前言:中文期刊网精心挑选了粉末冶金材料技术范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
粉末冶金材料技术范文1
关键词:粉末冶金 生产工艺 粉末冶金高速钢 粉末注射成形
中图分类号:TF12 文献标识码:A 文章编号:1674-098X(2015)04(a)-0098-02
粉末冶金具有高效节能、节省材料、保护环境以及能够进行金属成形的批量生产等特点。而粉末冶金的工艺步骤主要是先制取粉末,然后将粉末原料的配量进行混合,最后将其成形并凝固。粉末冶金可以根据材料所具有的性能要求以及零件所需使用的性能要求,在一定的范围当中对材料的成分进行混合[1]。粉末冶金产业当中所制造生产出来的产品基本上都铁基方面的机械零件。根据粉末冶金工艺的工艺特点来看,粉末冶金还可以将其制成高熔点的金属,就比如钨和钼这两种高熔点金属,同时也可制成金属陶瓷的材料,像一些质地坚硬的合金以及一些高温材料。还有多孔材料、假合金、过滤材料、摩擦材料等一系列的材料,这些材料的生产和制造只能够使用粉末冶金的工艺来进行制备和生产,因此粉末冶金工艺完全具有跨越传统冶金工艺的可能性。在粉末冶金高速工具钢和粉末注射成型这两大冶金工艺发展最为突出。
1 粉末冶金高速钢
粉末冶金新工艺,气雾化的高速钢粉末颗粒进行冷却的速度通常都比较高,而且这些高速钢的粉末颗粒当中也已经不存在偏析的粉末用热情况,和铸锻形成的高速钢相比,具有无偏析、颗粒小、分布均匀;热加工方面的性能较好;可磨性较高;在热处理方面变形比较小;力学性能优异;提升了刀具切削的寿命,真正扩大了其使用的领域和范围等一系列优质的性能。对粉末冶金高速钢的研究最早起始于20世纪70年代的美国和瑞典的两家著名工业工厂,当时的主要工艺路线使用的是气雾化制粉以及热等静压等相关的技术。如今粉末高速钢的产量已经占据铸锻高速钢全部产量的10%~15%,国外目前所拥有的,具有代表性的粉末冶金高速钢的生产企业至少有5家,主要有美国、乌克兰、瑞典、法国、奥地利以及日本等国,其中美国在高速钢方面的用量以及远远的超出了普通容量的高速钢[2]。如今,国外工业企业内的粉末冶金高速钢的产量发展以及达到了第三代的技术水平,此前第一代为20世纪70年代美国和瑞典内的两家企业所投入生产的高速工具钢,而第二代则为1994年,法国高速钢公司以及瑞典的工业企业改进了制备气雾化前钢液的熔炼工艺,这种改进工艺所生产出的产品即为第二代。第三代就是2000年,由Bohler-Uddeholm集团,进行全线投产,且质量比起第二代还有所加强的高速钢。在对生产线的钢熔炼工艺方面,对喷粉设备加以改进,同时对由氮气雾化后的粉末颗粒的尺寸进行细化。正是粉末颗粒尺寸的细化,促使第三代的高速钢在抗弯强度方面比起第二代还要提高到20%以上。所以,第三代的高速钢在生产工艺方面主要是以微小纯净为主。
2 粉末冶金工具钢
2.1 高钒冷作模具钢
这种钢的类型主要是利用粉末冶金的工艺特点来对冷作工具钢进行开发,其中最主要的区别就是增加合金当的钒含量来提升合金的耐磨性,而第一个被作为高性能耐磨钢材的是CPM 10V,这一类型的钢材在CPM系列的粉末冶金高钒冷作模具钢当中是一种最具代表性的钢材。在Crucible 集团当中也逐渐形成了含钒高达1%~18%的耐磨工具钢[3]。这类性能较高的工具钢开始广泛的应用于冷作冲头以及在模具方面,主要适用于耐磨损的方面。由北京安泰科技公司研发的AHP9VNb2在成本方面对比Microclean K390要低很多,不过在硬度上却和AHP10V相差不多,而抗弯性却提高了10%左右。
2.2 耐蚀耐磨工具钢
在众多制造操作当中,通常工具和其耐磨的部件在承受运动部件或者是其他的一些工作介质的研磨颗粒的接触而出现的磨损情况,一般很容易受到潮湿、酸或者是其他的一些腐蚀性的作用等。所以,针对这些工作就需要研发出一些高性能的耐磨耐蚀的粉末冶金工具钢。
如表1所示,粉末冶金耐磨耐蚀材料含有约14%~24%Cr,约3%~15%V,约1%~3%Mo,这些材料总和大约117%~3175%C。
2.3 粉末冶金易切削工具钢
粉末冶金的发展主要是为了能够有效的提高工具模材料的可磨削性能,以及降低工具模在加工方面的成本。通常需要采用添加硫含量的形式来对可磨削性能进行提升,不过如果采用的是传统的铸锻生产法的话,则较高的硫就可能会增加材料的热脆,促使其韧性开始下降的风险出现,针对这些问题,只需使用粉末冶金工艺就能获得很好的解决。
3 粉末注射成型的发展
