前言:中文期刊网精心挑选了量子计算发展范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
量子计算发展范文1
关键词:工程预结算;自动计算软件
Abstract: The development of the computer technology, and infiltrated all walks of life and computer graphic design technology promotion, the computer graphics technology is applied to the calculation of engineering quantity possible, automatic calculation software application and development is the inevitable trend of the building engineering budget.
Key words : the project pre-settlement; automatic calculation software
中图分类号:F811.3文献标识码: A文章编号:2095-2104(2012)
建筑工程预结算是建筑行业中非常重要的一项工作,而工程量计算又是这项工作中至关重要的一部分。如何提高工程量计算的效率、减少其工作量,做到准确无误,一直是工程预算行业急待解决的一个课题。
计算机技术的日益发展,并渗入到各行各业中以及计算机平面设计技术的推广,使得计算机绘图技术应用到工程量计算中成为可能,工程量自动计算软件的应用和发展是建筑工程预结算的必然趋势。
2003年7月我在公司预算处开始从事工程预算工作,刚参加工作时,工程预算对我来说非常陌生,书本理论与实际应用之间差距太大。经过很长一段努力,我的预算技能虽然有所提高,但对于计算规则和定额的深入理解以及计算速度的有效提高等方面仍有相当的不足。
2007年,在参与我公司内蒙古商厦的审计结算工作中,我接触到了鲁班算量软件,同时,在学习和应用当中感受到它给我的工作带来了很大的方便。
(一)在工作方式上,鲁班软件采用的是AutoCad界面和绘图方式,这正是我在校期间的学习内容,所以感觉上手很快,达到熟练程度也比较容易。
当然对于很多初学者来说,软件入门的确有一定的困难,但这只是暂时的,只要我们把握正确的方法,通过正确的渠道,再加上自己的努力就一定能掌握它。
(二)对于工程量计算规则,其中大部分已经在鲁班软件中设置完毕,我们只要稍做修改就可以正确应用。
显而易见,工程量计算软件为预算初学者提供了学习的捷径。因为老预算员精通定额,熟练掌握计算规则,但计算机水平都不是很高,而对于初学者来说计算机操作是我们的优势,计算规则已经由软件定义,我们就可以先入门学习软件再逐渐熟悉定额和计算规则。通过这种方式我感到预算水平提高很快。
(三)在工作步骤上,使用工程量计算软件省略了原先的计算书汇总、上表套定额的手工工序,完全由计算机自动完成,极大程度上节省了时间。
在工作效率上,以前用手工算量大约用一星期才能完成的工程量,用算量软件五天就能完成。
(四)在采用的工作方式上,鲁班软件采用AutoCad绘图方式,省略了手工计算时使用的铅笔、橡皮、计算器和大量的工程量计算书等耗材,简化了手写计算式的步骤和手按计算器计算的繁复工作,在极大程度上实现了无纸办公。
(五)在打印输出格式上,鲁班软件打印输出的整洁版面是手工书写无法比拟的,其格式明确,计算公式详细,汇总方式合理,做为预算资料的保存和查阅十分适用。
另外,在核对工程量时,还可以利用电子计算书的分类汇总和条件汇总功能,在计算机中随时调用有用的数据,减少了手工计算书不易分类、不易汇总的麻烦。
再有,软件提供了自动输出到TXT、EXCEL、XML多种文件形式,极大程度上方便了各种用户的转化与应用。
(六)图形算量软件作为一种高科技含量的新兴技术产业,具有很大的发展前景,通过每一次的软件不定期升级,软件必将越做越成熟,越做越合乎人性化设计。到目前为止,该软件已经由最初的2007版升级到2008版,而且2009版已经在网上公布并进入全国巡回展览阶段。
我相信,新一版的鲁班软件设计一定会有更强大的功能,有更出色的表现,让我们拭目以待。
量子计算发展范文2
量子密码应运而生
量子计算的原理与传统计算机采用的原理有很大不同,传统计算机采用单路串行操作,而量子计算机采用多路并行操作,它们运算速度的差异就如同万只飞鸟同时升上天空与万只蜗牛排队过独木桥的区别。
20世纪70年代,英国和美国最早开始对量子计算的研究。近年来,量子计算的理论和实践都相继取得重大进展,产生了多种新的量子算法,研制了多种量子计算机原型。
