同方式进行阐释和分析,这是使学生从整体上把握建模方法的必要手段。有助于学生掌握数学建模的基本过程,有助于为学生模仿建模提供操作性依据,进而为学生独立建模提供原则性指导。

2.突出普适方法

不同的数学建模方法,其作用大小和应用范围也不同,譬如,关系分析方法、平衡原理方法、数据分析方法、图形(表)分析方法以及类比分析方法等均为具有统摄性和普适性的建模方法。教师应侧重对这些普适性的建模方法进行教学,使学生重点理解、掌握和应用。此外,分属于几何、代数、三角、微积分、概率与统计、线性规划等数学分支领域的建模方法等,尽管其普适性程度稍逊,但其对解决具有领域特征的现实问题却具重要应用价值,因而,教师也应结合相应数学领域内容的教学,使学生通过把握其领域特性及其所运用的问题情境特征而熟练掌握并灵活应用。

3.加强方法关联

许多现实问题的解决往往需要综合运用多种数学建模方法,因此,在数学建模教学中,应加强数学建模方法之间的关联,注重多种建模方法的综合运用。为此,应在加强各建模步骤之间联系与协调运用基础上,综合贯通处于不同层次、分属不同领域的数学建模方法,在建模各步骤之间、具体的建模方法之间、不同领域的数学建模方法之间进行多维联结,建立数学建模方法网络图,以使学生掌握数学建模方法体系,形成综合运用数学建模方法解决现实问题的能力。

三、强化建模策略

数学建模策略是指在数学建模过程中理解问题、选择方法、采取步骤的指导方针,是选择、组合、改变或操作与当前数学建模问题解决有关的事实、概念和原理的规则。数学建模策略对数学建模的过程、结果与效率均具有重要作用。学生掌握有效的数学建模策略,既是数学建模课程的重要教学目标,也是学生形成数学建模能力的重要步骤。因此,应强化数学建模策略的教与学。

1.基于建模案例

策略通常具有抽象性、概括性等特点,往往需要借助实例运用获得具体经验,才能被真正领悟与有效掌握。因此,数学建模策略的教学应基于对建模案例的示范与解析,使学生在现实问题情境中感受所要习得的建模策略的具体运用。为此,一方面,针对某特定建模策略的案例应尽可能涵盖丰富的现实问题,并在相应的案例中揭示该建模策略的不同方面,以为该建模策略提供多样化的情境与经验支持;另一方面,应对某特定建模案例中所涉及的多种建模策略的运用进行多角度的审视与解析,以厘清各种建模策略之间的内在联系。基于案例把握建模策略,将抽象的建模策略与鲜活的现实问题密切联系,有助于积累建模策略的背景性经验,有助于丰富建模策略的应用模式,有助于促进建模策略的条件化与经验化,进而实现建模策略的灵活应用与广泛迁移。

2.寓于建模方法

建模策略从层次上高于建模方法,是建模方法应用的指导性方针,它通过建模方法影响建模的过程、结果与效率。离开建模方法而获得的建模策略势必停留于表面与形式,难以对数学建模发挥作用。因此,应寓于建模方法获得建模策略。为此,应通过数学建模案例,解析与阐释所用策略与方法之间的内在联系与协同规律,使学生掌握如何运用建模方法,知晓何以运用建模方法,从而获得具有“实用”价值的数学建模策略。

3.联结思维策略

思维策略是指问题解决思维活动过程中具有普适性作用的策略。譬如,解题时,先准确理解题意,而非匆忙解答;从整体上把握题意,理清复杂关系,挖掘蕴涵的深层关系,把握问题的深层结构;在理解问题整体意义基础上判断解题的思路方向;充分利用已知条件信息;注意运用双向推理;克服思维定势,进行扩散性思维;解题后总结解题思路,举一反三等,均为问题解决中的思维策略。思维策略是数学建模不可或缺的认知工具,对数学建模具有重要指导作用。思维策略从层次上高于建模策略,它通过建模策略对建模活动产生影响。离开思维策略的指导,建模策略的作用将受到很大制约。因此,在建模策略教学中,应结合建模案例,将所用建模策略与所用思维策略相联结,以使学生充分感悟思维策略对建模策略运用的指引作用,增强建模策略运用的弹性。

