前言:中文期刊网精心挑选了数学建模常用算法范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
数学建模常用算法范文1
中图分类号:G642.3 文献标志码:A 文章编号:1674-9324(2012)08-0106-03
运筹学应用分析、试验、量化的方法,对经济管理系统中人、财、物等资源进行统筹安排,为决策者提供有依据的最优方案,以实现最有效的管理。该课程主要培养学生在掌握数学优化理论的基础上,具备建立数学模型和优化计算的能力。本文提出一种新的教学改革思路,将运筹学和数学建模两门课程合并为一门课程,即开设大容量交叉课程《运筹学与数学建模》来取代《运筹学》和《数学建模》两门课程,采用案例教学和传统教学相结合的教学方法,数学建模和优化算法理论并重的教学模式。这样既可以避免出现极端教学和随意选取教学内容的现象,又可以将新颖的教学方法与传统方法相结合,按照分析问题、数学建模、优化算法理论分析及其方案制定、实施等解决实际问题步骤展开教学。下面就该课程开设的必要性、意义、可行性、注意事项及其存在问题等方面进行分析。
一、开设《运筹学与数学建模》课程的必要性
1.一般院校的运筹学课程的教学课时大约为64或56(包含试验教学),所以教学中不能囊括运筹学的各个分支。一方面,由于课时量不足,教师选取教学内容时容易出现随意性和盲目性;另一方面,教学中为强化运筹学的应用,消弱理论教学,从而导致学生对知识的理解不透彻,在实际应用中心有余而力不足。
2.运筹学解决实际问题的步骤是:(1)提出和形成问题;(2)建立数学模型;(3)模型求解;(4)解的检验;(5)解的控制;(6)解的实施。大部分教学只涉及步骤(3),即建立简单数学模型,详细介绍运筹学的算法理论,与利用运筹学解决实际问题的相差甚远。因此,学生仍然不会应用运筹学解决实际问题,从而导致学生认为运筹学无用。
3.数学建模课程包含大量的运筹学模型;运筹学在解决实际问题的环节中包含建立数学模型步骤。目前两门课程分开教学,部分内容重复教学,浪费教学课时。
二、开设《运筹学与数学建模》课程的意义
1.激发学生的学习动机,培养学习兴趣。该课程包含数学建模和运筹学两门课程的内容,内容容量大,教学课时丰富,教学过程中能够以生产生活中的实际问题为案例,分析并完整解决这些问题,创造实际价值,使学生认识到该课程不但对未来的工作很重要,而且还有可以利用运筹学知识为企业或个人创造价值,改变运筹学“无用论”的观念。从而激发学生的学习动机,产生浓厚的学习兴趣。
2.合理处理教学内容。运筹学与数学建模的课时量相对充足,能够安排更多的内容,能够系统、完整地介绍相关知识,在一定程度上避免了运筹学内容安排的随意性和盲目性。
3.促进教学方法改革。运筹学与数学建模的教学不再是简单的数学建模和理论证明,教学内容丰富、信息量大,传统的一支笔一本教案一块黑板的模式不再适用,需寻找新的教学方法,促进了多种教学方法的融合。
4.培养学生综合能力。实际案例源于社会、经济或生产领域,需要用到多方面的知识,但学生不可能掌握很多专业知识。因而,在解决实际案例的过程中,需要查阅大量的相关文献资料,并针对性阅读和消化。而且,实际案例数据量大,需要运用计算机编程实现。因此,通过该课程的学习,可以提高学生多学科知识的综合运用能力和运用计算机解决实际问题的能力。
5.改变教学考核方式。教学改革后,教学内容已延伸到运用优化知识解决实际案例的整个过程。教学过程中既有对实际案例分析、建模,又有算法介绍、求结果的检验及其最终方案的实施。因而,传统的单一闭卷考试改为笔试和课后论文相结合的方式。
三、开设该课程的可行性
1.运筹学和数学建模互补性、递进性使得开设该课程在理论上可行。数学建模是利用数学思想去分析实际问题,建立数学模型;运筹学是利用定量方法解决实际问题,为决策者提供决策依据。由此可见,建立数学模型为运用运筹学解决实际问题的重要步骤。所以,运筹学可以认为是数学建模的进一步学习。同时,运筹学模型为数学建模课程介绍的模型中的一部分,并且运筹学处理实际问题的方法为数学建模提供了专业工具。因此,运筹学与数学建模在内容上是互补的。由此可知,开设该课程在理论上是可行的。