3.1 粉末注射成型的发展现状
技术注射所生产出的元器件通常应用的领域范围比较广,像在IT、医疗、机械汽车以及通信方面等,都对这类元器件有所应用。这个不同于MIM在市场产品当中的份额是因地域而异,其中汽车行业在欧洲方面的市场份额大约占据着50%以上,形成了一种主导性的地位,而在北美洲地域应用占据主导的行业则是医疗以及牙科方面的应用。通过对这些资料的分析,可以看出在汽车方面的应用在往后必将有着相当可观的增长值,主要是在PIM高温汽油和柴油引擎的涡轮减压器等方面。
3.2 粉末微注射成形新工艺
随着工业技术的不断发展,全球对于精细及结构复杂的零部件需求越来越大,因此粉末微注射技术开始推出,其所制备出来的微型零件的质量几乎以毫克来进行统计,同时还保留了传统方面的PIM,所以粉末微注射技术有着批量生产精细复杂形状的微型零部件的重要潜力。而微注射技术的主要应用领域具体有:(1)化学工具,粉末微注射技术在微化学当中主要制备出作用于微反应器、混合器以及交换器等微流体的装置等[4]。(2)在医学方面的应用,在医学上主要是用于制备微型的人骨结构、微型的外科仪器组件以及牙科微型元件等等医疗方面的器具。(3)共注射成型方面,可用于共注射成形领域。可以将磁性材料和非磁性材料以及硬性、软性材料、导电和绝缘材料等有效的结合起来。(4)微型零部件,主要是一些微型的机械零件,像一些小齿轮、叶轮或者是拉伸部件等。
4 结语
综上所述,粉末冶金生产工艺的发展主要分为粉末冶金高速工具钢和粉末注射成型这两大冶金工艺发展类别,这两种冶金工艺发展类型经过多年的探索和研究,如今已经趋于完善,并广泛的运用在各个行业领域当中。
参考文献
[1] 任朋立.浅析粉末冶金材料及冶金技术的发展[J].新材料产业,2014(9):17-20.
[2] 徐坚,王文焱,张豪胤,等.元素Cr对粉末冶金Ti-6Al-4V合金组织与性能的影响[J].粉末冶金工业,2014(6):11-15.
粉末冶金材料技术范文2
姚萍屏,教授,1969年出生于湖南双峰,1988年在原中南工业大学材料科学与工程系开始大学本科生活,并到该校粉末冶金研究所从事研究生学习和助研、副教授再到现在的教授工作,秉承中大“敬业、勤奋、求实、创新”的精神,始终耕耘在高性能粉末冶金摩擦学材料领域,先后承担并完成了国家国防攻关、国家863高技术、国家自然科学基金、国家科技部创新基金、民航总局PMA项目、国家铁道部引进消化吸收再创新项目、湖南省杰出青年基金和湖南省科委等20余项课题的科研任务,将粉末冶金摩擦学材料推广应用从深海、陆地、天空直至空间,构建了粉末冶金摩擦学材料的全空间应用材料体系。这期间,他还在国内外刊物发表了与摩擦学材料领域相关的研究论文50余篇,获国家授权专利8项,申请专利5项,部级鉴定项目5项。获湖南省科技进步一等奖1项,三等奖1项,有色科技进步奖三等奖1项。目前兼任湖南省摩擦学会理事长、全国青年摩擦学青年工作委员会副主任委员、中国机械工程学会高级会员、中国机械工程学会摩擦学分会常务理事、中国机械工程学会粉末冶金分会理事、中国机械工程学会摩擦耐磨减摩材料与技术专业委员会副主任委员、湖南省机械工程学会常务理事等学术职务。
勇于创新研制航空摩擦材料
自1992年参加工作以来,姚萍屏教授一直从事粉末冶金航空制动摩擦材料的研制和开发工作。针对粉末冶金航空制动摩擦材料高能制动性能稳定性不足和重载耐磨性能差的技术问题,通过对摩擦表面成膜机理、失效机制及制备工艺的深入研究,开发了陶瓷颗粒组合增摩技术、基体微合金化增强技术、金属陶瓷和基板梯度复合技术以及高性能特种粉末冶金摩擦材料制备技术等,主持完成了中国民航总局项目“新一代大型波音737飞机高性能长寿命国产粉末冶金刹车副的研制”,获得中国民航总局颁发的6项产品零部件制造人批准书。
国产粉末冶金刹车副研制成功后经推广使用,不仅保证了国内航空运输的正常进行需求,同时,由于国产刹车副价格较进口件低,同时供货周期由原来的预付款半年后提供改为3天内供货,大大降低了航空公司的资金积压、库房占用和配件供应周期,根据航空公司估计,仅采用国产刹车副,每架飞机可节约直接成本为55.5万元,因此,仅在中国大陆应用国产刹车副,将为航空公司年节约直接成本2.6529亿元。项目已在湖南博云新材料股份有限公司获得产业化推广,累计实现产值达2.1亿元,产品使用效果良好,经济效益和社会效益显著,成为博云新材这一上市公司的拳头产品之一。
喜出成果攻关铁路摩擦材料
