高分子材料与工程研究方向范例6篇

前言:中文期刊网精心挑选了高分子材料与工程研究方向范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

高分子材料与工程研究方向

高分子材料与工程研究方向范文1

湖北大学材料科学与工程学院成立于2006年3月,由原化学与材料科学学院和物理与电子科学学院的部分专业组建而成。

学院现有2个湖北省重点学科,包括材料科学与工程一级学科和高分子化学与物理二级学科湖北省重点学科;一个材料科学与工程博士后流动站, 一个材料学博士点,一个材料科学与工程一级学科硕士点和一个高分子化学与物理二级学科硕士点;一个省级重点实验室,高分子材料湖北省重点实验室和一个湖北省高分子材料中试基地。

湖北大学材料科学与工程学院,经过多年的建设与发展,在科学研究方面形成了四个稳定而有显著特色的研究方向:功能性聚合物合金材料、乳液高分子材料、光电功能材料和无铅铁电压电材料。

(来源:文章屋网 )

高分子材料与工程研究方向范文2

关键词:高分子材料与工程;特色化;人才培养模式;林业院校

中图分类号:G640 文献标识码:A 文章编号:1002-4107(2015)10-0066-02

随着科技的不断进步,各国都在不断创新和研发新的材料,而每一种新材料的使用,都能够引起一次技术上的重大变革,而这种变革可能是世界性的。现代人类社会的“三大支柱”领域分别为材料、能源和信息。正是在这种背景下,高分子材料与工程专业在短短的二十年时间内发展迅速。1998年,教育部调整了高等学校本科专业目录,将与高分子材料相关的工科类专业统一为高分子材料与工程专业。教育部出台的专业建设指导精神明确指出,要重点发展高分子材料产业[1]。

东北林业大学高分子材料与工程专业,始建于2000年10月,专业的建立基于东北林业大学木材科学与技术学科在天然高分子材料的加工与利用等条件成熟的基础上,由我国木材胶黏剂领域知名专家顾继友教授组织创办。在十几年的不断实践探索中,建立了具有自己特色的人才培养模式,并依托东北林业大学的发展平台,明确培养目标,凸显了林业院校的特色和优势,培养了一大批兼具知识、能力和实践动手能力的高素质人才。

一、依托院校优势,打造品牌专业

东北林业大学创建于1952年,是国家“211工程”和“优势学科创建平台”项目重点院校。学校是以林科为发展优势,以林业工程为办学特色的综合性大学。高分子材料与工程专业在建立之初就显示出专业的优势,它是在天然高分子开发利用、生物质复合材料、高聚物合成、合成树脂胶黏剂的开发等领域都较成熟完备的基础上发展起来的,具有厚基础的专业优势。专业发展迅速,于2003年获批建立“生物材料工程”博士点学科,2006年该学科被评为黑龙江省重点学科,2010年进入“985”优势学科平台建设行列,目前是东北林业大学的重点专业。专业涵盖了胶黏剂、生物质复合材料、天然与合成高分子材料和生物质功能材料四个具有学科优势和特色的方向。其中胶黏剂是本专业的主要特色,尤其是木质基材料用胶黏剂的研究、开发和推广方面处于世界先进、国内领先的行列;专业的另一个特色是生物质复合材料的研究,尤其是在木塑复合材料、木质素、蛋白质、淀粉等生物质材料的开发利用方面具有较大优势。

高分子材料与工程专业为黑龙江省重点专业,教学理念先进,师资力量雄厚,具有丰富的教学管理经验,本专业有三门课程“胶黏剂与涂料”、“生物质材料”和“材料科学与工程基础”入选东北林业大学重点课程建设项目。东北林业大学作为林业院校的领跑者,有着林业院校的优势。为此,东北林业大学高分子材料与工程专业在人才培养模式的制定上以林业院校优势为依托,支撑学科“生物材料工程”在科研方面以天然高分子为核心,以生物质复合材料、胶黏剂、天然与合成高分子材料以及生物质功能材料四个特色研究方向为重点。与之相适应的专业人才培养模式既注重高分子材料与工程专业的基础,更体现林业院校相关专业的优势特色。在近十几年的人才培养过程中,专业也在不断的调整修订人才培养方案,既重基础,又宽口径,注重素质和能力培养,突出林业院校品牌专业的特色和优势。

二、特色化人才培养模式的构建

人才培养模式作为高等院校人才培养活动的实践规范和基本样式,是高等院校对本科人才培养目标、培养过程、培养途径以及培养方法等要素的综合概括。随着目前人才市场化程度的日益高涨,如何造就适应社会需要的应用创新型人才是亟待解决的难题[2]。不同的学校、专业应根据人才需求、本身专业特色以及学校优势等方面探索一条适合自己的人才培养模式,并且要经过一定的实践检验,千万不能照搬照抄、生搬硬套。