2.计算机的发展使得开设该课程在操作上可行。随着计算机的发展,能很快完成大数据量的计算,实际案例的数据分析、数学建模及其求解能快速实现,从而使得该课程的教学工作能顺利开展。
3.大学生的知识储备使得开设该课程在基础上可行。学习该课程的学生是高年级学生,通过公共基础课和专业基础课的系统学习,分析问题、解决问题的能力得到进一步提高。同时,运筹学和数学建模所需基础知识类似,学习该课程所需的线性代数、概率论与数理统计、高等数学及微分方程等课程也已经学习,运用运筹学与数学建模知识解决实际案例所需的基础知识已经具备。因此,开设该课程是可行的。
数学建模常用算法范文2
【关键词】 人工神经网络;中医证候;非线性建模
建模就是建立一个数学模型,使之能最好地拟合通过系统的输入输出数据体现出的实际系统的动态或静态特性。证候学研究的目的就是通过对四诊信息的综合分析,找出证候的特征,做出证型的分类诊断。因此,可以通过数理分析方法总结证型与指标之间的规律,建立证候诊断数学模型。常用的证候建模方法分为线性建模法和非线性建模法两种。
1 线性证候建模方法及其存在的问题
目前,常用的线性证候建模方法有多元线性回归分析、因子分析、判别分析等多元统计方法。多元线性回归分析可以根据各指标的常数项和偏回归系数建立证候的多元线性回归方程;因子分析可以通过将公因子表示为指标的线性组合,从指标的观测值估计各个公因子的值,从而建立证候的因子得分模型;判别分析可以对证候诊断明确的一组资料建立证候的判别函数。上述3种方法均可以建立证候的线性模型,并可实现对证候的诊断和预测。
多元统计方法很多都是对复杂问题的线性简化。如判别分析和回归分析都是不加区别地、均衡地看待每个症状变量对线性关系的影响,同时还基于各变量的作用与其他变量的值无关,且各变量的作用可以叠加这一不甚合理的假定而建立的症状和证候关系的一种简单的线性描述[1];因子分析也是建立每一个公因子(证候)和变量之间的线性函数。然而,中医证候系统具有非线性复杂性特征,且症状之间存在大量的多重共线性关系和协同关系,线性建模方法虽然有利于对复杂问题的数学描述,但却很难准确地模拟症状和证候之间的复杂关系,更难以逼近中医证候的真实面貌。
2 非线性证候建模方法
非线性建模法又称黑箱建模法,即在不了解黑箱内部机理和结构的情况下,通过提取隐含在系统的输入输出数据中的特性,建立一个能充分逼近系统实际结构的等价模型。目前,人工神经网络技术具有强大的非线性映射能力,能够任意精度逼近非线性函数,成为非线性系统辨识的主要建模方法。
中医证候的诊断过程,实质上是由收集到的各种症状,通过分析获得证型诊断的过程,可以把这个过程看作是一个非线性映射过程,因此,我们将改进的BP神经网络用于中医证候的非线性建模研究,探讨了基于人工神经网络模型的非线性证候建模方法。
3 基于人工神经网络的证候非线性建模方法
3.1 人工神经网络简介
人工神经网络(artificial neural network,ANN)是在对人脑神经网络结构认识理解的基础上,人工构造的新型信息处理系统。ANN具有大规模的并行处理方式、良好的鲁棒容错性、独特的信息存储方式以及强大的自学习、自组织和自适应能力,这使得它在模式识别、控制优化、信息处理、故障诊断以及预测等方面应用广泛,其理论与技术方法在工程、医疗卫生、农业、交通、财经、军事、环境、气象等领域显示出巨大的吸引力,并具有广阔的应用前景[2]。
ANN的一个显著特征是它通过自动学习来解决问题,对样本的学习过程,即为对网络中的神经元间的联系强度(即权重系数)逐步确定的过程,通过对样本的学习,可以学会识别自变量与应变量间的复杂的非线性关系。经过充分学习后的ANN获取了样本的特征规则,并将这些规则以数字的形式分布存贮在网络的连接权中,从而构成了系统的非线性映射模型。这样的ANN模型不仅能够对其学习过的样本准确识别,而且对未经学习的样本也可以准确识别,它甚至可以充分逼近任意复杂的非线性映射关系。可见,ANN不需要精确的数学模型,而是通过模拟人的联想推理和抽象思维能力,来解决传统自动化技术无法解决的许多复杂的、不确定性的、非线性的自动化问题。