没有制动就没有高速。针对国家高速铁路的不断提速要求,姚萍屏教授先后主持了国家863项目“高速列车用制动盘和闸片材料及其制备技术的研究”和铁道部引进消化吸收再创新项目“高速动车组摩擦材料国产化的研制”,
根据高速列车车轮与钢轨粘着促转的系统特点和高速列车制动动能大、制动压力高的技术特点,采用不同颗度粉末配比,通过开展基体的选择、新型摩擦组元及组元的探索以及摩擦组元和组元对基体综合性能的影响等方面的研究,获得了综合新型铜基体、自主开发了专有摩擦组元和组元,开发了非金属组元强化技术和梯度烧结工艺。所获得的高速动车组闸片摩擦材料的研究成果获得产业化推广。
此外,作为国内列车用粉末冶金制动闸片的技术开创者,姚萍屏教授攻克了结构设计、闸瓦材料设计、制备技术及制动闸瓦与轮对匹配设计等一系列科学问题,形成了准高速列车制动闸瓦专有技术,通过技术转让,先后培育了浙江乐清粉末冶金厂、新乡铁路摩擦材料厂和苏州华源机车车辆配件有限公司等多家单位进行市场化开发,技术成熟,能迅速投产,目前占有了全国准高速列车粉末冶金制动闸瓦的四分之三市场,形成了“中国铁路延伸到哪里,中南制动材料技术就出现在哪里”的盛况。
立足国需解决航天关键问题
空间对接技术和对接机构是我国航天载人飞行的关键技术,也是今后扩展空间应用能力的一个重要手段。姚萍屏教授承担了国家863项目“空间摩擦副的研制”,作为原创性的高技术应用项目,在姚萍屏教授的带领下,项目克服了无参照、缺平台、时间紧、要求高的困难,解决了苛刻空间条件下摩擦副材料摩擦磨损性能的高稳定性,发现并探明了摩擦材料常用二硫化钼组元在制造过程中的演变规律和对材料摩擦磨损性能的作用机理,设计并制造了模拟空间条件的摩擦磨损性能检测装置,创造性的采用高体积百分比非金属组元获得了高稳定性和抗真空粘着的空间摩擦副粉末冶金摩擦材料配方设计。首次采用一套摩擦副实现了两飞行器对接时制动耗能、可靠传扭和过载保护,解决了飞行器对接过程中的安全保证问题,发明了一种全功能(制动耗能、稳定传扭和过载保护功能)空间摩擦副。
作为空间对接结构的两大关键部件,2011年11月3日,采用姚萍屏教授团队研制的全功能空间摩擦副首次在“神舟八号”飞船与“天宫一号”目标飞行器的完美自动对接中出色完成任务,2012年6月,全功能空间摩擦副再次在在我国载人自动对接和手动对接中表现突出,再一次证明空间对接机构摩擦副具有良好的稳定性和一致性。随着我国空间事业的发展,在每一次空间对接任务中,全功能空间摩擦副都将发挥其关键作用。姚萍屏教授领导的团队使中南大学已成为世界上除俄罗斯外唯一能提供对接机构摩擦副材料的单位。
添砖加瓦推广应用风电材料
粉末冶金材料技术范文3
其他行业,如工业模具和生物医学设备也正在利用这些高度自动化的流程。该流程可降低零件与零件间的变差,减少材料的浪费,并采取更少的步骤。新的流程和多种材料的选择扩大了这些技术的应用,对一些用于商业航空领域的结构部件具有越来越强的吸引力。
汽车产业是粉末冶金(PM)零件最大的消费者,其次是工业发动机和操控系统。金属粉末工业联合会副总裁吉姆·戴尔表示,汽车变速器可能包含多达55个用粉末冶金制成的零件。
GKN Sinter Metals 公司美洲销售和市场营销副总裁克里斯·弗兰克斯告诉我们:“我们看到了用于汽车制造的粉末冶金产品的总量每年在不断增加。我们正在改良材料来开发对特定应用程序更有针对性的加工流程。”
该汽车涡轮增压器的叶轮是由德国巴斯夫公司对GHS-4合金进行Catamold催化离散加工制作而成, 其中含有铁、镍、铬、钼、碳、硅、锰、钒和钨。
使用粉末冶金技术创建近似网型的结构部件的制作工艺可以形成具有高温或者高压强的部件。 挤压并烧结的粉末冶金技术使用高压下的自定义模具制成金属粉末,再通过烧结加热零件。另一种方法是用于制作较大型部件的热等静压(HIP)。戴尔说:“粉末冶金技术制成的零件其尺寸限制在42磅左右。”“大多数粉末冶金技术制成的零件其重量不到5磅。现在,当压力机和应用部件体积变得越来越大时,单个零件的体积也越来越大,重量也越来越重了。”
粉末注射成形技术(PIM),结合了传统注塑机的功能,利用粉末冶金技术的精度和材料的灵活性来制作复杂的几何形状。粉末注射成形技术能够产生介质来高度容纳形状复杂,表面纹理多样,细节错综复杂的一致性组件。组件可以连接几个部件,消减加工步骤并缩短制作周期。
巴斯夫公司北美洲Catamold产品业务经理斯科特表示,粉末注射成形技术最大的应用领域是医疗、消费类电子产品、机械设备、航空航天、汽车和一般消费品行业。他说,巴斯夫公司不断增加对各行业中粉末注射成形技术的调查,调查结果显示其增长率在不断增加。 “越来越多的公司想做精益生产和持续改进,因此他们更仔细的审查粉末注射成形技术,因为它提供了良好的整体价值。”