在人才培养目标的定位上,我们总结了一些地方院校人才培养的偏差,积极探索出“强化基础、因材施教、分类培养”的指导思想,考虑到学生的基础水平,发展方向、内在潜质,按照发展方向和个人选择的不同对学生进行分类,大致分为就业、继续深造、出国深造等几种类型,以此为前提在课程设置、实践动手能力、毕业论文和设计、教师培养等方面进行适当的改革,使培养出的学生知识结构广泛,基础扎实,动手能力强,能在聚合物合成、胶黏剂、生物质复合材料等领域从事生产、开发研究、管理的工程技术人才,探索出一种具有特色的人才培养模式。

三、特色化人才培养的具体措施

(一)规范培养过程,提升教育实力

学科之间的相互影响与渗透逐渐成为发展趋势,通过各学科之间的彼此渗透,相互关联成更大的、完整的学科体系[3]。这就要求现代大学教育要有更广博的知识背景,更敏捷的思维创新能力及开阔的学科视野。只有在大学科平台上和开放的学习氛围中采用灵活创新的教育模式,才能完成创新人才培养的目标要求[4]。

为满足国家林业科技的战略需求、学校建设高水平特色大学的要求以及社会对不同人才的需求,东北林业大学重点突出“林产”特色,构建相关的学科课程体系。本着厚基础、宽专业的主导思想,构建学科基础课;结合专业方向的特色,构建专业基础课和特色课程;同时完善交叉学科的渗透,构建开放性的选修课程,学生可自由选修,实现资源共享。学校和学科带头人广泛听取学生意见,制定了一系列切实可行的专业管理制度,加快重点专业建设步伐;加强教师队伍建设,构建专业教师团队;聘请国内外专家教授、学者定期在学院及学校范围内进行专题讲座;鼓励学生进行创新思维训练,以专业教师牵头,鼓励学生自主开发,大胆创新,认真观察;创建具有自己学科发展特色的高分子材料与工程创新实验室,建立以专业教师牵头,本科生为主体的创新训练团队,在保证验证性和设计性实验教学的基础上,增加本科生专业技能综合训练;从大一新生开始实行“导师制”,提倡因人施教,对学生进行启发式教育,鼓励学生开展批判式学习,用与时俱进的思想运用知识,用发散的思维研究知识[5]。

(二)产学研相结合

“产学研结合”是东北林业大学高分子材料与工程专业培养创新型人才的重要途径。“产学结合”是指学生的毕业设计和毕业论文来自于生产实际,学生通过走进工厂、校企合作单位帮助解决生产实际问题。一方面锻炼了学生实际解决问题的能力,培养了独立解决问题的意识,凡事不再依赖教师、依赖课本,是完全意义上的实践;学生通过实习较早地熟悉了工作岗位,积累了工作经验,对待就业问题不再盲目,缩短了学生适应工作岗位的时间。另一方面,工厂在实际生产中也遇到各种各样的问题,新鲜血液的注入也为企业解决了遇到的实际问题,节约了用人成本,并在经济效益方面有所收获。“研学结合”是学生的毕业论文或毕业设计选题大部分来源于指导教师的研究课题,导师的课题研究具有前瞻性及实践性,学生通过参与导师课题,导师指导学生更直接、更具体,锻炼了学生的科研能力,对于继续深造或是出国留学的学生来说锻炼了他们的创新思维能力和科学素养。结合科研实践培养专业人才是专业建设大力提倡的,专业教师积极以科研带动教学,以教学促进科研,学生积极参与教师课题研究工作对学生未来的发展大有裨益。

(三)突出专业实践特色建设

高分子材料与工程专业的特色是培养学生的实践能力和较强的创新意识,实践能力的培养不仅仅在课堂和实验室,高质量、充分的专业实践是人才培养必不可少的重要环节。在实践教学中,学生可以到企业现场观摩,根据企业现有的生产条件将理论和生产结合,学生将学习的书本知识融会贯通到实践中,同时在理论的指导下,学生撰写实习报告反馈实习内容。学校非常重视实践教学,出台了一系列的制度方案,健全实习质量保障体系。为此,专业积极拓展实践基地,依据指导教师的特长进行分工指导,邀请具有培训经验的一线工程技术人员进行现场讲解和模拟。学生的整个实践环节与毕业论文和设计紧密结合,实践过程为论文的撰写提供第一手资料,也锻炼了学生解决实际问题的能力。总之,不断探索高等学校专业与社会实践有机结合的长效机制,建立健全校外实践基地,是学生磨炼意志、增长才干、理论与实践相结合的重要载体。

无论是林业院校还是各类地方高校,都在努力地积极探索高分子材料与工程专业特色化人才培养的模式,东北林业大学在特色化人才培养方面也在不断实践中,既结合了传统的专业优势,又不断挖掘新思路、新方法、新观念,这是知识经济时代对人才培养的需要,也是林业院校人才培养的需求。

参考文献:

[1]中华人民共和国教育部高等教育司.普通高等学校本科

专业目录和专业介绍(1998年颁布)[Z].北京:高等教

育出版社,1998.