BP神经网络[3]是指基于误差反向传播算法(back propagation,简称BP算法)的多层前向神经网络。BP网络的神经元通常采用Sigmoid型可微函数,可以实现输入到输出间的任意非线性映射,这使得它在函数逼近、模式识别、数据压缩等领域有着广泛的应用,也使得它能够应用于中医证候的非线性建模。
3.2 非线性建模方法
证候具有典型的非线性特征,证候的诊断过程可以看作是一个从诊断指标到证候的非线性映射过程,这个过程用非线性数学模型可以充分模拟,而ANN是典型的非线性数学模型,其中的BP网络更具有强大的非线性拟合能力。因此,我们选择ANN中最常用的BP神经网络技术,并进行适当的改进后,建立中医证候的非线性模型,然后对建立的证候模型的诊断性能进行测试。具体步骤如下。
3.2.1 数据预处理
在建模之前,首先对试验数据进行预处理。包括对输入数据的归一化处理和对数据的主成分分析以及资料的分组处理等。
先对所有数据进行归一化处理,使变换后的输入输出信息在(0,1)区间,以防止小数值信息被大数值信息所淹没;然后对归一化处理后的数据进行主成分分析,主成分的选择标准定为95%。数据经过主成分分析,可对大量的输入信息进行降维处理;最后根据验证方法进行病例分组,我们采用3倍交叉验证法,因此,将样本随机分为3组。
3.2.2 确定BP网络的结构
在MATLAB7.0环境下,采用改进的共轭梯度学习算法(trainscg学习算法),建立证候的三层前向BP网络模型。该网络包括输入层、隐层和输出层,其中输入层包含的输入神经元数即是证候的诊断指标数;隐层的层数及每层包含的神经元数根据具体情况而定;输出层包含的输出神经元数即研究资料包含的基本证型数。两个隐层之间通过双曲线正切S型传递函数(tansig)连接,隐层与输出层之间用对数S型传递函数(logsig)连接。设定网络的系统误差为小于0.01,最大迭代次数为500次,最小下降梯度为10-10。
其中,网络的输出节点用来表示共几种证型,表示方法是一个输出节点对应一种证型。我们将包含n个证型的输出采用(0,1,…,0)的方式,括号内共有n个数值,每一个数值代表一种证型,其中0表示诊断不成立,1表示诊断成立,这样可以诊断兼夹证的情况。另外,预测输出值分原始输出值和整合输出值两组,原始输出值为0到1之间的连续值;整合输出值既可整理成(0,1)的形式(规定≥0.5为1),又可整理成0-1之间的分段数值,比如(0,0.2,0.4,0.6,0.8,1)等6个数值,这样根据数值大小既可诊断兼夹证,又可判断证型的主、次情况。
3.2.3 证候网络模型的训练
先取样本的两组作为训练集,另一组作为测试集,再交换其中的一组,如此循环,分别共做3次训练与测试,从中得出平均预测效果值。
网络参数的初始值取为[-0.5,+0.5]上均匀分布的随机数。经重置几次网络权值的学习率和动态训练集后,不断改善权值。到权值趋稳,即认为网络训练完成。
3.2.4 证候网络模型的测试
神经网络训练的期望目标是以尽可能简单的网络结构达到尽可能高的学习精度和尽可能好的泛化能力,因此考察神经网络的性能就要看网络的泛化能力。所谓泛化,就是网络对尚未学习过的数据的正确识别能力,是否具有良好的泛化能力是网络能否投入实际使用及使用效果如何的重要因素。它可以通过测试样本集网络诊断结果的特异性和准确率来衡量。
证候网络模型的权值趋稳,训练结束后,即可以采用三倍交叉验证的方法,分3次分别对1/3测试样本做检验。此时只有输入矢量(即只有症状得分),无输出期望值(即没有相应证型的判断)。经网络运算后,得出预测输出值,与期望输出进行比较,分别统计各种证型预测值的特异性和准确率,以判断该证候神经网络模型的诊断性能。
4 实现基于人工神经网络的非线性证候建模研究
