仿真机械手臂设计范例6篇

前言:中文期刊网精心挑选了仿真机械手臂设计范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

仿真机械手臂设计

仿真机械手臂设计范文1

关键词:采摘机械手;曲柄滑块机构;MATLAB/SIMULINK

中图分类号:S372 文献标识码:A

引言

在现代农业潮流下的今天,设施农业产业蓬勃发展,在此影响与带动下的温室生产自动化产业也应运而生,其中机械手是其发展过程中的重要产物之一,它不仅提高了劳动生产的效率,还能代替人类完成高强度、重复而枯燥的工作,减轻人类劳动强度,可以说是一举两得。采摘机械手作为自动化农业中代替人手采摘的重要成员,在农业自动化的舞台上起到了重要作用。现代农业机械将向自动化、智能化、多功能方向发展。

1 采摘机械手的机构简图

本文所设计采摘机械手臂的运动可简化为曲柄连杆机构,机械手的运动可简化为滑块摇杆机构,具有模仿人手动作摘取果实的功能。本文的设计对象为番茄采摘机械手,如图1所示。

图1 采摘机械手机构简图

在图1中,O为电机输出轴,曲柄OA、连杆AB、滑块B和支架构成曲柄滑块机构;滑块B、连杆BC、摇杆CE和支架构成滑块摇杆机构。通过两个机构串联,使电机最终驱动DE来回摆动,从而实现手指的开合运动。其中上下两部分为对称运动。

2 主要技术参数

初始位置:R1=76cm,R2=10cm,R3=66cm,θ10°,θ2=0°,θ3=0°,α2=0,ω1=15rad/min,ω2=0,ω3=0。

图示位置:R1=74.7cm,R2=10cm,R3=66cm,θ2=28°,θ3=3.7°,ω1=15rad/min。

3 基于SIMIULINK的运动学仿真

3.1 运动机构的数学模型

为了便于对采摘机械手的运动特性进行仿真分析,图2给出了该机构的闭环矢量图,其中R2代表曲柄,R1为机架并与滑块连接,R3为连杆,θ2、θ3 、ω2、ω3、α2分别是R2、R3的运动角度、角速度和角加速度。如图2所示。

图2 曲柄滑块机构的闭环矢量图

本设计采用MATLAB/SIMULINK软件包对机构的运动特性进行仿真,从而确定机构在连续运动过程中各个杆件的角度、角速度和角加速度的连续变化过程。在曲柄滑块机构的矢量环中,机构运动到任何位置都可用矢量长度和矢角表示。机构矢量满足下面的闭环矢量方程:

将各个矢量沿x和y坐标轴分解为两个分量,得到机构位移矩阵方程:

将上式两端对时间求一次导数,得机构速度矩阵方程:

上式再次对时间求一阶导,得机构加速度矩阵方程:

3.2 动态仿真模型的建立

根据上述数学模型,建立曲柄滑块机构的仿真模型,如图3所示。

图3 曲柄滑块机构运动学仿真的Simulink模型

3.3 动态仿真结果

通过对各参数进行设置以及编写相应的M函数,可得出各参数的运动学图形(见图4)。

从R2、R3、滑块的角度、角速度、角加速度变化规律来看,可以看出采摘机械手的变化规律,从而了解机械手的运动特性。

参考文献

[1] 边源.番茄采摘机械手的研究与设计[D].大连:大连理工大学,2009.

[2] 约翰·F·加德纳.机构动态仿真[M].陕西:西安交通大学出版社,2002.

[3] 陈磊,陈帝伊,马孝义.果蔬采摘机器人的研究[J].农机化研究,2011(01).

[4] 赵匀.农业机械分析与综合[M].北京:机械工业出版社,2008.

[5] 梁喜凤,杨犇,王永维.番茄收获机械手轨迹跟踪模糊控制仿真与试验[J].农业工程学报,2013(09).

[6] 梁喜凤,苗香雯,崔绍荣,等.番茄采摘机械手运动学优化与仿真试验[J].农业机械学报,2005(07).

[7] 楼顺天,姚若玉,沈俊霞.MATLAB 7.X程序设计语言[M].陕西:西安电子科技大学出版社,2007.

[8] 黄贤新.工业机器人机械手设计[J].装备制造技术,2012(03).

仿真机械手臂设计范文2

关键词:萝卜采收;机械手;机械设计;控制设计

中图分类号:S225.92 文献标识码:A 文章编号:0439-8114(2015)09-2248-04

目前,中国农业机械化对农业生产的贡献率仅为17%,与发达国家存在很大的差距[1]。加速农业现代化进程,实施精确农业,广泛应用农业机器人,以提高资源利用率和农业产出率,降低劳动强度,提高经济效率已成为现代农业发展的必然趋势[2,3]。果蔬的采收方法有手工采收、机械辅助采收和机械化采收3种[4,5],世界萝卜的总产量为4 900万t/年,其中中国680万t/年,国内的采摘作业基本上都是手工进行的,收获作业劳动强度大。随着农业设施的发展和作业机械化的要求,对萝卜种植模式要求也越来越高,种植、管理和收获的劳动量也越来越大,亟需研究开发果蔬收获机器人,实现果蔬的机械化、自动化与智能化收获[6,7],为此,通过对萝卜种植与采收情况的调研,设计了一款萝卜采收机械手,以期为萝卜的自动化采收打下一定的基础。

1 萝卜采收机总体设计

根据萝卜采收过程的特殊性,为了提升萝卜采收的工作效率,所设计的是一种农业机械中的收获机械手,由执行系统、驱动系统和控制系统组成,其组成示意图如图1。

2 萝卜采收机械手关键部位机械设计

萝卜采收机械手的关键部位主要包括:1)手爪部位。手爪部位的主要工作是对萝卜进行抓取,为了减少手部由于惯性带来的不平稳性,此部位采用回转的形式,而手爪只用两根手指代替;2)手腕部位。手腕是连接手爪部位和手臂部位的关键地方,其主要工作是调整萝卜的方位,使萝卜被抓的时候可以进行摆动和回转,辅助萝卜采收过程的连贯性;3)手臂部位。手臂部位的主要作用就是支承,在采收过程中带动其他部件运转,并按照采收要求将萝卜搬运到指定的位置,设计时只需要实现手臂部位的升降与摆动即可。此次设计机械手应实现的功能:萝卜的挖掘、被挖掘的萝卜转移到指定位置,图2为机械手的机构形式简图。