[2]周泉兴.人才培养模式的理性思考[J].高等理科教育,

2006,(1).

[3]曹赛先.一流大学的大学科观[J].当代教育论坛,2004,(1).

[4]陈峥滢,秦毅红.大材料学科研究性学习和创新能力培

养研究[J].理工高教研究,2010,(1).

[5]熊建辉,付刚.林业特色学校的世界一流大学建设之路

高分子材料与工程研究方向范文3

关键词 现代高分子科学 创新意识 教学改革

中图分类号:TQ311 文献标识码:A

随着科学技术的不断进步,越来越多的领域中都采用高分子材料来取代原来的金属和无机非金属材料,使得高分子材料在工业、军事及人们的衣食住行等领域都受到了广泛的应用。而高分子材料的制备及加工成型离不开高分子科学的基本原理和方法,因此,高分子科学成为目前化学领域最热门的学科方向之一。高分子科学作为一门将化学、材料结合在一起的交叉学科,渗透到各个学科和行业。随着高性能高分子材料的不断开发,高分子材料在各种不同领域的应用也越来越广泛,生产企业及社会对高分子学科方向的高素质复合型人才的需求也越来越大。《现代高分子科学》是我校化学专业硕士研究生的一门重要的专业学位必修课程,是一门将《高分子化学》与《高分子物理》的基本原理和方法结合在一起的综合性高分子课程,主要内容包括高分子合成的基本理论和方法、聚合反应机理以及高分子材料加工的基本原理及应用等,其中以高分子化学的讲授为主。课程内容多、理论性强、抽象概念和数学推导繁多,且仍处于不断丰富和发展中,致使理论教学面临严峻挑战。

近年来,科技的发展促使新型的高性能高分子材料不断出现,产品更新换代速率加快,要求从事高分子学科的技术人员具备更强的综合能力及较高的创新性思想。因此在本课程的理论教学中,继续采用传统的高分子科学教学体系,很难适应现代社会发展对复合型、创新性人才培养的要求。在这种形势下,必须对高分子科学的教学内容进行改革,加强对学生创新能力以及分析和解决实际问题能力的培养,才能适应社会发展对人才培养的需要,达到培养高素质创新型人才的目的。本文介绍了我校在《现代高分子科学》教学内容和教学方法等方面的具体改革措施,根据我校化学专业的特点确定教学内容,并结合高分子学科领域最新科研进展及工业生产实际讲授高分子的基本合成方法、反应机理及加工成型的基本原理和应用,其目的是使学生牢固掌握并灵活运用高分子科学的基本原理和方法,为在高分子材料相关领域从事研发和解决实际工程问题奠定坚实的基础。

1根据专业特点,合理安排教学内容

现代高分子科学的主要内容涵盖了高分子化学以及高分子物理的重要知识点,包括高分子的合成方法、反应机理、聚合物的结晶及力学性能等。概念多,公式多,反应机理及动力学模型多,内容抽象,再加上课堂教学总学时偏少,要将所有重要知识点讲清讲透的难度非常大。因此,在教学过程中如何根据本校化学专业的特点合理安排课程内容成为本课程教学改革要解决的首要问题。对于课程的重点、难点及成熟理论可适当详细讲解,而对于聚合实施方法等相对容易的内容,则可以让学生自学,从而可以实现在有限的时间内把重点、难点内容讲深讲透的目的,增强教学效果。例如,在高分子化学的内容中,缩聚和自由基聚合是两大类聚合反应的代表,同时也是后续一些专业选修课程的理论基础,因此对其这两类聚合反应的机理及反应动力学可进行重点讲解。另外,也可重点介绍与我校化学专业精细化工研究方向关系密切的知识点,例如定向配位聚合、连锁聚合中的阴离子聚合等。

2实行互动式、形象化教学,提高学习兴趣

现代高分子科学是在有机化学的基础上紧密结合数学、物理等学科的一门理论性学科。同时,它也是一门实践性非常强的学科,其内容包括许多合成反应机理和反应动力学模型。在学习过程中,同学们普遍表示很难理解那些比较枯燥的推理过程。因此,在教学过程中如何提高同学们的学习兴趣,增强其求知欲,变被动学习为主动学习,是在课程教学过程中需要解决的重要问题之一。

“兴趣是学习最好的老师”。只有当学生带着浓厚的兴趣去学习,才会使“要我学”变为“我要学”,学生才会主动探索看上去比较枯燥理论的内在联系和思考所遇到的问题[4-5]。把枯燥的理论与丰富多彩的图片以及直观生动的动画或视频结合在一起,有利于激发学生的求知欲望和学习兴趣。例如,在讲解“绪论”部分时,首先让大家介绍一下平时的衣食住行中与高分子有关的物质,简单介绍其特点及对人类生活及国民经济的影响,并准备一些相关产品的图片,如汽车轮胎、碳酸饮料瓶、微波炉餐具等,让同学们对高分子及其应用有初步了解,激发同学们的学习兴趣。