我们采用上述非线性证候建模方法,在MATLAB7.0环境下,对一组765例类风湿性关节炎(rheumatoid arthritis,RA)临床证候资料和一组449例糖尿病肾病(diabetic nephropathy,DN)临床证候资料,分别建立了RA证候BP网络模型和DN证候BP网络模型,并均采用三倍交叉验证的方法,检验了证候神经网络模型的诊断性能(具体内容另文详述)。测试结果显示:两种模型的平均单证特异性分别为81.31%、81.32%;平均单证准确率分别为95.70%、96.25%;平均诊断准确率分别为90.72%、92.21%。说明基于改进的BP神经网络的证候模型具有较高的诊断、预测能力。
5 讨论
“线性”和“非线性”是区别事物复杂性程度的标尺,在数学中,当两个变量(自变量和应变量)的关系成正比时就称为线性关系,否则就是非线性关系[4]。在生命科学中,由上述概念推广而来的线性和非线性逻辑则更具实用意义,非线性逻辑表征事物各组分之间是相互作用的,而不是相互独立的、正则的、无限可微的和平滑的,即总体不等于部分之和,它是复杂系统的典型特征之一。证候是机体各层级结构的整体涌现现象,中医四诊信息所表达的就是人体各层级结构的功能失调逐级涌现的结果[5]。显然,证候具有非线性特征。
对非线性证候系统建模应当用非线性建模法更能反映证候的实质。基于黑箱结构的ANN具有强大的非线性建模能力。因此,我们将其用于证候的非线性建模。
我们在基于共轭梯度下降算法的BP神经网络的基础上,对RA临床证候资料和DN临床证候资料均建立了非线性神经网络证候模型,经过三倍交叉验证,两种证候神经网络模型均有良好的诊断、预测能力。可以得出结论,ANN在不必知道内部结构的情况下能够充分模拟症状与证候的非线性映射关系。神经网络利用网络的自动学习能力,在充分辨识证候表征信息的基础上,可以自动抽提出这些信息蕴含的内在规律,并将其分布在网络的联接权中,从而建立了症状与证候的非线性映射函数。
在这里,样本(证候)被概括为一对输入与输出的抽象的数学映射关系,各种物理表征信息为输入单元,证型诊断为最终的输出结果。证候诊断的过程被看作了一个映射问题,通过症状找出对应的证型诊断,神经网络把症状与证型的对应关系通过输入与输出的映射转化成了一个非线性优化问题。虽然不清楚网络模型的内部结构,但我们的研究证实这种模型却能够充分逼近症状与证型诊断的非线性映射关系,近似真实地反映证候的全貌,这是在不打开黑箱的前提下,建立非线性证候模型、反映证候的内在规律和特征的有效方法。
BP神经网络虽然是一个标准的非线性数学模型,但它的收敛速度非常慢,为此,我们采用trainscg函数改进train函数,trainscg函数是共轭梯度算法的一种变形,具有采用尺度化共轭梯度反向传播算法对网络进行训练的功能。该算法结合了Levenberg-Marquardt算法中的模型置信区间方法和共轭梯度算法,避免了耗时巨大的线搜索过程,从而大大提高了网络的训练速度。我们建立的两种证候网络最后一次训练的迭代次数分别为58、33,说明建立的证候网络模型有很好的收敛性能。
总之,中医证候的诊断规律蕴含在足够多的样本集合中,利用神经网络的自主学习能力从大量的样本中进行证候特征的规则提取,能够抽提出比较全面的内在规律;同时,网络的自组织、自适应能力又能加强对边缘相似病例的辨识能力,这样的证候诊断模型更能充分逼近证候真实面貌。基于改进的BP神经网络的证候非线性数学模型具有良好的诊断、预测能力,能够充分逼近证候的真实面貌,是证候非线性建模的可行性方法。
当然,用ANN建立的证候模型是否有强大的推广能力,取决于样本的含量以及样本所含信息的全面程度。因此,必须保证样本的含量足够大、样本所蕴含的证候诊断信息足够全面,这样才能尽量真实地展示证候全貌。同时,ANN的知识处理能力还需进一步提高,还需围绕如何提高神经网络的学习能力、收敛速度、可塑性以及普化能力等方面展开深入研究。但目前采用神经网络技术建立证候数学模型,从而实现对证候的非线性建模,对中医证候的规范化研究不啻是一种可行的方法。
【参考文献】
[1] 袁世宏,王天芳.多元统计方法在建立证候诊断模型研究中存在问题的思考[J].北京中医药大学学报,2004,27(4):9-11.