四、注重图式教学

数学建模图式是指由与数学建模有关的原理、概念、关系、规则和操作程序构成的知识综合体。具有如下基本内涵:是与数学建模有关的知识组块;是已有数学建模成功案例的概括和抽象;可被当前数学建模问题情境的某些线索激活。数学建模图式在建模中具有重要作用,影响数学建模的模式识别与表征、策略搜索与选择、迁移评估与预测。因此,应注重数学建模图式的教与学,为此,数学建模教学应实施样例学习、开展变式练习、强化开放训练。

1.实施样例学习

样例学习是向学生书面呈现一批解答完好的例题(样例),学生解决问题遇到障碍或出现错误时,可以自学这些样例,再尝试去解决问题。样例学习要求从具有详细解答步骤的样例中归纳出隐含其中的抽象知识与方法来解决当前问题。在数学建模教学中实施样例学习,学习和研究别人的已建模型及建模过程中的思维模式,有助于使学生更多地关注数学建模问题的深层结构特征,更好地关注在何种情况下使用和如何使用原理、规则与算法等,从而有助于其建模图式的形成。在实施样例学习时,应注重透过建模问题的表面特征提炼和归纳其所蕴含的关系、原理、规则和类别等深层结构。

2.开展变式练习

通过样例学习而形成的建模图式往往并不稳固,且难以灵活迁移至新的情境。为此,应在样例学习基础上开展变式练习,通过多种变式情境的分析和比较,排除具体问题情境中非本质性的细节,逐步从表层向深层概括规则和建构模式,不断地将初步形成的建模图式和提炼过的规则和模式内化,以形成清晰而稳固的建模图式。开展变式练习时,应注重洞察构成现实情境问题的“数学结构框架”,从“变化”的外在特征中鉴别和抽象出“不变”的内在结构。

3.强化开放训练

数学建模具有结构不良问题解决的特性。譬如,条件和目标不明确;“简化”假设时需要高度灵活的技巧;模型构建需要基于对问题的深邃洞察与合理判断并灵活运用建模方法;所建模型及其形式表达缺乏统一标准,需要检验、修正并不断推广以适应更复杂的情境;有并非唯一正确的多种结果和答案等等。鉴于此,数学建模教学中应强化开放训练,以促进学生形成概括性强、迁移范围广、丰富多样的建模图式。为此,应通过改变问题的情境、条件、要求及方法来拓展问题。即对简化假设、建模思路、建模结果、模型应用等建模环节进行多种可能性分析;将问题原型恰当地转变到某一特定模型;将一个领域内的模型灵活地转移到另一领域;将一个具体、形象的模型创造性地转换成综合、抽象的模型。在上述操作基础上,对建模问题进行抽象、概括和归类,从一种问题情境进行辐射,并以此网罗建模的不同操作模式,从而使学生形成关于建模图式的体系化认知,进而提升建模图式的灵活性和可迁移性。

五、活化教学方式

鉴于数学建模具有综合性、实践性和活动性特征,因而其教学应体现以学生为认知主体,以运用数学知识与方法解决现实问题为运行主线,以培养学生数学建模能力为核心目标。为此,应灵活采取激励独立探究、引导对比反思、寻求优化选择等密切协同的教学方式。

1.激励独立探究

数学建模教学中,教师应首先激发学生独立思考、自主探索,力求学生找到各自富有个性的建模思路与方案。诚然,教师和教材的思路与方案可能更为简约而成熟,然而,学生是学习的主体,其获得的思路与方案更贴近学生自身的认知水平。因此,教师应给予学生独立思考的机会,激励学生个体自主探索,尊重学生的个性化思考,允许不同的学生从不同的角度认识问题,以不同的方式表征问题,用不同的方法探索问题,并尽力找到自己的建模思路与方案,以培养学生独立思考的习惯和探究能力。