粉末注射成形技术可以通过合并多个步骤来降低成本,如纹理和标签,或多个部件。贾斯特斯说:“根据不同的应用,当你分析每部件的用途以及它们为何独立时,你也许可以将其设计成一个单一的部部件。”
贾斯特斯说,与其他粉末注射成形工艺相比,巴斯夫公司的Catamold催化离散工艺有三个主要优点。其更快的生产周期,提高了能力,并实现了一个真正持续的加工过程或者批量制造。 他说:“其他非催化粉末注射成形工艺很难实现这一点,因为他们的生产时间太长了。”“当Catamold集中在部件上时,它提供了更好的空间控制和稳定性。不管是什么合金,它都可以更容易地加工绿色生态部件,来增加那些难以加入注射成型的新形状。”
Capstan Atlantic公司凭借该粉末冶金技术制成的合金钢动力输出离合器轮毂,赢得了2012年金属粉末工业基金会工业电机/控制与液压类的优秀设计大奖。这个复杂又多层次的部件,取代了机械加工设计,具有80,000磅/平方英寸的极限抗拉强度和90,000磅/平方英寸的屈服强度,可以承受使用中非常高强度的扭转。
弗兰克斯说,与传统的锻造和铸造工艺相比,粉末冶金材料的设计更加自由。“我们可以将其制成网型来帮助开发减轻车辆重量的新技术和其他节约燃料的技术。”例如,用于大多数汽车应用中可变气门正时技术,先进的行星齿轮和手动变速箱,以及最重要的离合器。否则,这些配置文件和形状需要进行机械加工。
弗兰克斯说,有些形状可以用粉末冶金技术制成,不然将需要进行密集的机械加工,但由于成本、能力和资本等因素,这在工业上是不可行。他说:“如果没有粉末冶金技术,今天很多的汽车创新都是无法实现的。纵观我们服务的所有行业,我们看到它在原始设备制造商和开发粉末冶金技术的企业中越来越多得到认可。”
弗兰克斯说,虽然是一种特殊产品和加工工艺,但铝粉末金属已经不再新奇。GKN看到了用户对扩大其使用的兴趣越来越浓厚,尤其是在汽车领域。在一些依靠粉末冶金技术的产品线上,减轻车辆重量是主要动力。
特别是对使用依靠粉末冶金技术的设计来说,无论是制作其他工艺无法制作的形状还是满足批量生产的需求,粉末冶金制成的铝都是一个很棒的解决方案。“我们还进行材料开发来增加强度、耐磨度和导热系数。”
贾斯特斯说,烧结给金属带来了很多优势,如粉末金属可以很容易地结合,并且在浇注工程中消除金属的偏折问题。
每个粒子都可以被制成独特的或与其它粒子相似化学性质。因此,要么粉末可以被铸成合金,要么所需的材料可熔化在一起作为最终的化学反应,制成颗粒,然后研成粉末。粒径可以被精确控制,带来不同程度的孔隙度。戴尔说:“一旦获得高密度,你将有效地拥有与铸造材料相同的材料性能。”
由于粉量可以控制,单独的部件至部件的重复性非常高,所以模具公差需严格控制。根据部件的大小,每英寸上进行上千次测量。“你可以达到接近机械水平的公差,紧密的无需额外的加工。情况虽不是总是如此,但往往是这样。
弗兰克斯说,与其他金属制造方法相比,粉末冶金技术使用废弃材料的比率很高。它也是一项绿色环保技术,其所有的原料都来自二次废料。
Dynamet Technology公司首席执行官Stanley Abkowitz说,经过铸锭熔炼和加工,去除30%的材料,得到纯锭。“然后,把它加工成一个轧制成品,如金属条、金属板或者薄片等,并从中加工部件提供给客户。成份购买挥发的比例在飞机制造工业根据形状可高达40或50比1。材料越少,机械加工越少,这个比例越低。加工锭的标准比率是在10:1至15:1之间。
戴尔说,在航空航天领域,虽然为了某些部件不断进行改变,但强度要求往往是粉末冶金的一个难题。一个标准的喷气发动机含有4000磅的粉末冶金材料,其中大部分由热等静压制成网形。然后,切断金属条或者钢坯,并将它们加工成发动机组件的最终形状。
贾斯特斯说巴斯夫公司正在开发一些尚未的粉末金属,特别是镍基合金100和713,它们都是面向航空航天领域的。还有大量跨应用程序的工业研究与开发工作。“主要聚点之一是寻找方法可以使用注射成型的手段制造更大的部件,以提高产量并总体改进加工工艺。”
戴尔说,由于材料的固定组合,导致了一些对加工的限制。例如,航空航天组件包含一些极难获得的高温合金,选择它们是由于其性能和强度。例如,镁可以被铸造,钛也可以,但钛很难进行机械加工。几乎所有钛的制作都是由粉末加工开始的。