[2] 白云静,申洪波,孟庆刚,等.中医证候研究的人工神经网络方法探析[J].中医药学刊,2004,22(12):2221-2223.
[3] 许 东,吴 铮.基于MATLAB6.X的系统分析与设计——神经网络[M].第2版.西安:西安电子科技大学出版社,2002.19-24.
[4] 包含飞.初议中医学是复杂性科学[J].上海中医药大学学报,2003,17 (2):3-6.
数学建模常用算法范文3
关键词 供应链管理 模型 仿真 运筹学
供应链管理系统采用了多种学科交叉的研究方法,包括管理学、数学、信息论、经济学、仿生学等多个学科中的理论和模型作为它的理论基础和建模基础,这些理论和模型对供应链运作中的战略决策、作业计划、优化排程等问题提供了有效的理论和模型支持。
供应链管理的模型能够模拟和计算许多复杂的问题,同时各种模型也在不断的完善和更新。运筹学中的约束理论和数学规划方法最早被用到了供应链决策问题中,在需求预测和库存控制方面取得了一定的成果,随着计算机和信息技术的飞速发展,许多更为复杂的模型被建立起来,包括有排队论模型、网络规划法、仿真模型、人工智能方法等,这些模型从不同方面反映了供应链的重要特征,为供应链管理提供了科学的解决方案。下面将从不同的角度尝试对供应链模型进行分类,从而对其有一个深入而全面的了解。
1 按决策变量的类型分类
从决策变量的类型看,供应链模型可以分为确定性分析模型和随机性分析模型:
1.1确定性模型
确定性模型的决策变量(例如供给、需求等变量)假定是已知的、确定的。Williams早在1981年介绍了七种确定性分析方法,用以为装配型供应链的生产配送操作制定计划,目标是确定成本最低的生产方式或产品配送计划,以满足用户对最终产品的需求。
1.2随机性模型
随机性模型的决策变量为不确定的、非线性的,通常以随机函数来表示。例如Lee等人(1993)建立了一个随机的、采用周期盘点最大订货水平策略的库存模型,以确定供应链中的过程定位。
在目前主要使用的供应链模型中以随机性分析模型为主,因为现实供应链中的需求、生产—配送时间、顾客服务时间等决策变量都是随机变量数据,随机性分析模型更符合现实状况。
2 按求解算法划分
从求解算法来看,供应链模型可以分为传统方法、构造型启发式方法、严谨启发式方法等。
2.1 传统方法
包括线性规划、动态规划、整形规划等传统的优化方法。传统方法随着问题的规模增大,解空间呈指数倍增长,使问题难于求解,因此结合优化的搜索策略降低搜索空间,才是该类方法出路所在。
2.2 启发式方法
启发式方法是近年来解决复杂优化问题备受关注的一类方法。该类方法以寻找全局最优解为目标,一般具有严密的理论依据。这些方法有遗传算法模拟退火算法、禁忌算法。
3 按建模方法划分
从建模方法来看,供应链模型主要有经济学模型、运筹学模型、仿真模型等,其中运筹学模型包括排队论模型、混合整数规划模型、网络流模型等,仿真模型包括面向流程的仿真模型、基于系统动力学的仿真模型和基于Agent的仿真模型等。
3.1 经济学模型
经济学模型指采用经济学的经典理论建立的供应链管理模型。例如christy等(1994)建立了一个博弈模型,用以分析供应链中供应商与采购商的关系。模型用关系矩阵区分不同特性的流程和产品,通过该矩阵可以获得采购商和供应商的相关风险,作者还进一步建立了双方的博弈关系,并给出了相应的解释。
3.2运筹学模型
运筹学模型是指采用线性规划、排队论、动态规划等运筹学的方法对供应链进行优化。
3.2.1混合整数规划模型
混合整数规划模型可以表示许多供应链的决策问题,其目标函数一般是生产、销售或者配送成本最小或利润最大,用整数变量表示对供应链中资源、运作方式等的选择,用连续变量表示资源的价值等,用供应链的物流平衡关系等作为约束。