另外,为了进一步提高课堂教学效果以及学生的学习效率,可以采用一些比较具体、形象的内容来代替平淡的文字描述。例如,可以采用成语典故“成也萧何,败也萧何”来介绍聚合实施方法,以本体聚合为基础,比较各种不同聚合实施方法的优缺点。本体聚合的最大问题是在反应后期体系粘度会快速增加,导致反应釜内的聚合热难以排出,从而出现自动加速效应,易引起爆聚等问题;而在溶液聚合中,通过添加一定量的溶剂来解决体系粘度大和聚合热难以排出的问题。但加入溶剂也会带来一些新的问题,例如由于反应物浓度降低而引起聚合速率下降、聚合效率降低,而且溶剂的回收也会造成生产成本的增加,那么这个溶剂就是所谓的“萧何”。引入类似的典故,可以将书本中某些枯燥乏味的反应机理等内容转变为能引起学生兴趣的内容,进一步加深学生对重点和难点内容的理解。

3结合学科最新进展,穿插介B高分子科学研究的热门领域

在课堂教学中,不仅要把书本上的知识传授给学生,还要让学生了解和掌握本学科的发展动向及趋势。因此,任课教师必须不断更新自己的知识,密切追踪本学科的世界前沿,掌握其最新发展动向,从而在课堂教学的过程中穿插介绍高分子科学领域的热门方向,激发学生进一步学习的热情。例如,在介绍定向配位聚合的相关内容时,可介绍由于定向聚合催化剂而获得诺贝尔化学奖的科学家齐格纳、纳塔发现定向聚合的过程。然后可进一步引深介绍由于发现导电高分子而于2000年获得诺贝尔化学奖的白川英树、黑格尔以及狄米德。并结合近年刚获得诺贝尔化学奖的超分子化学,介绍目前高分子领域发展的新方向,比如超分子与高分子的自组装、艺术性高分子等,让学生对本学科领域的前沿和热门领域有一个初步的了解,扩大学生的视野和知识面,提高其综合能力。

4结束语

在课堂教学改革中,对教学内容和教学方法的改革是其中最重要的手段之一。现代高分子科学课程作为我校化学专业研究生一门非常重要的必修学位课,其理论性非常强,包含许多非常抽象且难以理解的概念,因此,任课教师需要不断优化课堂教学内容,结合多种教学手段,从而提高课堂教学的生动性和交互性,将学生的被动学习变为主动学习,为真正培养高素质的复合型、创新型人才奠定坚实的基础。

基金项目:长沙理工大学研究生教研教改项目(编号:JG2015YB11,JG2014ZD04)。

作者简介:张跃飞(1974-),男,湖南邵东人,博士,教授,主要从事高分子科学相关课程的教学及高性能高分子材料的研究。

参考文献

[1] 张安强,刘海敏,王炼石.具有工科特色的《高分子化学》课程教学改革初探[J].高分子通报,2012,(12):91-94.

[2] 郝智,伍玉娇,罗筑,黄彩娟.高分子化学课程教学改革与实践初探[J].高分子通报,2012(5):116-118.

[3] 徐晓东.非高分子专业《高分子化学与物理》教学中的几点体会[J].高分子通报,2010(5):74-78.

高分子材料与工程研究方向范文4

【关键词】塑料材料,导热性能,填充材料

Abstract: This article is read in the literature, newspapers and network retrieval, based on the analysis and summarization of characteristics, understand, conductive plastic material application, development, through the application of field data and the present situation of plastic heat conduction material. Study on dynamic thermal plastic material in the present stage of our country, to obtain the relevant theories and related data. The thermal conductive plastic materials are increasingly focused on environmental protection, green, efficient direction.

Keywords: Plasticmaterials; Thermal conductivity; Filling

一、概念

塑料材料是一种聚合物,也被称为聚合物或大分子,通常被称为塑料或树脂。这样的聚合物是由小分子多具有结构简单和低分子量的优点,通过共价键结合的形式。有不少品种的聚合物,如果只是分类热的变化,它可以简单地分为两类。塑料为我们带来的方便真的是太多太多了,不用一一例举看看我们身边的物质。假如我们离开了塑料将会是什么情况。

二、分类

按用途来分的话,塑料可分为通用塑料、工程塑料和特种工程塑料三种,性能和价格都是按顺序逐渐上升的。最常见的是通用塑料,性能也是最普通的,它包括了ABS和PE还有PVC等等,价格在20元/KG左右。然而工程塑料价格较高,一般在20-100元每千克不等。特种工程塑料的话,性能就是相当高级了,几乎能满足各种苛刻的要求,其多半运用机、航天飞船、坦克等。