Dynamet Technology公司是钛粉末冶金技术的领军人。2月,该公司收到来自波音公司的里程碑式的资格认可,为其商用飞机的结构部件提供Ti-6Al-4V合金产品。这一认可是经过几年在开发和认证上的努力工作得来的。
根据材料规范的条款,Dynamet是唯一有合格为商波音民用飞机集团制造 Ti-6Al-4V粉末合金产品的公司。波音公司将开始用粉末冶金制成的合金取代标准机械等级的合金,如金属条、金属板、铸件、锻件和挤压产品。
Dynamet的制造技术生产出基本形状和近似网形的粉末金属钛。它包括混合元素钛和合金粉末的冷凝固和真空烧结。之后可能进行也可能不进行热等静压。Abkowitz说,例如,其节约成本能是轧制产品的机械加工技术的50%~70%。
粉末冶金材料技术范文4
1研制工艺
1.1材料配比与混合
球铰原用材料为耐磨青铜棒材经机械加工而成,成本高且浪费大,更重要的是困扰企业的难题—“烧盘”现象无法根治,由于该件工作条件较为苛刻,在新材料选材时选择强度较高、硬度和耐磨性较好且成本较低的铁基粉末冶金材料。经多次试验,选定Fe-P-C-Cu系,P是一个显著的强化元素,P的加入有效提高材料强度和尺寸稳定性,Fe-P-C系性能较广泛应用的Fe-2%~3%Cu-C合金优越,而微量Cu对轴向承压变形的改善显著[2]。
混合料的配比(质量分数)为:余量Fe-0.8%~1.2%Cu-0.4%~1.2%C<3%添加剂,其中Fe粉为雾化铁粉,粒径小于178μm;Cu粉为电解粉,粒径小于74μm;C粉为鳞片石墨,均符合相关国标的技术要求。添加剂为质量分数0.8%硬脂酸锌,质量分数0.5%硫磺粉<150μm;机油按粉料0.65mL/kg加入;混料采用V型混料机,时间2.5h。柱塞泵球铰质量要求较高,在保证高强度和耐磨性的同时,要求有良好的抗咬合性和一定的尺寸精度,为了保证各类指标的稳定性,配料时应严格控制各成分的加入及均匀性,加入机油湿混,避免铜成分偏析和粉粒大小的分层现象及添加剂硬脂酸锌和硫造成的团聚现象[3],粉料混好后应过筛,粒径小于178μm。
1.2粉末的压型
装粉。为提高压型质量和效率,采用容量法刮料式装粉,其优点是装粉速度快,压件一致性好。压型压力为400MPa,密度为6.4g/cm3。
整型与精整。为了节约原材料和提高后加工效率,成型内孔只留精整量,一次精整到尺寸无切削工艺,并使小端面球面成型,以保证球面的密度,留少量加工量。此时保证所成型球面密度值得研究,大量试验及参考文献[4]证明,压制时成型球面在上是确保球面密度的关键。整型工艺以FTQ-40球铰产品为例:烧结后毛坯放在整型座上,整芯置于马蹄铁上,便于脱模操作,整芯中间30mm为整型尺寸,为毛坯整型留量而设定,考虑到整型回弹等因素,整芯尺寸比工件最终尺寸公差大0.07mm,整芯两端带稍:下端为导向部分,利于整型定位,上端为脱模部分,利于整型移出模后,整芯自动脱模,简化了整型模具和整型工序,因而大大提高生产效率,是传统外箍内胀工艺效率的3~4倍。
1.3粉末的烧结
烧结设备采用半自动推杆式烧结炉,将粉末压坯装在铁皮舟中送入炉内,且每舟装入质量严格控制并无规则装入,以便毛坯之间有足够空隙实现均匀烧结。烧结气氛采用吸热性煤气保护,组成(体积分数):20%N2+40%H2+20%CO及少量的H2O、CO2与CH4。露点范围为-5~15℃。烧结工艺:加热温度为(1080±5)℃;保温时间为45min。
1.4后加工工艺
由于球铰球面要求非常高,用粉末冶金工艺无法达到设计要求,因而采用基本成形留加工余量、对工件毛坯进行机械加工的方法。采用成形刀加工球面,优点是操作简单、效率高,但问题较多,其中关键问题:1)由于该材料为耐磨材料,对刀具磨损严重,需经常换刀,尺寸精度无法控制;2)由于成形刀工作时为线接触,切削力非常大,导致“打嘟噜”现象,不但对刀具消耗非常大,并导致大批废品;3)成形刀因加工过程中切削阻力大,刀具发颤,使工件表面粗糙度差,造成后续球面精磨加工无法保证。通过不断摸索和大量试验,最终确定用改造的单板机数控车床对球面进行加工,方法是内胀胎定位、编程控制走刀,产品图见图2。首先进刀车小端面并退刀车小端球面,其次根据球心至大端面距离,进刀至大端面位置车大端面并车大端球面,程序控制,一气呵成,使加工质量大幅提高:1)尺寸一致性非常好,为后续精磨打下良好基础;2)表面粗糙度很好,精磨量缩小,有效提高后加工效率和质量;3)两端面及球面一次装卡完成,形位公差保证良好;4)刀具磨损小,减少换刀次数,提高工作效率;5)废品率几乎为零。精磨加工采用厂家自制专用磨床加工,用专用工装需要良好的一致性,本研制工件良好的满足了加工要求。另外,制件的防锈与包装不可忽视,除操作避免汗渍接触工件外,工件经检验合格后,应立即浸油并在油内加入成分石墨和防锈成分亚硝酸钠,油温为80~100℃,工件浸煮15min后控油,用牛皮纸包裹放入塑料袋内封口装进包装纸箱,入库并防潮。