3.2.2排队论模型
排队论可以研究生产企业在稳定的环境下,如何安排各个设备的加工任务以及资源配置情况。Kanmarkar等人(1983)利用M/G/1排队系统研究生产批量和生产准备时间的关系。
3.2.3网络流模型
网络流模型可以很方便的表示各种供应链活动的先后次序。如,Hodder等(1982)利用网络模型研究全球供应链中成员的选择问题。Verter等(1992)对网络流模型在设施规划和布局方面的应用进行了回顾和总结。
3.3 仿真模型
随着计算机技术的飞速发展,采用计算机仿真技术研究供应链系统成为未来的主要方向。计算机仿真可以反应出供应链系统的复杂性、动态性和随机性。仿真模型主要有面向流程仿真、系统动力学仿真和基于Agent的仿真模型等。
3.3.1面向流程的仿真模型
面向流程的仿真模型通过对企业和供应链的流程进行模拟仿真,找出瓶颈,从而对流程进行优化重组。目前常用的基于流程的仿真建模方法有ARIS体系、CIMOSA体系、SCOR模型和Petri网方法等。
3.3.2系统动力学仿真模型
系统动力学用于物流和供应链系统最早是Forrester在其著作Industry Dynamics中提出的,他建立了三阶段的物流系统仿真模型,采用系统动力学对供应链的“牛鞭效应”进行了研究,其后国内外学者运用系统动力学对供应链系统进行了各类仿真建模。
3.3.3基于Agent的仿真模型
Agent的概念源自于分布式人工智能,作为一种研究复杂问题的方法,采用分散、自主和智能化的管理理念,能够体现了各个相互作用的局部个体间的利益特性,有助于解决一些数学模型无法反映的复杂性问题。由于供应链系统与基于agent之间存在许多的相似之处,越来越多的学者认为MAS是支持供应链管理与运作的一种有效的理论与方法。
供应链是一个典型的复杂、自适应和动态的系统,具有模糊性、不确定性、非线性、动态性等特点。因而采用传统的算法和建模方法难以体现出供应链系统的特性。而采用启发式算法、随机性模型,计算机仿真更适合描述其复杂性、不确定性和动态性,是供应链系统研究的方向。
参考文献:
[1]陈兵兵著.SCM供应链管理.北京:电子工业出版,2004.
数学建模常用算法范文4
关键词:数值分析;数学建模;数学实验;教学改革
一、引言
“数值分析”是为我校机械工程、电气工程、材料工程和化学与环境工程等专业的硕士研究生开设的一门学位课程,通常需要学生在本科阶段学习过“高等数学”“线性代数”及“常微分方程”三门课程。“数值分析”课程又为后续的“数学模型”“软件工程”和“算法设计与分析”等课程奠定知识和方法论基础。该课程涉及内容较多,并具有很强的理论性和实践性。随着现代计算机技术的迅猛发展以及社会对硕士人才培养提出的更高要求,如何采用有效的教学方法,提高教学质量已成为“数值分析”课程教学任务中不可回避的重要问题。为了培养和提高学生发现、分析以及解决问题的能力,为今后能够顺利担负科研任务打下坚实的基础,根据该课程的特点,融入数学建模和数学实验的教学法,不仅可以激发学生的学习兴趣,使其对教学内容掌握得更加扎实,讲解和实践的案例还可以成为学生在将来从事科研活动时的重要参考资料。
二、“数值分析”课程的特点
国内外为硕士生开设的数值分析理论及类似课程所采取的讲授方法基本类似。教学模式或者较为注重计算公式的推导,或者偏重于具体算法的应用。从教学方式上看,传统的“注入式”教学模式仍占主导地位,这严重影响了研究生的个性培养、创新思维的训练。总体来说,该门课程的特点可以概括为以下两点:(1)具有理论数学的抽象性与严密科学性;(2)应用的广泛性与实践的高度技术性。