三、导热性塑料材料导热塑料材料的研究

大多数的塑料材料是饱和的系统程序,没有自由电子,热传导主要取决于晶格振动,这是一个负荷,它导热系数是由公式Ks=(1/2)VsLsCv来进行处理。但是,塑料材料的分子链大多数是没有规定相互乌结构的缠结在一起并且相对分子量都较大,因此导致塑料材料不能够完全进行结晶,所以其中具有一部分非晶的成分;同时,塑料材料的分子质量也有多分散性这一特点,导致分子的大小并不是完全相等的,同样难以形成一个完整的晶格;并且分子之间链振动的存在对声子进行反复散射,这就是普通塑料材料导热性能较低的原因。

四、导热塑料材料的发展趋势

现在塑料的导热性能的研究与开发已吸引了许多在世界上的研究兴趣,并取得了比较好的塑料材料,热传导数学模型取得了很大的进步,在逐渐减少计算误差和实际误差,在使用的计算机模拟,使用的热塑性材料的热导率影响的分子动力学模拟研究的概念,发挥了重要的作用,由于科学水平的和一起的限制人类对导热塑料的研究还不是很深入,理论上的研究和探索还需要进一步的挖掘。

20世纪90年代以来,聚合物复合材料导热系数预测的数学模型研究取得令人满意的进展,纳米复合技术的引入为导热高分子材料研究提供了新的机遇和挑战。但是,高导热聚物本体材料和填充聚物复合材料在导热机理、应用开发等方面的研究和电材料相比还是有很大差距,所以纳米导热填料、聚合物基体与导热填料纳米复合新技术的研究和开发,聚合物复合材料导热模型的建立、导热机理特别是聚合物基体与导热填料界面的结构与性能对材料导热性能的影响及导热通路的形成等应成为导热功能填充聚合物复合材料的研究方向。

参考文献:

[1]储九荣,张晓辉,徐传骧.高分子材料科学与工程,2000,16(4):17~21

[2]马传国,容敏智,章明秋.导热高分子复合材料的研究与应用.材料工程.2002(7)40~45

[3]肖琰,魏伯荣,杨海涛等. 填充型导热塑料[J]. 中国塑料,2005(4):12~16

[4]Sugimto Totoshio, Kawaguchi Sadahiko. Castable Epoxy Compositions and Their Cured Products[P].Jpn Kokai Tokkyo Koho,JP 06157718,1994.

[5]MihaiRusu, Nicoleta Aofian, Daniela Rusu. Properties of Iron Powder Filled High Density Polyethylene[J].Journal of Applied Polymer Science,2001,21:469~487

[6]Tavman IH. Int Commu Heat Mass Transfer,1998,25(5):723-728

高分子材料与工程研究方向范文5

关键词:螺杆分配机头出口;流道;挤出均匀性;参数化有限元;压力分布;速度分布

中图分类号:TP311.5文献标识码:A文章编号文章编号:1672-7800(2013)012-0094-04

作者简介:李卓(1979-),女,博士, 北华大学讲师, 研究方向为计算机辅助工程和图像信号处理;耿麒先(1974-),男,博士, 北华大学副教授,研究方向为CAD/CAE/CAM。

螺杆分配机头[1-2]是一种高分子材料板片材挤出机头。在生产宽幅厚板时,优势尤其明显,其结构特点是在T型机头的直歧管内安装一根旋转的分配螺杆,既能实现沿机头轴线方向推进和分配物料,又能将物料均匀挤入机头狭缝流道进而生产出高分子材料板片材的作用。螺杆分配机头的产品横向厚度均匀性调节方法很多,物料入口压力变化、分配螺杆的转速改变、口模模唇微调、阻尼块间隙调整等方法都可以实现对其产品厚度均匀性的调整。螺杆分配机头分为端部供料和中央供料两类(如图1、图2所示)[3-4],其分配螺杆根径在轴线方向逐渐变化。其中,中央供料螺杆分配机头的分配螺杆从中央向两端按正反螺纹设计,其根径为渐变型,但两段方向相反。

高分子材料与工程研究方向范文6

2生物材料的类型与应用生物材料种类繁多,到目前为止,被详细研究过的生物材料已经超过一千种,在医学临床上广泛应用的也有几十种,涉及材料学科各个领域。依据不同的分类标准,可以分为不同的类型。