2.1 机械手基本技术参数的选定

由于萝卜生长的自然环境决定了萝卜采摘过程中所需要的拔取力,故需要对不同地方生长的萝卜进行采收力的测定。把细绳系在萝卜的茎叶或者根茎部位,细绳的末端连接计力器材,多次读取并记录最大拉力。图3为湖北省长阳和沙洋两个地区分组测试萝卜拔取力的试验结果,现取5组数据平均值F=80 N,萝卜重量约为0.5kg,故重力G=5 N,摩擦系数f=0.2,夹紧力N=0.5 G/f,得N=12.5 N。

机械手手臂上下行程为500 mm,手腕旋转角度90°,手臂旋转角度90°,按照循环步骤安排确定每个动作的时间,从而确定各动作的运动速度。各动作的时间分配要考虑多方面的因素,包括总的循环时间的长短,各动作之间顺序是依序进行还是同时进行等[8],此次设计各动作依序进行,为保证萝卜的质量必须限制采摘速度及加速度,采摘速度初步定在小于1 m/s,此速度由各关节液压缸流量控制保证。

2.2 机械手末端执行机构的设计

手部是用来直接握持萝卜的部件,由于被握持萝卜的形状、尺寸大小、重量、表面状况等的不同,根据实际要求,设计采用夹钳式的手部结构。夹钳式手部结构由手指、传动机构和驱动装置三部分组成,它对抓取各种形状的物体具有较大的适应性,常见的传动机构往往通过滑槽、斜楔、齿轮齿条、连杆机构实现夹紧或放松[9]。由于抓取尺寸约为90 mm×240 mm的圆柱体,故采用夹钳式平面指形结构较为合适。

设计中机械手手爪在夹持萝卜时,其夹握力分析简图如图4。为了增大夹握力,采取以下两种方法:①设计铲刀角度170°,以增加手指和萝卜的接触面积;②增大手指和萝卜间的摩擦系数,为此采用较宽手指与萝卜接触,故此处f取0.2,将上述数值代入得:

N=■G=■×5=12.5N 公式(1)

式中,N为夹持萝卜时所需要的握力;G为工件重量转化的重力; f为摩擦系数。

考虑到在传送过程中还会产生惯性力、振动以及受到传力机构效率等的影响,故实际握力还应按公式(2)计算[10]:

N实≥N・■ 公式(2)

式中,η为手部的机械效率,一般取0.85~0.95;k1为安全系数,一般取1.2~2.0;k2为工作情况系数,主要考虑惯性力的影响,按公式(3)估算[10,11]:

k2=1+a/g公式(3)

其中,a为抓取工件传送过程中的最大加速度,g为重力加速度。

若取η=0.9,k1=1.5,k2按a=g/2计算,k2=1+a/g=1.5,则

N实≥N・■=12.5×■≈32 N 公式(4)

2.3 机械手腕部位的设计

机械手腕与机械手臂连接在一起,手臂运动结束后调整手腕的位置状态,以此来提高萝卜采收过程的拔取率。手腕部位的机械结构设计应该力求扎实紧凑,且转动惯性小。手腕也是末端执行部位与机械手臂之间的桥梁,处于手臂部位的前端,手爪的末端,因此其承受载荷的性能直接关系到萝卜的采收过程,在设计的过程中还要考虑其机械强度与刚度,并且要让其布局合理。结合设计要求,设计出腕部位的结构如图5,其为典型腕部结构中具有一个自由度的回转缸驱动的腕部结构,直接用回转液压缸驱动实现腕部的回转运动。

2.4 机械手臂部位的设计

机械手的手臂部位是实现机械手末端手爪进行大尺度位姿变换的关键部件,即把末端手爪部分移动到空间的指定地点。手臂部位的驱动形式主要有液压传动式和机械传动式两种,由于手臂部位的大尺度工作范围,以及工作中也需承受腕部和手爪部位的动力载荷,而且其姿态调整的灵活性影响到机械手的定位精度,因此手臂部位采用液压回转缸的形式实现手臂的大尺度旋转动作,如图6所示的手臂结构,采用一个回转液压缸,实现小臂的旋转运动。从A-A剖视图上可以看出,回转叶片用键和转轴连接在一起,定片和缸体用销钉和螺钉连接,压力油由左油孔进入和右油孔压出,以此来实现手臂部位的旋转。

3 萝卜采收机械手液压驱动系统设计及PLC控制设计

3.1 液压驱动系统的设计

从萝卜采收的工艺过程可以得出,机械手运动的时候液压系统中液压油的压力和流量不需要太高,设计使用电磁换向阀的液压回路可以较好地提高采收过程的自动化程度。从降低供油压力的角度来分析,机械手的液压系统可以采用单泵供油,而手臂部位的旋转和位姿的调整等相关机构采用并联供油。为了防止多缸的运动系统在运动的过程中产生干涉和保证运动过程中实现非同步运动或者是同步运动,油路中的换向阀使用中位“O”型换向阀,夹紧缸换向选用二位三通电磁阀,其他缸全部选用“O”型三位四通电磁换向阀[12,13]。机械手臂位姿调整的过程中要求行程可变,在液压缸的起动和停止的过程中也需要缓冲,但由于回转缸内空间狭小,且回转缸为小流量泵供油,故本系统没有在回转缸换向回路中采用缓冲回路,仅在大流量直动液压缸中采用缓冲回路。

在上述主要液压回路定好后,再加上其他功用的辅助油路(如卸荷、测压等油路)就可以进行合并,完善为完整的液压系统,并编制液压系统动作循环及电磁铁动作顺序表,其中液压原理图如图7。

3.2 PLC控制设计

为了让机械手工作时可靠且有较强的稳定性,控制部分的设计思路是让该机械手的部件顺序动作,所以,在任一时间该机械手都只有一个部件被驱动,而各个部件的运动方式和运动范围都是受其结构限制的[14,15]。PLC的状态流程简图如图8所示,机械手在自动运动状态时每一个周期需要完成以下动作:萝卜采摘开始时,机械手被设定在准备状态,第一步为手臂下降;下降完成后,手爪扎入地下指定深度,进行第二步手爪夹紧;为完成挖萝卜动作,手腕带动手爪及萝卜旋转90°;完成上述动作后,机械手臂向上提升完成拔去动作;手臂摆动90°,以实现对萝卜的转移;最后手臂回摆,手腕回摆,机械手回到初始状态。

4 小结

通过对机器人技术及机械手结构的分析,对萝卜采收的过程进行了研究,确定萝卜采收机械手的整体方案结构,设计萝卜采收机械手的关键结构。萝卜采收机械手能配合萝卜采收机依次完成萝卜的拔取、翻转、转位等动作,但该机械手在结构及工作性能的稳定性方面还需在田间进行试验,控制方案有待根据不同地区的种植情况进行优化。

参考文献:

[1] 方建军.移动式采摘机器人研究现状与进展[J].农业工程学报,2004,20(2):273-278.