2.引导对比分析

在激励学生探寻个性化的建模思路与方案基础上,教师应及时引导学生对比分析,归纳出多样化的建模思路与方案。为此,应将提出不同建模方案的学生组成“异质”的讨论小组,聆听其他同学的分析与解释,对比分析探索过程、评价探索结果、分享探索成果,以使学生认识从不同角度与层次获得的多样化方案。引导学生对比分析,既展现了学生自主探索的成果,又发挥了教师组织引导的职能,还使学生获得了多元化的数学建模思维方式。

3.寻求优化选择

在获得多样化的建模方案基础上,教师应继续引导全班学生对多样化的建模方案进行观察与辨析,使学生在思维的交流与碰撞中,感受与认知其它方案的优点和局限,反思与改进自己的方案,相互纠正、补充与完善,寻求方案的优化选择。引导学生寻求优化选择,不仅仅是求得最优化的结果,还是发展学生数学思维、培养学生创新意识的有效方式。在此过程中,教师应与学生有效互动,深度交流,汲取不同方案的可取之点与合理之处,以做出优化选择。

上述数学建模教学策略之间存在密切联系。精拟建模问题是有效实施数学建模教学的载体;聚焦建模方法是有效实施数学建模教学的核心;强化建模策略是有效实施数学建模教学的灵魂;注重图式教学是有效实施数学建模教学的依据;活化教学方式是有效实施数学建模教学的保障。在数学建模教学中,诸策略应有机结合,协同运用,以求取得最佳效果。

参考文献

[1] Werner Blum Peter L.Galbraith Hans-Wolfgang Henn.Mogens Niss.Modeling and Applications in Mathema-tics Education.New ICMI Study Series VOL.10.Published under the auspices of the International Com-mission on Mathematical Instruction under the general editorship of Michele Artigue,President Bernard,R.Hodgson,Secretary General. 2006.

[2] 中华人民共和国教育部.普通高中数学课程标准.北京师范大学出版社,2003.

[3] 李明振,喻平.高中数学建模课程实施的背景、问题与策略.数学通报,2008,47(11).

[4] 李明振.数学建模认知研究.南京:江苏教育出版社,2013.

[5] Mingzhen Li,Qinhua Fang,Zhong Cai, Xinbing Wang.A Study ofInfluential Factors in MathematicalMod-eling of Academic Achievement of High School Students.Journal of Mathematics Education.Vol4 No.1.June,2011.

[6] Mingzhen,,Hu Yuting,Li,Yu Ping,Zhong Cai.A Comparative Study on High School Students’ Mathematical Modeling Cognitive Features.Research in Mathematical Education. June,2012.

数学建模在生活中的应用范文6

【关键词】 课堂教学;构建;改革;建模思想;创新思维

一个学生是否具有数学的创造能力的一个重要标志是他是否的建立度应用数学模型的能力。因此在数学教学中应充分重视培养这种能力,鼓励他们独立思考、勇于探索,发现前人尚未发现问题的新结论、新方法。

1 中学数学建模的教学设计与创新思维的培养

根据教学实践,数学建模教学应把培养应用数学的意识落实在平时的教学过程中,即以教材为载体,以改革教学方法为突破口,通过数学内容的科学加工、处理和再创造让学生达到在数学教学中做数学,在做数学中用数学,使学生学习到数学的思想和方法。

1.1 结合教材基本的数学模型,引入建模思想,培养学生的创新意识。在高中数学教材是主要有不等式模型、二次函数模型、指数函数模型和数列模型等,在立体几何中有正方体或长方体模型。在平时的教学中可引入这类题目和解法,不断地引导学生用数学思维的观点去观察、分析和表示各种事物关系和数学信息,引导学生应用数学模型去解决问题,从而激发学生研究数学模型的兴趣。