2.1以材料的生物性能为分类标准根据材料的生物性能,生物材料可分为生物惰性材料、生物活性材料、生物降解材料和生物复合材料四类。

2.1.1生物惰性材料生物惰性材料是指一类在生物环境中能保持稳定,不发生或仅发生微弱化学反应的生物医学材料,主要是生物陶瓷类和医用合金类材料。由于在实际中不存在完全惰性的材料,因此生物惰性材料在机体内也只是基本上不发生化学反应,它与组织间的结合主要是组织长入其粗糙不平的表面形成一种机械嵌联,即形态结合。生物惰性材料主要包括以下几类:(1)氧化物陶瓷主要包括氧化铝陶瓷和氧化锆陶瓷.氧化铝陶瓷中以纯刚玉及其复合材料的人工关节和人工骨为主,具体包括纯刚玉双杯式人工髋关节;纯刚玉—金属复合型人工股骨头;纯刚玉—聚甲基丙烯酸酯—钴铬钼合金铰链式膝关节,其他人工骨、人工牙根等。(2)玻璃陶瓷该材料主要用来制作部分人工关节。(3)Si3N4陶瓷该类材料主要用来制作一些作为替代用的较小的人工骨,目前还不能用作承重材料。(4)医用碳素材料它主要被作为制作人工心脏瓣膜等人工脏器以及人工关节等方面的材料。(5)医用金属材料该类材料是目前人体承重材料中应用最广泛的材料,在其表面涂上活性生物材料后可增加它与人体环境的相容性.同时它还能制作各类其他人体骨的替代物。

2.1.2生物活性材料生物活性材料是一类能诱出或调节生物活性的生物医学材料。但是,也有人认为生物活性是增进细胞活性或新组织再生的性质。现在,生物活性材料的概念已建立了牢固的基础,其应用范围也大大扩充.一些生物医用高分子材料,特别是某些天然高分子材料及合成高分子材料都被视为生物活性材料.羟基磷灰石是一种典型的生物活性材料。由于人体骨的主要无机质成分为该材料,故当材料植入体内时不仅能传导成骨,而且能与新骨形成骨键合。在肌肉、韧带或皮下种植时,能与组织密合,无炎症或刺激反应.生物活性材料主要有以下几类:

(1)羟基磷灰石,它是目前研究最多的生物活性材料之一,作为最有代表性的生物活性陶瓷—羟基磷灰石(简称HAP)材料的研究,在近代生物医学工程学科领域一直受到人们的密切关注.羟基磷灰石[Ca10(PO4)6(OH)2]是脊椎动物骨和齿的主要无机成分,结构也非常相近,与动物体组织的相容性好、无毒副作用、界面活性优于各类医用钛合金、硅橡胶及植骨用碳素材料。因此可广泛应用于生物硬组织的修复和替换材料,如口腔种植、牙槽脊增高、耳小骨替换、脊椎骨替换等多个方面.另外,在HA生物陶瓷中耳通气引流管、颌面骨、鼻梁、假眼球以及填充用HA颗粒和抑制癌细胞用HA微晶粉方面也有广泛的应用.又因为该材料受到本身脆性高、抗折强度低的限制,因此在承重材料应用方面受到了限制.现在该材料已引起世界各国学者的广泛关注。目前制备多孔陶瓷和复合材料是该材料的重要发展方向,涂层材料也是重要分支之一。该类材料以医用为目的,主要包括制粉、烧结、性能实验和临床应用几部分。

(2)磷酸钙生物活性材料这种材料主要包括磷酸钙骨水泥和磷酸钙陶瓷纤维两类.前者是一种广泛用于骨修补和固定关节的新型材料,有望部分取代传统的PMMA有机骨水泥.国内研究抗压强度已达60MPa以上。后者具有一定的机械强度和生物活性,可用于无机骨水泥的补强及制备有机与无机复合型植入材料。

(3)磁性材料生物磁性陶瓷材料主要为治疗癌症用磁性材料,它属于功能性活性生物材料的一种。把它植入肿瘤病灶内,在外部交变磁场作用下,产生磁滞热效应,导致磁性材料区域内局部温度升高,借以杀死肿瘤细胞,抑制肿瘤的发展。动物实验效果良好。

(4)生物玻璃生物玻璃主要指微晶玻璃,包括生物活性微晶玻璃和可加工生物活性微晶玻璃两类。目前关于该方向的研究已成为生物材料的主要研究方向之一。

2.1.3生物降解材料所谓可降解生物材料是指那些在被植入人体以后,能够不断的发生分解,分解产物能够被生物体所吸收或排出体外的一类材料,主要包括β-TCP生物降解陶瓷和生物陶瓷药物载体两类,前者主要用于修复良性骨肿瘤或瘤样病变手术刮除后所致缺损,而后者主要用作微药库型载体,可根据要求制成一定形状和大小的中空结构,用于各种骨科疾病。

2.1.4生物复合材料生物复合材料又称为生物医用复合材料,它是由两种或两种以上不同材料复合而成的生物医学材料,并且与其所有单体的性能相比,复合材料的性能都有较大程度的提高的材料。制备该类材料的目的就是进一步提高或改善某一种生物材料的性能。该类材料主要用于修复或替换人体组织、器官或增进其功能以及人工器官的制造,它除应具有预期的物理化学性质之外,还必须满足生物相容性的要求,这里不仅要求组分材料自身必须满足生物相容性要求,而且复合之后不允许出现有损材料生物学性能的性质。按基材分生物复合材料可分为高分子基、金属基和陶瓷基三类,它们既可以作为生物复合材料的基材,又可作为增强体或填料,它们之间的相互搭配或组合形成了大量性质各异的生物医学复合材料,利用生物技术,一些活体组织、细胞和诱导组织再生的生长因子被引入了生物医学材料,大大改善了其生物学性能,并可使其具有药物治疗功能,已成为生物医学材料的一个十分重要的发展方向,根据材料植入体内后引起的组织反应类型和水平,它又可分为近于生物惰性的、生物活性的、可生物降解和吸收等几种类型。人和动物中绝大多数组织均可视为复合材料,生物医学复合材料的发展为获得真正仿生的生物材料开辟了广阔的途径。