三、融合数学建模和数学实验教学法的内涵与实例
(一)教学法的内涵与作用
结合“数值分析”课程教学的特点,可以作出如下定义:融合数学建模和数学实验教学法是指在教师的策划和指导下,基于教学创新理念,以提高学生分析解决问题的能力为目的,并以数值分析课程的知识结构为主线,组织学生通过对具有代表性的数值分析模型的提出、原理的解释、应用领域的分析、思考、讨论和交流等活动,引导学生自主探究,加深对知识理解等的一种特定的教学方法。
该教学法是一种理论联系实际,启发式的教学过程。通过教师采用数学模型引导来说明理论知识,通过实验仿真,激发学生的学习兴趣,提高学生分析解决问题的能力。采用该教学法可以克服传统教学中“教师主体”的模式缺点,使学生成为教学的中心,不仅不必强记定理公式,而且能够使学生了解到实际问题的多选择性和不确定性,激发学生的创新精神。
目前,我校进行了研究生培养模式的改革,提高了要求,在这种情况下,传统的培养方式及教学方式必须进行改革,该教学法具备上述优点,是一种非常适应现代教学现实的方法。
(二)教学法的实例
目前的数值分析理论课程教学,只是在分析已有的模型,而对于模型的提出过程讲授得较少,因此造成了学生的分析能力强于综合能力。而学生在未来的科研工作中,对于综合能力的要求要高于分析能力。所以讲授数值分析模型的提出过程对培养学生的综合能力是十分有益的。在此笔者列举教学实践中的典型例子说明该教学法的优点。
应用实例:
在讲授教材中“常微分方程初值问题数值解法”这部分的内容时,教材上只是给出了微分方程的几种数值方法及其对应的误差估计、收敛性和稳定性,内容较为晦涩难懂,学生往往不能理解常微分方程来自于哪些实际问题,特别不理解数值解的内涵,于是笔者在讲授该部分内容时融入了数学建模的思想。为使学生理解数值解的内涵,借助C++、MATLAB或MATHEMATICA等软件做程序的编写,完成数值解的求解及几种方法解的图形显示,加深对该部分内容的认识和比较。
提出数学建模问题:食饵捕食者问题。
意大利生物学家D’Ancona发现:第一次世界大战期间意大利阜姆港捕获的鲨鱼的比例有明显的增加,如表1所示。
事实上,捕获的各种鱼的比例代表了渔场中各种鱼的比例。战争中捕获量会下降,而食用鱼会增加,以此为生的鲨鱼也同时增加。但是捕获量的下降为什么会使鲨鱼的比例增加,即对捕食者更加有利呢?
他无法解释这个现象,于是求助于他的朋友,著名的意大利数学家Volterra。Volterra建立了一个简单的数学模型,回答了D’Ancona的问题。
模型假设:
1.食饵增长规律遵循指数增长模型,相对增长率为r;
2.食饵的减小量与捕食者数量成正比,比例系数为a;
3.捕食者独自存在时死亡率为d;
4.食饵的存在使捕食者死亡率的降低量与食饵数量成正比,系数为b。
通过上述教学案例的使用,使学生在学习常微分方程问题数值解的理论后,对一些实际问题,能够建立微分方程组模型,并动手实验给出方程组的数值解,加深对数值解的认识,对数值解收敛性、误差情况和稳定性有具体的认知,并进一步通过图形等方法对结果进行验证、解释和分析。
通过3个教学循环的教学经验和多年的科研实践经验,如果采用新教学法,可以显著提高教学效果,并且可以引入现代科研领域的一些前沿内容,推动教学改革的进行。
在数值分析理论课程的教学活动中引入了数学建模和数学实验的教学法,对教学内容及实践活动进行了总结,教学实践活动表明该教学法能够提高学生的独立思考能力,解决问题的能力,使学生在理论知识和实践能力方面达到了学以致用的效果,教学质量得到了明显提高。
参考文献:
[1]赵景中,吴勃英.关于数值分析教学的几点探讨[J].大学数学,2005,21,(3):28-30.