2试验结果
2.1检验结果
柱塞泵粉末冶金球铰(见图2)的材质、尺寸精度和力学性能等进行了系统检验,化学成分(质量分数):C为0.49%,Cu为1.08%,Fe为94.95%。物理及力学性能:密度≥6.6g/cm3,硬度≥90HB,压溃强度≥300MPa。尺寸精度:准28尺寸偏差标准要求f7(-0.020-0.041)mm,实测(-0.023~-0.020)mm;准14尺寸偏差标准要求H9(+0.0430)mm,实测(0.030~0.035)mm;球中心距标准要求(6±0.15)mm,实测(-0.07~+0.09)mm;大端与准14的垂直度准,标准要求0.05mm,实测(0.02~0.03)mm;外圆与内孔准14的同心度标准要求0.08mm,实测(0.02~0.03)mm;准28球的圆度标准要求0.02mm,实测0.01~0.02mm;粗糙度标准要求Ra0.8μm,实测Ra0.8μm。球铰的防锈:标准要求球铰成品应渗渍油。并允许加入无害于柱塞泵性能的防锈剂,实测合格。球铰的外观质量:标准要求不允许有裂纹、夹杂及锈蚀等缺陷,实测合格。柱塞泵粉末冶金球铰经检验,各项技术指标符合Q/JYY032—2001《柱塞泵粉末冶金球铰技术条件》的要求,为合格产品。
2.2台架强化试验
将样件安装在两台XB-F40泵试验机上,条件:1)在P=25MPa下,运转1.5h;2)在P=20MPa下,冲击试验200次,运转正常,试验完毕拆检零件,铰副摩擦、磨损痕迹正常。
2.3装机可靠性、耐欠性试验
在XB-F40泵上装试件数件,已经历两年半超过5000h未发生任何异常现象,经批量使用,本粉末冶金球铰各项性能指标达到要求,与原用青铜合金QSn6-6-3材料相比,抗咬合等指标均有所提高,根除过去存在的“烧盘”现象。
3结论
1)用粉末冶金方法生产柱塞泵球铰在XB-F40泵上试用获得成功,完全可以替代原用青铜合金材料球铰。
2)本研究Fe-P-C-Cu系粉末冶金球铰材料,力学性能良好,特别是抗咬合性能突出,可有效解决“烧盘”问题。
粉末冶金材料技术范文5
【关键词】激光焊接技术;原理;应用
一、激光焊接技术的基本原理
激光焊接就是以激光为热源进行的焊接。激光是一束平行的光,用抛物面镜或凸透镜聚光,可以得到高的功率密度。与电弧焊接的功率密度102~104kw/cm比较,聚集的激光束可以得到105~108kw左InZ的功率密度。用功率密度高的热源进行焊接,可以得到熔深较大的焊缝。激光焊接可以得到与电子束焊接同样熔深的焊缝。激光焊接可使表面温度迅速上升,激光照射完后迅速冷却,可以进行熔融或非熔融的表面处理。当功率密度大于103kw/c耐时,可进行熔深较大的焊接。这时,在大气中熔融金属容易被氧化。因此,要用Ar、He、CO,等气体密封焊接部位。尤其是提高功率密度时,瞬间从光束中熔融金属被排出,这时若辅以高压气体吹扫,可促进熔融金属排出,适宜进行开孔或切断。激光焊接最大的特点是选择适合的焊接材料和功率密度,可以得到稳定的焊接形态。激光焊接有两种基本方式:传导焊与深熔焊。这两种方式最根本的区别在于:前者熔池表面保持封闭,而后者熔池则被激光束穿透成孔。传导焊对系统的扰动较小,因为激光束的辐射没有穿透被焊材料,所以,在传导焊过程中焊缝不易被气体侵人;而深熔焊时,小孔的不断关闭能导致气孔的产生。传导焊和深熔焊方式也可以在同一焊接过程中相互转换,由传导方式向小孔方式的转变取决于施加于工件的峰值激光能量密度和激光脉冲持续时间。激光脉冲能量密度的时间依赖性能够使激光焊接在激光与材料相互作用期间由一种焊接方式向另一种方式转变,即在相互作用过程中焊缝可以先在传导方式下形成,然后再转变为小孔方式。可以调节激光焊接过程中各因素相互作用的程度,使得小孔建立以后能够在脉冲间歇阶段收缩,从而减小气体侵入的可能性,降低气孔产生的倾向。
二、激光焊接技术的应用领域