2.2以材料的属性为分类标准

2.2.1生物医用金属材料生物医用金属材料是用作生物医学材料的金属或合金,又称外科用金属材料或医用金属材料,是一类惰性材料,这类材料具有高的机械强度和抗疲劳性能,是临床应用最广泛的承力植入材料。该类材料的应用非常广泛,及硬组织、软组织、人工器官和外科辅助器材等各个方面,除了要求它具有良好的力学性能及相关的物理性质外,优良的抗生理腐蚀性和生物相容性也是其必须具备的条件。医用金属材料应用中的主要问题是由于生理环境的腐蚀而造成的金属离子向周围组织扩散及植入材料自身性质的退变,前者可能导致毒副作用,后者常常导致植入的失败。已经用于临床的医用金属材料主要有不锈钢、钴基合金和钛基合金等三大类。此外,还有形状记忆合金、贵金属以及纯金属钽、铌、锆等。

2.2.2生物医用高分子材料医用高分子材料是生物医学材料中发展最早、应用最广泛、用量最大的材料,也是一个正在迅速发展的领域。它有天然产物和人工合成两个来源,该材料除应满足一般的物理、化学性能要求外,还必须具有足够好的生物相容性。按性质医用高分子材料可分为非降解型和可生物降解型两类。对于前者,要求其在生物环境中能长期保持稳定,不发生降解、交联或物理磨损等,并具有良好的物理机械性能。并不要求它绝对稳定,但是要求其本身和少量的降解产物不对机体产生明显的毒副作用,同时材料不致发生灾难性破坏。该类材料主要用于人体软、硬组织修复体、人工器官、人造血管、接触镜、膜材、粘接剂和管腔制品等方面。这类材料主要包括聚乙烯、聚丙烯、聚丙烯酸酯、芳香聚酯、聚硅氧烷、聚甲醛等.而可降解型高分子主要包括胶原、线性脂肪族聚酯、甲壳素、纤维素、聚氨基酸、聚乙烯醇、聚己丙酯等。它们可在生物环境作用下发生结构破坏和性能蜕变,其降解产物能通过正常的新陈代谢或被机体吸收利用或被排出体外,主要用于药物释放和送达载体及非永久性植入装置.按使用的目的或用途,医用高分子材料还可分为心血管系统、软组织及硬组织等修复材料。用于心血管系统的医用高分子材料应当着重要求其抗凝血性好,不破坏红细胞、血小板,不改变血液中的蛋白并不干扰电解质等。

2.2.3生物医用无机非金属材料或称为生物陶瓷。生物医用非金属材料,又称生物陶瓷。包括陶瓷、玻璃、碳素等无机非金属材料。此类材料化学性能稳定,具有良好的生物相容性。一般来说,生物陶瓷主要包括惰性生物陶瓷、活性生物陶瓷和功能活性生物陶瓷三类。其中惰性生物陶瓷和活性生物陶瓷在前面已经简要作了介绍,而功能活性生物陶瓷是近年来提出的一个新概念.随着生物陶瓷材料研究的深入和越来越多医学问题的出现,对生物陶瓷材料的要求也越来越高。原先的生物陶瓷材料无论是生物惰性的还是生物活性的,强调的是材料在生物体内的组织力学环境和生化环境的适应性,而现在组织电学适应性和能参与生物体物质、能量交换的功能已成为生物材料应具备的条件。因此,又提出了功能活性生物材料的概念。它主要包括以下两类:(1)模拟性生物陶瓷材料该类材料是将天然有机物(如骨胶原、纤维蛋白以及骨形成因子等)和无机生物材料复合,来模拟人体硬组织成分和结构,以改善材料的力学性能和手术的可操作性,并能发挥天然有机物的促进人体硬组织生长的特性。(2)带有治疗功能的生物陶瓷复合材料该类材料是利用骨的压电效应能刺激骨折愈合的特点,使压电陶瓷与生物活性陶瓷复合,在进行骨置换的同时,利用生物体自身运动对置换体产生的压电效应来刺激骨损伤部位的早期硬组织生长。具体来说是由于肿瘤中血管供氧不足,当局部被加热到43~45℃时,癌细胞很容易被杀死。现在最常用的是将铁氧体与生物活性陶瓷复合,填充在因骨肿瘤而产生的骨缺损部位,利用外加交变磁场,充填物因磁滞损耗而产生局部发热,杀死癌细胞,又不影响周围正常组织。现在,功能活性生物陶瓷的研究还处于探索阶段,临床应用鲜有报道,但其发展应用前景是很光明的。各种不同种类的生物陶瓷的物理、化学和生物性能差别很大,在医学领域用途也不同.尤其是功能活性陶瓷更有不可估量的发展前途.临床应用中,生物陶瓷存在的主要问题是强度和韧性较差.氧化铝、氧化锆陶瓷耐压、耐磨和化学稳定性比金属、有机材料都好,但其脆性的问题也没有得到解决。生物活性陶瓷的强度则很难满足人体承力较大部位的需要。