[2] 何 蓓,刘 刚.果蔬采摘机器人研究综述[A].中国农业工程学会学术年会论文摘要集[C].北京:中国农业工程学会,2007.

[3] 赵 匀,武传宇,胡旭东,等.农业机器人的研究进展及存在的问题[J].农业工程学报,2003,19(1):20-24.

[4] 高焕文.农业机械化生产学(上册)[M].北京:中国农业出版社,2002.

[5] 李宝筏.农业机械学[M].北京:中国农业出版社,2003.

[6] 刘小勇.番茄收获机械手机构分析及双目定位系统的研究[D].哈尔滨:东北农业大学,2006.

[7] 李增强,章 军,刘光元.苹果被动抓取柔性机械手的结构与分析[J].包装工程,2011,32(15):14-17.

[8] 李建新.可编程序控制器及其应用[M].北京:机械工业出版社,2004.

[9] 姚璐璐.陆地钻机立柱式钻杆排放系统设计[D].兰州:兰州理工大学,2012.

[10] 陈 红.气动机械手系统设计[D].长春:长春理工大学,2010.

[11] 天津大学《工业机械手设计基础》编写组.工业机械手设计基础[M].天津:天津科学技术出版社,1985.

[12] 王 敏,王 华.PLC在液压实验台上的应用及仿真程序设计[J].长春工程学院学报(自然科学版),2002,3(3):57-59.

[13] JIMENEZA R,CERES R,PONS J L. A survey of computer vision methods for locating fruiton trees[J]. Transactions of the ASAE,2000,43(6):1911-1920.

仿真机械手臂设计范文3

【关键词】机器人;运动学;遗传算法;OpenGL;计算机仿真

1.机器人教学仿真系统的主要功能

机器人实验教学要求学生通过实验,掌握机器人的空间运动,熟悉机器人示教编程功能。

本图形仿真系统针对机器人试验教学的要求,以日本安川公司所生产的YASKAWA MOTOMAN UP-6 工业机器人为研究对象,在Visual C++ 6.0平台上,利用OpenGL对机器人实体建模,创建了机械手三维图形模型,实现了机器人空间运动的仿真过程和机器人教学的示教仿真功能。该仿真系统图形功能丰富,可视性强。充分利用VC和OpenGL的图形功能,用三维立体图形进行仿真。系统的操作性和可靠性强,采用了模块化结构。

该仿真系统基本功能有:运动仿真,示教仿真和学习帮助。

(1)运动仿真:可以通过界面上的各关节对应的控制键按钮来驱动机械手各关节的运动,使机器人末端执行器到达所要求的的空间位置和姿态,实现机器人的空间运动仿真。本仿真系统,还可以通过编制简单的指令程序来驱动机械手作相应的运动。

(2)示教仿真:在机器人实验课程中,工业机器人的实验是用示教盒对机械手进行示教编程来完成的。为了使学生能够以示教方式参与编程,开发了与图形动态交互的示教盒。本系统可以采用示教调试和编程再现的方法来实现机械手三维运动的仿真过程。

(3)学习帮助:该软件提供了丰富的帮助功能,在帮助模块中,对机器人的指令代码做了详细的说明,提供了一个友好的用户界面。

2.机器人运动仿真的实现

机器人实验要求学生通过对示教盒的操作,掌握机器人的基本运动操作,掌握简单的程序编制,了解机器人示教编程。本文针对机器人实验教学的具体内容,开发了机器人运动仿真平台。

仿真平台的具体功能有:

根据YASKAWA MOTOMAN UP-6 机器人的实际操作,在该图形仿真系统中, S、L、U、R、B、T轴(其转角即机械手杆件的六个关节角)的正反运动分别由界面上相应的控件按钮来驱动。

为了实现YASKAWA MOTOMAN UP-6机器人示教盒的相应的运动功能,在该仿真系统中设计了“开始” 、“恢复” 控件,如图1 所示。“开始” 控件可使机械手从初始位置移动到目标位置;“恢复” 控件可使机械手从当前位置回到初始位置。为实现机械手从初始位置移动到目标位置,本文利用Windows计时器来控制关节运动,要使机械手从初始位置开始移动到目标位置时,启动计时器,将关节角度传送给OpenGL变换矩阵中对应的控制变量,驱动机械手各个关节作相应的运动,从而使机械手完成给定的运动和任务。当机械手完成任务时,程序关闭计时器。

应用本仿真系统时,还可输入机器人指令来驱动机械手作相应的运动,通过编制指令来实现机器人不同的空间运动,实现不同的任务。

图1

要实现机器人的空间运动仿真,使末端执行器到达某个空间位置和姿态,驱动机械手各关节作相应的角度的运动,必须要建立机器人运动学方程。机器人手臂是由许多关节和连杆构成的,机械手在三维空间上的位姿由各关节的角位移所决定,机器人运动学模型用于表达各关节角位移和机械手位姿之间的关系。机器人运动学模型的建立以及运动学正解、逆解的求法将在下文中给出。

本文根据机器人关节连杆几何参数的定义,求得了机器人机械手的关节连杆参数,建立了机器人的正运动学方程,并求出了关节角度为某一个确定的值时,机械手末端执行器的位姿矩阵。

图2 机器人示教仿真界面

3.机器人示教仿真的实现

工业机器人的示教实验要求:操作者使用示教盒,按动轴操作器,使各轴分别动作,形成所需的位姿后,记录一个示教点的位置数据,同时记录一条运动命令。逐点示教之后,就构成了一个作业任务。

为使学生熟悉YASKAWA MOTOMAN UP-6机器人的示教操作,本仿真系统在上述运动仿真功能模块基础上,开发了机器人示教仿真功能,将上述各个功能组合在一起。机器人示教仿真界面如图2所示,示教仿真模仿了在线示教的功能。对YASKAWA MOTOMAN UP-6 机器人而言,对世界坐标系中可到达的每一个点,都可求出相应的机械手6个关节的角度值。应用本系统时,可以采用示教调试和编程再现的方法来实现机械手三维运动的仿真过程。首先示教调试,使机械手从某一位置,以某种姿态到达另一位置,并完成一定的任务,机械手的每一个关节的运动都由界面上一个相应的按钮来控制,在调试的同时记录下各个关节的运动过程,并可在界面上实时显示每个关节的角度值。然后编程再现,根据记下的数据,可再现机器人的运动过程。

参考文献

[1]余达太,马香峰等.工业机器人应用工程(第1版)[M].北京:冶金出版社,1999.