(1)制造业领域。20世纪80年代后期,千瓦级激光器成功应用于工业生产,而今激光焊接生产线已大规模出现在汽车制造业,成为汽车制造业突出的成就之一。90年代美国通用、福特和克莱斯特公司竟相将激光焊接引入汽车制造,尽管起步较晚,但发展很快。日本的本田和丰田汽车公司在制造车身覆盖件中都使用了激光焊接和切割工艺,高强钢激光焊接装配件因其性能优良在汽车车身制造中使用的越来越多。(2)粉末冶金领域。随着科学技术的不断发展,许多技术对材料有特殊要求,应用冶铸方法制造的材料已不能满足需要。由于粉末冶金材料具有特殊的性能和制造优点,在某些领域如汽车、飞机、工具刃具制造业中正在取代传统的冶铸材料,随着粉末冶金材料的日益发展,它与其它零件的连接问题显得日益突出,使粉末冶金材料的应用受到限制。在20世纪80年代初期,激光焊以其独特的优点进入粉末冶金材料加工领域,为粉末冶金材料的应用开辟了新的前景,如采用粉末冶金材料连接中常用的钎焊方法焊接金刚石,由于结合强度低,热影响区宽特别是不能适应高温及强度要求高而引起钎料熔化脱落,采用激光焊接可以提高焊接强度以及耐高温性能。(3)电子工业领域。激光焊接在电子工业中,特别是微电子工业中得到了广泛的应用。由于激光焊接热影响区小,加热集中迅速、热应力低,因而正在集成电路和半导体器件壳体的封装中,显示了独特的优越性,在真空器件研制中,激光焊接也得到了应用,。传感器或温控器中的弹性薄壁波纹片其厚度在0.05~0.1mm,采用传统焊接方法难以解决,电弧焊容易焊穿,等离子焊稳定性差,影响因素多,而采用激光焊接效果很好。(4)生物医学领域。生物组织的激光焊接始于20世纪70年代,Klink等及Jain用激光焊接输卵管和血管的成功及显示出来的优越性,使更多研究者尝试焊接各种生物组织,并推广到其它组织的焊接。有关激光焊接神经方面,目前国内外的研究主要集中在激光波长、剂量及对功能恢复及激光焊料选择等方面,刘铜军在激光焊接小血管及皮肤等基础研究的基础上又对大白鼠胆总管进行了焊接研究。激光焊接方法与与传统的缝合方法比较,激光焊接具有吻合速度快,愈合过程中没有异物反应,保持焊接部位的机械性质,被修复组织按其原生物力学性状生长等优点,将在以后的生物医学中得到更广泛的应用。(5)其他领域。在其他行业中,激光焊接也逐渐增加,特别是在特种材料焊接方面,我国进行了许多研究,如对BT20钛合金、HE130合金、Li-ion电池等激光焊接。德国玻璃机械制造商Glamaco Coswig公司与IFW接合技术与材料实验研究院合作开发出了一种用于平板玻璃的激光焊接新技术。
参 考 文 献
[1]游德勇,高向东.激光焊接技术的研究现状与展望[J].焊接技术.2008(4)
[2]杨春燕.激光焊接技术的应用与发展[J].西安航空技术高等专科学校学报.2008(5)
粉末冶金材料技术范文6
关键词:铁基粉末冶金;铁铝合金化合物;热处理工艺;显微组织;力学性能;耐磨性
中图分类号:TF125.1 文献标识码:A 文章编号:1006-8937(2015)24-0009-02
气门座作为发动机中一个主要零件之一,主要是通过与气门的相互协调作用,在配气的机构里共同来起到一个密封气缸的作用的。粉末冶金技术由于它的相对简单性,使得它能够适用于许多不同情况下的生产要求。本次试验就是通过参考日本五十铃公司的气门阀来进行相关研究并进行开发的。试验以获得与之相似的高性能和低成本的粉末冶金的气门座的材料为目的。
1 试验材料及方法
1.1 试验材料
本实验的基体元素是粉末状的雾化铁,并在这一基本元素中通过适量的添加C、Cr、Co、Si、Ni以及Mo等合金粉来进行强化作用,并使用微粉蜡来充当剂。在本次试验中,通过进行一系列的相关的性能检测和分析得出的最终用于试验的相关化学材料的成分,见表1。
1.2 实验方法
在配置试验用材料的过程中,将高碳铬铁粉(主要成分包括wt%:Si 2.3、Cr 65、C 7.2、S 0.02、P 0.03)作为基准,如有不足再使用其他粉末予以补足。再通过粉末的称量、研磨、球磨、以及压制来制作并准备试样。首先将制备好的试样放置在试验用的ZT-18-22型的真空碳管炉中,在处于温度为200以上800 ℃以下的温度中烧结30 min,随着温度升到800以上1 200 ℃以下时烧结20 min,当温度上升为1 200 ℃时停止烧结并保温一个小时再随之冷却,在最后进行油淬以及回火这一程序之前,再将试样经1 100 ℃保温30 min:其中回火这一工艺主要分为两种,将试样放置在350 ℃下保温超过2 h后再将其放置在600 ℃温度中保温1 h,最后再将试样进行空冷,这叫低温回火;而高温回火工艺是将试样在650 ℃下保温1 h,然后进行空冷。
2 实验结果与分析
2.1 烧结对试样的组织结构的影响