1.2 从现实生活中的数学问题出发,巩固建模思想,培养学生的创新思维。严士健先生指出:“教材应该结合日常生活及其他领域中的问题,举出更好例子,更好的习题,以使学生体验数学与生活的联系,训练学生应用数学分析问题和解决问题的能力。更重要的是要让学生具有应用数学的意识,真正认为数学有用,知道哪些生活、学习或生产问题可以用数学来解决。”只要教师留意生活,精心设计,课本中的数学问题在都可挖掘出生活模型,通过选择紧贴社会实际的典型问题深入分析,逐渐渗透这方面的训练,使学生养成自觉地把数学作为工具来用的意识。这过程中,既培养了学生应用意识和数学建模应用能力的目的,又使学生体验到一个充满生命活力的教学,容易引发学生的学习兴趣。

1.3 以社会热点问题为专题,介绍建模方法,诱发学生思维的积极性。现实世界的经济活动中,诸如成本、利润、储蓄、保险等与年份有关的实际问题以及资源利用、环境保护等社会热点问题,是中学建模问题的好素材,适当的选取,融入教学活动中,使学生掌握相关类型的建模方法,不仅可以使学生树立正确的商品经济观念,而且还为日后能主动以数学的意识、方法、手段处理问题提供了能力上的准备。

1.4 其它学科中选择应用题入手,培养学生应用数学的创新技能。数学无处不在,数学和工程技术之间,在更广阔的范围内和更深刻的程度上,直接地相互作用着,极大地推动了科学和技术的发展。20世纪下半叶以来,数学最大的变化和发展是应用,数学几乎渗透到了所有学科领域。因此在中学数学教学中,应注重适时选取其它学科的应用题,通过构建模型,利用数学工具,解决了其它学科的难题。

1.5 分析数学应用于跨学科的综合应用题,培养学生的综合能力和创新能力,提高学生的综合素质。任何一门学科的能力,都应在学生的思维活动中获得发展,离开思维活动,便列学科能力可言。数学是人类思维的体现,在其他学科中运用数学建模,将使其更具活力,使学生的综合素质与创新能力得到良好的培养。3+X高考新模式中,综合能力测试题知识交叉、渗透较广,但命题时往往以某一科为背景、交叉渗透其它学科的知识。具有多样性、复杂性、综合性。利用建模的思想方法,在解题过程中,根据客观条件的发展和变化,往往可机智灵活地寻找到解决问题的新方法和新途径。

2 中学数学课建功立业模教学的思考

2.1 应该重视数学建模的各个环节。在数学课建功立业模教学过程中既要重视对“数学建模”过程中问题提出的基本背景进行分析,又要重视“数学建模”中数学基础和基本技能的灵活转化和应用还要重视接受实践的检验实践中不断拓广和发展,只的通过这样的“数学建模”的教学,才能让学生真正掌握数学的内涵,促进学生全面素质的提高。

2.2 考虑课内教学课外活动的结合。尽管的问题学生用相应的知识在课堂能够得到解决,但是,除实习作业外,针对测量意义的习题,我们还可安排适当的数学自然考察活动,即把学生带到大自然中去,让学生运用所学的知识观察、分析、测量、讨论、建模、解决实际问题,使学生能够透过纷繁复杂的现象抽象、概括其本质,尝试将具体问题转化数学模型。在数学建模教学中,把课内教学与课外活动结合起来是一条值勤得探索的途径,它将形成一个新的教学模式。

2.3 数学建模是教学成功的关键。在数学教学中渗透数学建模思想与培养学生的创造性思维是相辅相成,密不可分的,要真正培养学生的创新能力,不能只靠传统知识,关键是要在这个过程中引导学生深层次的参与,充分体现学生的主体地位,不能脱离学生搞一些不切实际的建模教学,要与培养学生的创新思维为出发点,充分发挥学生的主观能动性,只有这样才能真正提高学生的创新能力,使学生学到有用的数学。

另外,教师自身的素质也是一个关键的因素,这就要求教师更新教育观念不断积累和更新专业知识,其中包括较宽广的人文素养和计算机语言等科学素养,以提高自身素质。

参考文献

[1] 数学家座谈会纪要 现代数学及其对中小学数学课程的影响数学通报 1999年11期

[2] 中国教育学会中学数学教学专业委员会 面向21世纪的数学教学 浙江教育出版社 1997年5月