[2]蒋新松主编.机器人学导论[M].沈阳:辽宁科学技术出版社,1994:221-229.

[3]John J.Craig.Arc Welding Simulation Simplifies Programming.Robotics World.1987(3):24-25.

[4]John Owens.Task Planning in Robot Simulation.Industrial Robot.1996,23(5):21-24.

基金项目:海南省科技兴海项目(XH201316)“基于无人飞行器的近海藻类检测装置”;海南省自然科学基金项目(611133)“认知无线电及其在海南信息化进程中的相关问题研究”。

作者简介:

韩建文(1979―),男,硕士,讲师,主要研究方向:电子信息、通信技术等。

仿真机械手臂设计范文4

机械臂系统是用于教学的新型设备。该设备是北航自动控制系在“211”教学试验建设项目和北京市高效教育改革试点项目中,为自动化专业教学试验提供典型的控制系统模型而自制的设备。机械臂系统是基于对桥式吊车系统的改造,添加了一个下摆,并在两个转轴关节上又加入了控制电机,形成了具有三个自由度结构的工业机械手臂系统。本次毕设正是期望完成对机械臂系统的控制设计仿真和联机调试实际系统,对机械臂的控制方案中的一个方向——BP控制的研究。

论文中将介绍机械臂系统的组成结构、工作原理、数学建模、控制方案和控制软件的设计。文中将详尽介绍基于拉各朗日方程的系统数学建模,面向状态空间的控制方案和面向解耦通道的控制方案,在经典PD控制的基础上加入了现代的神经元网络控制,并比较了它们之间的差异和结合以后所取得的改善。

论文中讨论的神经网络BP控制和PD控制在MATLAB里仿真获得了成功,并同时讨论了两种方法,都分别得到了结果。PD控制在实际系统上进行了调试。

关键词: 机械臂,神经网络,BP控制

目录

第一章 绪论

一 论文的背景与来源 (4)

二 毕设论文的组织结构和取得的结果 (5)

第二章 机械臂系统的介绍

一 系统结构和工作原理 (6)

二 机械臂控制方法概述 (9)

第三章 机械臂的数学模型

一 系统的动力学模型 (12)

二 系统控制要达到的目标 (20)

第四章 机械臂系统的仿真

一 控制系统的仿真概述 (21)

二 机械臂的PD控制 (23)

三 机械臂的BP控制 (33)

第五章 机械臂系统的控制实验

一 VC的介绍 (56)

二 控制软件的功能 (57)

三 控制软件的功能及特点 (59)

四 实验结果分析 (60)

结束语

参考书目

:18000多字

有中、英文摘要

400元

备注:此文版权归本站所有;。

仿真机械手臂设计范文5

一 绪论

1.前言

2.机械手的简史

3.工业机械手在生产中的应用

4.机械手的组成

5工业机械手的发展趋势

6 本章小结

机械手移动工件控制系统的控制要求

1工作原理

2设备控制要求

3硬件配置

I/O地址表

机械手控制系统的程序设计

1流程图

2控制源程序介绍

运行调试

五、梯形图及PLC的外部接线

1梯形图

2 PLC外部接线

3主电路

4元件清单

总结

七、

一 绪论

1.前言

用于再现人手的的功能的技术装置称为机械手。机械手是模仿着人手的部分动作,按给定程序、轨迹和要求实现自动抓取、搬运或操作的自动机械装置。在工业生产中应用的机械手被称为工业机械手。

工业机械手是近代自动控制领域中出现的一项新技术,并已成为现代机械制造生产系统中的一个重要组成部分,这种新技术发展很快,逐渐成为一门新兴的学科——机械手工程。机械手涉及到力学、机械学、电器液压技术、自动控制技术、传感器技术和计算机技术等科学领域,是一门跨学科综合技术。

工业机械手是近几十年发展起来的一种高科技自动生产设备。工业机械手也是工业机器人的一个重要分支。他的特点是可以通过编程来完成各种预期的作业,在构造和性能上兼有人和机器各自的优点,尤其体现在人的智能和适应性。机械手作业的准确性和环境中完成作业的能力,在国民经济领域有着广泛的发展空间。

工业机械手的发展是由于它的积极作用正日益为人们所认识:其一、它能部分的代替人工操作;其二、它能按照生产工艺的要求,遵循一定的程序、时间和位置来完成工件的传送和装卸;其三、它能操作必要的机具进行焊接和装配,从而大大的改善了工人的劳动条件,显著的提高了劳动生产率,加快实现工业生产机械化和自动化的步伐。因而,受到很多国家的重视,投入大量的人力物力来研究和应用。尤其是在高温、高压、粉尘、噪音以及带有放射性和污染的场合,应用的更为广泛。在我国近几年也有较快的发展,并且取得一定的效果,受到机械工业的重视。

机械手是一种能自动控制并可从新编程以变动的多功能机器,他有多个自由度,可以搬运物体以完成在不同环境中的工作。

机械手的结构形式开始比较简单,专用性较强。 随着工业技术的发展,制成了能够独立的按程序控制实现重复操作,适用范围比较广的“程序控制通用机械手”,简称通用机械手。由于通用机械手能很快的改变工作程序,适应性较强,所以它在不断变换生产品种的中小批量生产中获得广泛的引用。

2.机械手的简史

现代机械手起源于20世纪50年代初,是基于示教再现和主从控制方式、能适应产品种类变更,具有多自由度动作功能的柔性自动化产品。

机械手首先是从美国开始研制的。1958年美国联合控制公司研制出第一台机械手。他的结构是:机体上安装一回转长臂,端部装有电磁铁的工件抓放机构,控制系统是示教型的。 1962年美国机械铸造公司也试验成功一种叫Versatran机械手,原意是灵活搬运。该机械手的中央立柱可以回转,臂可以回转、升降、伸缩、采用液压驱动,控制系统也是示教再现型。虽然这两种机械手出现在六十年代初,但都是国外工业机械手发展的基础。