数学建模常用算法范文5
关键词:混沌时间序列;自适应预测;非高斯性;非线性反馈;负熵的近似
中图分类号:TP202+.7
文献标志码:A
0引言
数学建模常用算法范文6
作为人体血脉网络的一部分,视网膜血管的长度、宽度、弯曲度及分支角度等形态参数是否有变化,以及是否有增生、渗出,均可反映全身血管的病变[1]。实现对眼底血管网络的特征信息分析,对于辅助诊断眼部疾病和一些全局性病变都有价值。
由于视网膜血管网络呈复杂的树状结构,拥有丰富的分枝,多样,同时细小血管与背景之间的对比度较弱,使得视网膜血管分割成为一个充满挑战的课题。彩色眼底照相(CFP)、眼底荧光素血管造影(FFA)等眼底影像受到广泛关注,已经产生大量血管分割算法,综述[2]按照不同角度对视网膜血管的分割算法做了很好的回顾。根据所用的图像处理理论和算法,将视网膜血管分割算法分为六类:(1)模式识别技术;(2)匹配滤波;(3)血管追踪;(4)数学形态学;(5)多尺度方法;(6)基于模型的方法。分析各种血管分割算法,其实质离不开对医学影像中的血管形态信息进行特征建模。模式识别技术通常是对血管的灰度、梯度等局部特征的建模和分类;匹配滤波利用了血管的横断面近似高斯模型或混合高斯模型;追踪算法离不开对局部血管的尺寸、方向、曲率、线性度、对比度的渐变性来实现血管的逐步递推和跟踪检测;多尺度方法通常利用了血管网络的分段线性尺度特性;基于模型的分割算法更是利用血管的局部灰度、梯度等特征信息进行能量函数建模。
基于此,本文从视网膜血管在各种医学影像征表现展开分析,对常规的视网膜血管建模方法做了性能比对,让读者能够从另一种角度理解把握目前的视网膜血管分割算法,从而提出更加合适的视网膜血管分割算法。
1 视网膜血管在常用医学影像中的特征表现
利用眼底照相机对眼球内壁进行不同角度的拍摄,能够获取二维的视网膜影像。眼底照相机一般有三种操作模式:在白色光源下,能够获取真彩色眼底图像;滤除红色图像光后,能够获取血管对比度高的眼底图像;注射荧光剂后,可以获取眼底荧光素血管影像。血管注射荧光素钠后,利用490纳米的蓝色光源能够激发血管中的荧光,从而获取血管高亮的视网膜血管影像,如图1所示。
图 1 眼底荧光素血管影像[3]
由图1看出视网膜血管的形态信息:(1)视网膜血管是分段线性的网状结构;(2)血管的灰度值与背景存在灰度差,但是在细小血管处,灰度差很小;(3)血管的宽度差别很大,从视盘出发,血管宽度从十几个像素减少到一两个像素;(4)血管横断剖面近似于高斯分布或混合高斯分布。
目前有许多视网膜医学影像的公用数据库[2]。其中DRIVE和STARE两大眼底图像数据库分别提供了不同眼底照相机从不同角度获取的彩色眼底图像,两者都有两套眼科专家手工分割的视网膜血管网络作为金标准,便于视网膜血管分割算法的性能比较。
2 视网膜血管特征建模及分析
表1总结了视网膜血管网络的特征表现,并给出常见的特征模型及其存在的主要问题。由表1看出,仅对血管的一个属性进行建模无法有效分割目标。管状器官的局部特征便于提取和建模,广泛应用于视网膜的血管分割,包括对图像的滤波和增强。管状器官的全局特征为分割算法提供全局空间一致性信息,便于处理图像的局部噪声和分割不连续的管状器官。但是由于全局特征的获取复杂度高,该类算法值得进一步研究。
表1 视网膜血管的特征表现及常见特征模型
Hessian矩阵的本征值分析是血管增强的最常用工具[4]。基于Hessian矩阵的管状检测器通常选用不同的测量尺度来检测目标,并且将所有尺度下的最大尺寸合并为一个多尺度响应。但是Hessian匹配滤波存在三个问题:(1)采用Gaussian函数与图像进行卷积计算梯度向量场,会导致边界模糊;(2)由Hessian矩阵特征值定义的管状结构度量函数难以分割分叉点;(3)需要在多尺度空间下,获取不同尺度下的管状结构最大响应,计算量大。
Xu和Prince提出的梯度向量场(GVF)[5]能够实现图像的边界梯度信息向目标中心的扩散。由于来自管状器官边界的梯度向量在中心处相互抵消,导致GVF向量场在管状器官的中心处几乎为零,恰好对应多尺度检测的最大尺度响应,因此可以采用Jacobian矩阵代替传统多尺度下的Hessain矩阵进行血管检测[2]。根据Jacobian矩阵的特征值和特征向量信息可以进行三个方面的应用:(1)进行管状结构检测,增强管状器官;(2)管腔脊线生成,经过细化可以作为血管中心线;(3)提供细小血管的方向信息,从而为视网膜血管的交叉、分支在3维空间的走向提供信息。(下转第99页)