2.2.4生物医用复合材料此类材料在2.1.4中已有介绍,此处不再详述

2.2.5生物衍生材料生物衍生材料是由经过特殊处理的天然生物组织形成的生物医用材

料,也称为生物再生材料.生物组织可取自同种或异种动物体的组织.特殊处理包括维持组织原有构型而进行的固定、灭菌和消除抗原性的轻微处理,以及拆散原有构型、重建新的物理形态的强烈处理.由于经过处理的生物组织已失去生命力,生物衍生材料是无生命力的材料.但是,由于生物衍生材料或是具有类似于自然组织的构型和功能,或是其组成类似于自然组织,在维持人体动态过程的修复和替换中具有重要作用.主要用于人工心瓣膜、血管修复体、皮肤掩膜、纤维蛋白制品、骨修复体、巩膜修复体、鼻种植体、血液唧筒、血浆增强剂和血液透析膜等.

3.生物材料的性能评价目前关于生物材料性能评价的研究主要集中在生物相容性方面.因为生物相容性是生物材料研究中始终贯穿的主题.它是指生命体组织对生物材料产生反应的一种性能,该材料既能是非活性的又能是活性的.一般是指材料与宿主之间的相容性,包括组织相容性和血液相容性.现在普遍认为,生物相容性包括两大原则,一是生物安全性原则,二是生物功能性原则.生物安全性是植入体内的生物材料要满足的首要性能,是材料与宿主之间能否结合完好的关键.关于生物材料生物学评价标准的研究始于20世纪70年代,目前形成了从细胞水平到整体动物的较完整的评价框架.国际标准化组织(ISO)以10993编号了17个相关标准,同时对生物学评价方法也进行了标准化.迫于现代社会动物保护和减少动物试验的压力,国际上各国专家对体外评价方法进行了大量的研究,同时利用现代分子生物学手段来评价生物材料的安全性、使评价方法从整体动物和细胞水平深入到分子水平.主要在体外细胞毒性试验、遗传性和致癌性试验以及血液相容性评价方法等方面进行了一些研究.但具体评价方法和指标都未统一,更没有标准化.随着对生物材料生物相容性的深入研究,人们发现评价生物材料对生物功能的影响也很重要.关于这一方面的研究主要是体外法。具体来说侧重于对细胞功能的影响和分子生物学评价方面的一些研究。总之,关于生物功能性的原则是提出不久的一个新的生物材料的评价方面,它必将随着研究的不断深入而向前发展.而涉及材料的化学稳定性、疲劳性能、摩擦、磨损性能的生物材料在人体内长期埋植的稳定性是需要开展评价研究的一个重要方面。

4生物材料的发展趋势展望生物材料科学是20世纪新兴学科中最耀眼的新星之一。现在,生物材料科学已成为一门与人类现代医疗保健系统密切相关的边缘学科。其重要性不仅因为它与人类自身密切相关,还因为它跨越了材料、医学、物理、生物化学和现代高科技等诸多学科领域。现在对于该材料的研究已从被动地适应生物环境发展到有目的地设计材料,以达到与生物组织的有机连接。并随着生命科学和材料科学的发展,生物材料必将走向功能性半生命方向。生物材料的临床应用已从短期的替换和填充发展成永久性牢固种植,并与其它高科技(如电子技术、信息处理技术)相结合,制备富有应用潜力的医疗器械。生物材料的研究在世界各国也日益受到重视.四年一次的世界生物材料大会代表着国际上生物材料研究的发展动态和目前的水平。分析认为,以下几个方面是生物材料今后研究发展的几个主要方向:

(1)发展具有主动诱导、激发人体组织和器官再生修复功能的,能参与人体能量和物质交换产生相互结合的功能性活性生物材料,将成为生物材料研究的主要方向之一。

(2)把生物陶瓷与高分子聚合物或生物玻璃进行二元或多元复合,来制备接近人体骨真实情况的骨修复或替代材料将成为研究的重要方向之一。

(3)制备接近天然人骨形态的、纳微米相结合的、用于承重的、多孔型生物复合材料将成为方向之一。

(4)用于延长药效时间、提高药物效率和稳定性、减少用量及对机体的毒副作用的药物传递材料将成为研究热点之一。

(5)血液相容性人工脏器材料的研究也是突破方向之一。

(6)如何能够制备出纳米尺寸的生物材料的工艺以及纳米生物材料本身将成为研究热点之一。