1978年美国Unimate公司和斯坦福大学、麻省理工学院联合研制一种Unimate-Vic-arm型工业机械手,装有小型电子计算机进行控制,用于装配作业,定位误差可小于±1毫米。

美国还十分注意提高机械手的可靠性,改进结构,降低成本。如Unimate公司建立了8年机械手试验台,进行各种性能的试验。准备把故障前平均时间(注:故障前平均时间是指一台设备可靠性的一种量度。它给出在第一次故障前的平均运行时间),由400小时提高到1500小时,精度可提高到±0.1毫米。

德国机器制造业是从1970年开始应用机械手,主要用于起重运输、焊接和设备的上下料等作业。德国KnKa公司还生产一种点焊机械手,采用关节式结构和程序控制。

瑞士RETAB公司生产一种涂漆机械手,采用示教方法编制程序。

瑞典安莎公司采用机械手清理铸铝齿轮箱毛刺等。 第二代机械手正在加紧研制。它设有微型电子计算机控制系统,具有视觉、触觉能力,甚至听、想的能力。研究安装各种传感器,把感觉到的信息反馈,使机械手具有感觉机能。目前国外已经出现了触觉和视觉机械手。

第三代机械手(机械人)则能独立地完成工作过程中的任务。它与电子计算机和电视设备保持联系。并逐步发展成为柔性制造系统FMS(Flexible Manufacturing system)和柔性制造单元(Flexible Manufacturing Cell)中重要一环。

随着工业机器手(机械人)研究制造和应用的扩大,国际性学术交流活动十分活跃,欧美各国和其他国家学术交流活动开展很多。

3.工业机械手在生产中的应用

机械手是工业自动控制领域中经常遇到的一种控制对象。机械手可以完成许多工作,如搬物、装配、切割、喷染等等,应用非常广泛。

在现代工业中,生产过程中的自动化已成为突出的主题。各行各业的自动化水平越来越高,现代化加工车间,常配有机械手,以提高生产效率,完成工人难以完成的或者危险的工作。可在机械工业中,加工、装配等生产很大程度上不是连续的。据资料介绍,美国生产的全部工业零件中,有75%是小批量生产;金属加工生产批量中有

四分之三在50件以下,零件真正在机床上加工的时间仅占零件生产时间的5%。从这里可以看出,装卸、搬运等工序机械化的迫切性,工业机械手就是为实现这些工序的自动化而产生的。目前在我国机械手常用于完成的工作有:注塑工业中从模具中快速抓取制品并将制品传诵到下一个生产工序;机械手加工行业中用于取料、送料;浇铸行业中用于提取高温熔液等等。本文以能够实现这类工作的搬运机械手为研究对象。

4.机械手的组成

工业机械手由执行机构、驱动机构和控制机构三部分组成。

4.1 执行机构

(1)手部 既直接与工件接触的部分,一般是回转型或平动型(多为回转型,因其结构简单)。手部多为两指(也有多指);根据需要分为外抓式和内抓式两种;也可以用负压式或真空式的空气吸盘(主要用于吸冷的,光滑表面的零件或薄板零件)和电磁吸盘。

传力机构形式教多,常用的有:滑槽杠杆式、连杆杠杆式、斜槭杠杆式、齿轮齿条式、丝杠螺母式、弹簧式和重力式。

(2) 腕部 是连接手部和臂部的部件,并可用来调节被抓物体的方位,以扩大机械手的动作范围,并使机械手变的更灵巧,适应性更强。手腕有独立的自由度。有回转运动、上下摆动、左右摆动。一般腕部设有回转运动再增加一个上下摆动即可满足工作要求,有些动作较为简单的专用机械手,为了简化结构,可以不设腕部,而直接用臂部运动驱动手部搬运工件。

目前,应用最为广泛的手腕回转运动机构为回转液压(气)缸,它的结构紧凑,灵巧但回转角度小(一般小于 2700),并且要求严格密封,否则就难保证稳定的输出扭距。因此在要求较大回转角的情况下,采用齿条传动或链轮以及轮系结构。

(3)臂部 手臂部件是机械手的重要握持部件。它的作用是支撑腕部和手部(包括工作或夹具),并带动他们做空间运动。

臂部运动的目的:把手部送到空间运动范围内任意一点。如果改变手部的姿态(方位),则用腕部的自由度加以实现。因此,一般来说臂部具有三个自由度才能满足基本要求,即手臂的伸缩、左右旋转、升降(或俯仰)运动。

手臂的各种运动通常用驱动机构(如液压缸或者气缸)和各种传动机构来实现,从臂部的受力情况分析,它在工作中既受腕部、手部和工件的静、动载荷,而且自身运动较为多,受力复杂。因此,它的结构、工作范围、灵活性以及抓重大小和定位精度直接影响机械手的工作性能。

行走机构 有的工业机械手带有行走机构,我国的正处于仿真阶段。

4.2 控制机构

驱动机构是工业机械手的重要组成部分。机械手的控制可采用以下几种方式:

1)用继电器控制,这种控制系统故障率高、控制方式不灵活且功率消耗大,已逐渐被人们所淘汰;

2)用微机控制,虽然它在智能控制方面有较大的功能,但它的抗干扰性差,系统设计比较复杂,一般维修人员难以掌握其维修技术,广泛应用也不太容易;

3)PLC控制,此控制系统具有运行可靠、使用维修方便、抗干扰性强、能经受恶劣环境的考验等优越性,已经成为在机械手控制系统中使用最多的控制方式。

4.3 控制系统分类

在机械手的控制上,有点动控制和连续控制两种方式。大多数用插销板进行点位控制,也有采用可编程序控制器控制、微型计算机控制,采用凸轮、磁盘磁带、穿孔卡等记录程序。主要控制的是坐标位置,并注意其加速度特性。

5工业机械手的发展趋势

(1)工业机器人性能不断提高(高速度、高精度、高可靠性、便于操作和维修),而单机价格不断下降。

(2)机械结构向模块化、可重构化发展。例如关节模块中的伺服电机、减速机、检测系统三位一体化:由关节模块、连杆模块用重组方式构造机器人整机;国外已有模块化装配机器人产品问市。

(3)工业机器人控制系统向基于PC机的开放型控制器方向发展,便于标准化、网络化;器件集成度提高,控制柜日见小巧,且采用模块化结构:大大提高了系统的可靠性、易操作性和可维修性。