试样烧结后可以清晰的看到组织中存在着一些孔隙,但总体组织还是拥有很致密的结构的。经过烧结之后的材料形成了奥氏体化,它的内部的组织结构主要包括奥氏体、晶内的以及晶界上分布的碳化物和合金化合物,而正是这些组织中分布的碳化物才能有效的对材料的耐磨性发挥良好的促进和强化作用。
2.2 压制的密度对烧结过程所产生的影响
当试样的密度为6.9 g/cm3时经过烧结后所产生的孔隙相对较少,组织结构也较为致密,烧结颈也随之长大,并通过粉末颗粒间的相互结晶作用以使其达到一个完全融合的状态,这就表明在烧结的过程里,试样的烧结颈已经处于一个基本完成的状态。而当试样的密度处于6.6 g/cm3的时候,当试样经过烧结,就会产生很多的孔隙,虽然,烧结也可以使其达到一个合金化的过程,但是,由于压制时的密度不够,势必会产生大量孔隙,从而使其不能在烧结的过程中达到一个完好结合的状态。那为什么当密度降低的时候会对烧结的进行产生不利呢?主要原因是,密度的增大会使得磁力线也增加,而在这一增加的过程中所产生的大量热量会对烧结产生促进作用。
2.3 回火针对试验样本的组织结构以及相关性能所产生
的影响
2.3.1 中温回火组织特征
将铁基粉末的冶金材料在350℃的温度中进行保温2 h,然后在将其放置在550 ℃的温度中保温1 h,最后进行回火工序所得到的组织,我们称之为回火索氏体。它们分别是试样4和试样5的回火组织,如图1所示。
通过对图的观察,我们可以从中得出,经过350 ℃保温2 h后,再经过550℃保温回火后的组织体中的细粒状的渗碳体的分布,这种组织就是具有高弹性和高屈服性以及柔韧性的回火托氏体。我们可以看到,将试样进行回火之后硬度大部分是处在HRC35~45这一范围的,见表2。而这一硬度范围正是与回火托氏体完全一致的。
2.3.2 高温回火后的相关组织特性
铁基粉末冶金材料经650 ℃保温1 h回火后组织均为回火索氏体。试样经过回火后所形成的金相组织,如图2所示。从上图中我们可以得知在材料经过650 ℃温度保温1 h后会产生一些分布在机体组织上的碳化物的细小颗粒,而正是因为回火索氏体的相关组织形态和马氏体的组织形态具有一定的相似性,所以我们可以得出,粉末冶金材料相对来说具有良好的回火的稳定性这一结论。经过高温回火后试样的洛氏硬度值(HRC)也明显呈现出一个降低的状态,如表3。回火是以消除残余的奥氏体,清除残余的应力为目的的,将残余的奥氏体进行转化,势必会降低组织体的硬度,但,相反的,组织的稳定性却可以有所增强,从而完善了粉末冶金材料的综合性能。
2.4 碳的含量对试验样本的回火性能所产生的影响
让材料在经过350 ℃的2 h的保温后在进行600 ℃的1 h的保温的目的主要是想避开珠光体的400~550 ℃转变温度,从而让组织在受热均匀后直接升至600 ℃,使之成为回火马氏体。回火这一工序主要是起到一个提高组织稳定性,消除残余的奥氏体和残余的内应力这一作用,它能增强维持工件在使用过程中的物理形状及性能,增强使用过程中的稳定性,从上图可知,因为组织在进行回火后孔隙增加,进一步完善了组织,不仅保有了硬度,还提升了韧度,测试得知,材料组织的孔隙处于7.5%~10%这个范围,而试样的硬度则显示为HRC35范围左右,而硬度值和材料孔隙率呈现一种反比的关系,见表4。通过查阅相关资料我们可以从中得知,在影响试样的硬度的相关因素中,孔隙的形状对其影响不大,主要影响因素还是材料的孔隙程度。通过上表我们可以看出,当将试样经过回火进行处理之后,洛氏硬度会降低,而这一现象的主要原因在前文已经进行了阐述,因为消除了残余的应力,重组组织颗粒,降低材料的硬度。
3 结 语
①在本次试验的条件下,通过增加钼、铬等相关合金的元素借此来增加材料自身的高温硬度,并通过烧结使之形成晶内和晶界上分布的少量碳化物以及合金化合物从而使材料的耐磨性得以提高。
②在本次实验中最优的合金成分的组合是:5.27Co-2.19Cr-1.69Si-4.0Mo-0.53Ni-0.2C-余Fe。
而在工艺的参数中最佳为:1 200 ℃温度中1 h的烧结,在1 100 ℃的温度中的油淬火,以及在600 ℃中的回火;回火后检测组织的硬度值(HRC)分别是36.3和38。
③如果淬火温度较低,那么碳化物由于相对稳定性就会难以溶解,此时,对组织的硬度所产生的影响并不大,而当温度的增加,化物的溶解也随之加快,因此,提高淬火温度可以一定程度地提高烧结体的硬度。
参考文献:
[1] 杨学明.内燃机气门座材料的开发与应用[J].武汉汽车工业大学学报,1998,(3).
[2] 李绍忠.高性能烧结合金钢阀座的研制和应用[J].汽车工艺与材料,1993,(3).