(4)机器人中的传感器作用日益重要,除采用传统的位置、速度、加速度等传感器外,装配、焊接机器人还应用了视觉、力觉等传感器,而遥控机器人则采用视觉、声觉、力觉、触觉等多传感器的融合技术来进行环境建模及决策控制多传感器融合配置技术在产品化系统中已有成熟应用。

(5)虚拟现实技术在机器人中的作用已从仿真、预演发展到用于过程控制如使遥控机器人操作者产生置身于远端作业环境中的感觉来操纵机器人。

(6)当代遥控机器人系统的发展特点不是追求全自治系统,而是致力于操作者与机器人的人机交互控制,即遥控加局部自主系统构成完整的监控遥控操作系统,使智能机器人走出实验室进入实用化阶段。美国发射到火星上的“索杰纳”机器人就是这种系统成功应用的最著名实例。

(7)机器人化机械开始兴起。从94年美国开发出“虚拟轴机床”以来,这种新型装置已成为国际研究的热点之一,纷纷探索开拓其实际应用的领域。我国的工业机器人从80年代“七五”科技攻关开始起步,在国家的支持下,通过“七五”、“八五”科技攻关,目前己基本掌握了机器人操作机的设计制造技术、控制系统硬件和软件设计技术、运动学和轨迹规划技术,生产了部分机器人关键元器件,开发出喷漆、弧焊、点焊、装配、搬运等机器人;其中有130多台套喷漆机器人在二十余家企业的近30条自动喷漆生产线(站)上获得规模应用,弧焊机器人己应用在汽车制造厂的焊装线上。但总的来看,我国的工业机器人技术及其工程应用的水平和国外比还有一定的距离,如:可靠性低于国外产品:机器人应用工程起步较晚,应用领域窄,生产线系统技术与国外比有差距;在应用规模上,我国己安装的国产工业机器人约占全球已安装台数的万分之四。以上原因主要是没有形成机器人产业,当前我国的机器人生产都是应用户的要求,“一客户,一次重新设计”,品种规格多、批量小、零部件通用化程度低、供货周期长、成本也不低,而且质量、可靠性不稳定。因此迫切需要解决产业化前期的关键技术,对产品进行全面规划,搞好系列化、通用化、模块化设计,积极推进产业化进程.我国的智能机器人和特种机器人在“863”计划的支持下,也取得了不少成果。其中最为突出的是水下机器人,6000m水下无缆机器人的成果居世界领先水平,还开发出直接遥控机器人、双臂协调控制机器人、爬壁机器人、管道机器人等机种:在机器人视觉、力觉、触觉、声觉等基础技术的开发应用上开展了不少工作,有了一定的发展基础。但是在多传感器信息融合控制技术、遥控加局部自主系统遥控机器人、智能装配机器人、机器人化机械等的开发用方面则刚刚起步,与国外先进水平差距较大,需要在原有成绩的基础上,有重点地系统攻关,才能形成系统配套可供实用的技术和产品,以期在“十五”后期立于世界先进行列之中。

6 本章小结

本章简要的介绍了机械手的基本概念。在机械手的组成上,系统的从执行机构、控制机构以及控制部分三个方面说明。比较细致的介绍了机械手的发展趋势,简要的叙述了本文研究的内容。

二 .机械手移动工件控制系统的控制要求

以三菱公司的PLC为例,设计一个简单的机械手移动工件控制系统。图a所示为一简易物料搬运机械手的工艺流程图。该机械手石一个水平/垂直位移的机械设备,其操作是将工件从左工作台搬运到右工作台。

机械手移动工件的基本结构图如图a所示

图1-a 机械手移动工件的基本结构图

1工作原理

机械手移动工件通过限位开关和电机来控制。

机械手分别通过前进/后退电机、上升、下降电机的正反转来上、下、左、右移动,移动的最大位置通过上、下、左、右4个限位开关控制。

夹放工件通过夹紧、放下电机的正反转来控制。夹紧工件通过定时器来控制,即凭经验设定一个时间,在这个时间内,机械手能完全夹紧工件。放下工件通过松限位开关来控制。

按下启动按钮,整个系统按照PLC程序的设定有序的运行;正常停车时,按下正常停车按钮,等机械手运行到初始位置,停车。当按下即停按钮时,系统不管运行到什么状态,都要立即停止

2设备控制要求

机械手移动工件控制系统的要求时有“正常运行”和“强制停止”两种控制方式。

2.1正常运行

在初始位置(上、左、松限位开关确定)处,按下启动按钮,系统开始工作;

机械手首先向下运动,运动到最低位置停止;

机械手开始夹紧工件,一直到工件夹紧为止(由定时器控制);

机械手开始向上运动,一直运动到最上端(由上限位开关确定);

上限位开关闭合后,机械手开始向右运动;

运行到右端后,机械手开始向下运动;

向下运动到最低位后,机械手把工件松开,一直到松限位开关有效(由松限位开关控制);

工件松开后,机械手开始向上运动,直至触动上限位开关(上限位开关控制);

到达最上端后,机械化搜开始左运动,直到触动左限位开关,此时机械手已回到初始位置;

该系统要求能连续循环工作。正常停车时,要求机械手回到初始位置才能停车。

2.2紧急停止

按下紧急停止按钮时,系统立即停止。

3硬件配置

从控制系统图1-B可以看出,在控制方式选择上需要一个启动按钮用来完成自动方式的启动、1个停止按钮用来处理正常情况下的停止运行,1个急停按钮用来处理紧急情况下的停止运行。机械手运动的限位开关有5个:高位限位开关、低位限位开关、左位限位开关、右位限位开关和松开器件开关。手动输入信号共由3个电机组成:前进/后退电机、上升/下降电机、夹取/放下电机。

机械手控制系统图如下图所示:

3.1.PLC的选型

(1)对输入 / 输出点的选择 另外要注意,一些高密度输入点的模块对同时接通的输入点数有限制,一般同时接通的输入点不得超过总输入点的 60 %;本设计中的输入点为8,所以PLC所需的输入点需要大于14。 PLC 每个输出点的驱动能力( A/ 点)也是有限的,有的 PLC 其每点输出电流的大小还随所加负载电压的不同而异;一般 PLC 的允许输出电流随环境温度的升高而有所降低等。在选型时要考虑这些问题。

PLC 的输出点可分为共点式、分组式和隔离式几种接法。隔离式的各组输出点之间可以采用不同的电压种类和电压等级,但这种 PLC 平均每点的价格较高。如果输出信号之间不需要隔离,则应选择前两种输出方式的 PLC 。

(2)对存储容量的选择

对用户存储容量只能作粗略的估算。在仅对开关量进行控制的系统中,可以用输入总点数乘 10 字 / 点+输出总点数乘 5 字 / 点来估算,本设计中的开关量为830;计数器 / 定时器按( 3 ~ 5 )字 / 个估算,本设计中有一个定时器。最后,一般按估算容量的 50 ~ 100 %留有裕量。

(3)对 I/O 响应时间的选择

PLC 的 I/O 响应时间包括输入电路延迟、输出电路延迟和扫描工作方式引起的时间延迟(一般在 2 ~ 3 个扫描周期)等。对开关量控制的系统, PLC 和 I/O 响应时间一般都能满足实际工程的要求,可不必考虑 I/O 响应问题。

(4)根据输出负载的特点选型

不同的负载对 PLC 的输出方式有相应的要求。本设计中的在负载都式动作不频繁的交、直流负载,因此选用继电器输出型的。继电器输出型的 PLC 有许多优点,如导通压降小,有隔离作用,价格相对较便宜,承受瞬时过电压和过电流的能力较强,其负载电压灵活(可交流、可直流)且电压等级范围大等。

(5)对 PLC 结构形式的选择 FX2N系列PLC是三菱公司的高性能叠装式机种。可以分配不同的单元:基本单元、扩展单元和特殊单元。基本单元内含有CPU,存储器和I/O电路,要增加系统的I/O点数可联接扩展单元,增加系统的控制功能,则可以连接相应的特殊单元。在本系统中,配置基本单元就可以满足控制要求。不同的负载对PLC的输出方式有相应的要求。例如,频繁通断的感性负载,应选择晶体管或晶闸管输出型的,而不应选用继电器输出型的。但继电器输出型的PLC有许多优点,如导通压降小,有隔离作用,价格相对较便宜,承受瞬时过电压和过电流的能力较强,其负载电压灵活(可交流、可直流)且电压等级范围大等。所以动作不频繁的交、直流负载可以选择继电器输出型的PLC。即选用FX2N-32MR继电器输出型PLC作为机械手移动工件的控制系统。

机械手移动工件控制以三菱公司的FX2N 系列PLC为例,PLC框架配置如图1-C所示:

图1-C PLC框架配置

&nbs p;3.2.按钮的选择

按钮是最常用的主令电器,在低压控制电路中用于手动发出控制信号。它由按钮帽、复位弹簧、桥式触头和外壳等组成。按用途和结构的不同,分为启动按钮、停止按钮和复合按钮等。

在机械手控制系统的设计中,选用分别选用了一个启动按钮,一个停止按钮,一个急停按钮,其原理分别为:启动按钮带有常开触头,手指按下钮帽,常开触头闭合;手指松开,常开触头复位。停止按钮带有常闭触头,手指按下按钮帽,常闭触头断开;手指松开,常闭触头复位。急停按钮按下之后,机械手移动工件立即停止;急停按钮解除后,所有输出重新开始。一按按钮,机床就能锁住,解除的方法是旋转后解除。 表1-1 按钮的技术数据

型号 触头组合 按钮颜色

LA25-10 —常开 绿色

LA25-01 —常闭 红色

KA5-4211 —常开—常闭 灰色

3.3.限位开关的选择

行程开关(限位开关)的工作原理及符号表示行程开关又称限位开关,用于控制机械设备的行程及限位保护。在实际生产中,将行程开关安装在预先安排的位置,当装于生产机械运动部件上的模块撞击行程开关时,行程开关的触点动作,实现电路的切换。因此,行程开关是一种根据运动部件的行程位置而切换电路的电器,它的作用原理与按钮类似。行程开关广泛用于各类机床和起重机械,用以控制其行程、进行终端限位保护。在电梯的控制电路中,还利用行程开关来控制开关轿门的速度、自动开关门的限位,轿厢的上、下限位保护。 表1-2 限位开关的技术数据

型号 额定电压/V 额定电流/A 触头数量 结构形式 个数

交流 直流 常开 常闭

JLXK1-311 500 440 5 1 1 直动防护式 5

3.4.继电器的选择 表1-3 正反转继电器的技术数据

型号 触点数量 触电容量 工作电压 个数

JZF-5 3个常开触点 AC250V 5A 220V 6

4.I/O地址表

由于CPU模块有16点数字量输入,16点数字量的输出,因此不再需要输入/输出模块。I/O分配采用自动分配方式,模块上的输入端子对应的输入地址是X000~X007,输出端子对应的输出地址是Y000~X017。

表1-4 I/O地址表

对应地址 对应的外部设备

输入地址 X000 启动按钮

X001 停止按钮

X002 紧急停止按钮

X003 上限位开关

X004 下限位开关

X005 左限位开关

X006 右限位开关

X007 松限位开关

输出地址 Y000 前进/后退电机正转继电器(前进)

Y001 前进/后退电机反转继电器(后退)

Y002 上升/下降电机正转继电器(上升)

Y003 上升/下降电机反转继电器(下降)

Y004 夹紧/放下电机正转继电器(夹紧)

Y0 05 夹紧/放下电机反转继电器(放下)

功能

定时器 T0 夹紧工件时定时5S

内部继电器 M0 机械手的初始位置

三、机械手控制系统的程序设计

1流程图

1.1正常运行流程图

正常运行流程图如图1-D所示: 紧急停止流程图如图1-E所示:

图1-D 正常运行流程图

图1-E 紧急停止的流程图

2控制源程序介绍

2.1初始位置辅助继电器

M0是初始位置辅助继电器,当机械手的位置在左上方时,M0得电。它的助记符程序为:

LD X003

AND X005

OUT M0 ;机械手在初始位置

所对应得梯形图如图1-F所示:

图1-F 初始位置辅助继电器梯形图

2.2向下运动

机械手在初始位置时,按下启动按钮,机械手开始向下运动,运动到最下端停止;当机械手夹着工件运动到最右边时,开始向下运动,运动到下端停止;当紧急停止按钮按下时,停止向下运动。它的助记符程序为:

LD X000 OR Y003

AND M0 ANI X004

LD X006 ANI X002

ORB ANI X001

OUT Y003 ;机械手向下运动

所对应得梯形图如图1-G所示:

图1-G 向下运动梯形图

2.3夹工件

当机械手运动到左下方时,开始夹工件,夹5S;当紧急停止按钮按下时,停止夹工件。它的助记符程序为:

LD X004 ANI T0

AND X005 OUT Y004 ;机械手夹工件

OR Y004 OUT T0 K50定时5S钟

ANI X002

所对应 的梯形图如图1-H所示:

图1-H 夹工件梯形图

2.4向上运动

机械手夹紧工件后或者工件放下后,开始向上运动,运动到最上端停止;当紧急停止按钮按下时,停止向上运动。它的助记符程序为:

LD T0 ANI X003

OR X007 ANI X002

OR Y002 OUT Y002 ;机械手向上运动

所对应的梯形图如图1-I所示:

图1-I 向上运动梯形图

2.5向右运动

机械手夹紧工件,上升到最上端后,开始向右运动,运动到最右端停止;当紧急停止按钮按下时,停止向右运动。它的助记符程序为:

LDI X007 ANI X006

AND X003 ANI X002

OR Y000 OUT Y000 ;机械手夹着工件向右移动

所对应的梯形图如图1-J所示:

图1-J 向右运动梯形图

2.6放下工件

当机械手运动到最右、最下端时,开始放下工件;当紧急停止按钮按下时,停止放下工件。它的助记符程序为:

LD X004 ANI X007

AND X006 ANI X002

OR Y005 OUT Y005 ;机械手放下工件

所对应的梯形图如图1-K所示:

图1-K 放下工件梯形图

2.7向左运动

机械手放下工件,上升到最上端后,开始向左运动,运动到最左端停止;当紧急停止按钮按下时,停止向左运动。它得助记符程序为:

LD X003 &n bsp; ANI X005

AND X006 ANI X002

OR Y001 AND X007

OUT Y001 ;机械手向左移动

所对应得梯形图如图1-L所示:

图1- L 向左运动梯形图

四、运行调试

针对机械手的几种工作方式,分别进行控制的实现逻辑处理。

首先是复位控制,这对于周期运转而言是十分重要的,只有当机械手处于原点位置时才能启动周期工作程序。系统设计了一个复位控制信号,在系统上电后,如果选择单周期或连续工作方式,则首先要确保机械手处于原点位置才能进行下一步处理。为了保证在周期方式启动前系统处于该位置,可以首先通过按下回原点按钮来驱动机械手到达该位置,然后启动周期控制。这样就可以有效地减少逐个手动控制设备到位地繁杂过程,提高控制效率。这样,就要求系统在手动方式下,如果收到复位命令,则驱动机械手向上或向左运动到原始位,同时复位抓取信号。

周期工作分为单周期和连续工作两种方式,其区别主要在于完成一个动作周期后,但周期方式下,系统等待下一个启动信号到来才进行下一步动作,而连续工作方式下则继续进行下一个周期,直至停止信号到来。对每个周期的动作而言,两种方式下完全相同。

五、梯形图及PLC的外部接线

1梯形图

机械手系统设计梯形图如下图所示:

图1-M 机械手系统设计梯形图

2 PLC外部接线

机械手控制系统外部接线

图1-N 机械手控制系统外部接线图

3主电路

4元件清单

表1-5 机械手控制系统元件清单

元器件名称 型号 数量 生产公司 备注

启动按钮 LA25-10 1 三菱 常开

停止按钮 LA25-01 1 三菱 常闭

急停按钮 KA5-4211 1 三菱 常开-常闭

行程开关 JLXK1-311 5 三菱 直流防护式

辅助继电器 LY2-0 DC48V 1 三菱 3个常开触点

正反转继电器 JZF-5 6 三菱 AC250V 5A

总结

通过本系统的设计,对三菱FX系列PLC的特点有了更深的理解。掌握了构建实际PLC控制系统的能力和对程序调试的步骤和方法。熟悉了PLC的I/O的连接方法和对一些硬件根据实际要求进行适当的选择。

机械手控制系统利用了三菱FX系列PLC的特点,对电机、行程开关及其他一些输入/输出点进行控制,实现了机械加工中移动工件的自动化。机械手作为工件取送设备虽然应用于不同的场合,其具体的工作情况不同,但本质的工作过程却是类似的。采用PLC对机械手进行控制也是目前常见的控制方式,本设计给出的机械手控制程序,可以应用于大部分的类似场合。

七、 (1) 可编程序控制器原理与应用 西安电子科技大学出版社 主编 汪志锋

(2) PLC应用开发技术与工程实践 人民邮电出版社 编著 求是科技

(3) 可编程控制器技术及应用 北京理工大学出版社 编著 夏辛明

(4) 可编程控制器应用技术 机械工业出版社 主编 王也仿

(5) 可编程控制器原理与应用 中国电力出版社 &nbs p; 主编 郁汉琪

仿真机械手臂设计范文6

>> 一种新型林地采育作业臂的设计与优化 一种多关节智能机械手臂控制系统设计 一种新型高速数显表的设计与实现 一种电力巡检系统的设计与实现 一种企业服务总线的设计与实现 一种属性权威系统的设计与实现 一种口令加密工具的设计与实现 一种用于农业果实采摘的机械臂的改良及应用检验 一种仿生机械臂空间位置反馈方法的研究 一种用于化工厂排爆的组合机械臂 一种电梯曳引机制动器制动臂与基座连接方式的设计缺陷浅析 一种钩臂车后支撑架的焊接工装设计 一种RFID中间件设计与实现 一种用户注册登录系统设计与实现 一种时延设计方法与DSP实现 一种简单实用的检错与纠错算法设计与实现 一种靶场测速系统校准方法与装置的设计与实现 一种人脸检测与识别方法的设计与实现 一种简易汉字加密与解密算法的设计与实现 一种设计新颖的教学论坛的实现 常见问题解答 当前所在位置:l,2015-02-27/2016-12-16.梁嘉琪.把3D打印机改成书写机器人替人手写信件[DB/OL].

[8]高宇馨.这有一只差生机器人[N].好奇心日报,2015-06-10.

[9]陈华.“世界杯”让机器人话题大热[N].工人日报,2015-07-24(001).

[10]杨亮,李慧蓝,辉龙.董明珠:格力机器人,要做成极品[N].南方都市报,2015-12-16.

[11]蔡汉明,钱永恒. Dobot型机器人运动学分析与仿真[J].机电工程,2016,33(10):1217-1220.

[12]牛立刚,张月莹,胡志勇,等.基于Arduino的USARTHMI智能串口触摸屏的应用[J].机电信息,2016(15):122-123.

[13]谭秀腾,郭小定,李小龙,等.基于ARM的桌面型3D打印机控制系统设计[J].应用科技,2014,41(5):57-66.