科学家预测,未来10~20年将研制成功103~104量子比特的大型量子计算机,其运算能力可以在几分钟内破译现有任何采用非对称密钥系统生成的密码。
面对量子计算未来可能随时“秒杀”传统密码的危险,科学家致力于寻找不基于数学问题,能有效抵抗量子计算攻击的新型密码体制。解铃还须系铃人,同样基于量子信息技术的量子密码应运而生,成为对抗量子计算的“神器”。
又一个可能的“技术差”
二战中,英国破译德军ENGMA密码,获知其即将轰炸考文垂市,但为保守德军密码已被破译的秘密,英国断然牺牲考文垂这个重要工业城市,不发出防空警报任由德军轰炸;美军在中途岛海战的胜利,以及击落山本五十六座机等影响战争进程的重大事件,与其成功破译日军“紫密”有直接关系。一些专家们甚至估计,盟军在密码破译上的成功至少使二战缩短了8年。
当前,战场网络已成为连接人与武器、武器与武器的技术纽带,构成了信息化军队的神经中枢。侦察预警、指挥协同、武器控制、后勤保障等作战活动均离不开网络的支持。安全可靠的战场网络是保证自身作战体系稳定,在体系对抗中谋取胜势的重要前提,而战场网络的安全又十分依赖于网络通信密码提供的“安全屏障”。
一个国家的军队一旦率先实现量子密码和量子计算的武器化,并在战争中投入使用,将与对手形成巨大的“技术差”,在保持自身网络通信绝对安全的同时,可随时破译对方网络通信密码,洞悉对手的一举一动,从而占据绝对信息优势,甚至可以直接瘫痪和控制对方网络,由此将置作战对手于极为被动的不利地位,战局可能出现“一边倒”的情况。
以超常措施推进军事应用
意大利军事家杜黑指出:“胜利只向那些能预见战争特性变化的人微笑,而不是向那些等待变化发生才去适应的人微笑。”面对量子信息技术的机遇与挑战,只有未雨绸缪,尽早规划,提前部署,才能在未来战争中占据先机和主动,避免对手利用技术突然性陷我于被动。
目前,量子密码已经从实验室演示性研究迈向实际应用。发达国家军队已把量子信息技术作为引领未来军事革命的颠覆性、战略性技术。例如,美国防高级研究计划局专门制定“量子信息科学和技术发展规划”、研发量子芯片的“微型曼哈顿”计划等。美国正加速推进量子信息技术的实际应用,美国白宫和五角大楼已安装量子通信系统并已投入使用。英、法、德、日等国军队也相继制定实施一系列发展量子信息技术的计划。
量子计算发展范文3
关键词:计算科学计算工具图灵模型量子计算
1计算的本质
抽象地说,所谓计算,就是从一个符号串f变换成另一个符号串g。比如说,从符号串12+3变换成15就是一个加法计算。如果符号串f是x2,而符号串g是2x,从f到g的计算就是微分。定理证明也是如此,令f表示一组公理和推导规则,令g是一个定理,那么从f到g的一系列变换就是定理g的证明。从这个角度看,文字翻译也是计算,如f代表一个英文句子,而g为含意相同的中文句子,那么从f到g就是把英文翻译成中文。这些变换间有什么共同点?为什么把它们都叫做计算?因为它们都是从己知符号(串)开始,一步一步地改变符号(串),经过有限步骤,最后得到一个满足预先规定的符号(串)的变换过程。
从类型上讲,计算主要有两大类:数值计算和符号推导。数值计算包括实数和函数的加减乘除、幂运算、开方运算、方程的求解等。符号推导包括代数与各种函数的恒等式、不等式的证明,几何命题的证明等。但无论是数值计算还是符号推导,它们在本质上是等价的、一致的,即二者是密切关联的,可以相互转化,具有共同的计算本质。随着数学的不断发展,还可能出现新的计算类型。
2远古的计算工具
人们从开始产生计算之日,便不断寻求能方便进行和加速计算的工具。因此,计算和计算工具是息息相关的。
早在公元前5世纪,中国人已开始用算筹作为计算工具,并在公元前3世纪得到普遍的采用,一直沿用了二千年。后来,人们发明了算盘,并在15世纪得到普遍采用,取代了算筹。它是在算筹基础上发明的,比算筹更加方便实用,同时还把算法口诀化,从而加快了计算速度。
3近代计算系统
近代的科学发展促进了计算工具的发展:在1614年,对数被发明以后,乘除运算可以化为加减运算,对数计算尺便是依据这一特点来设计。1620年,冈特最先利用对数计算尺来计算乘除。1850年,曼南在计算尺上装上光标,因此而受到当时科学工作者,特别是工程技术人员广泛采用。机械式计算器是与计算尺同时出现的,是计算工具上的一大发明。帕斯卡于1642年发明了帕斯卡加法器。在1671年,莱布尼茨发明了一种能作四则运算的手摇计算器,是长1米的大盒子。自此以后,经过人们在这方面多年的研究,特别是经过托马斯、奥德内尔等人的改良后,出现了多种多样的手摇计算器,并风行全世界。
4电动计算机
英国的巴贝奇于1834年,设计了一部完全程序控制的分析机,可惜碍于当时的机械技术限制而没有制成,但已包含了现代计算的基本思想和主要的组成部分了。此后,由于电力技术有了很大的发展,电动式计算器便慢慢取代以人工为动力的计算器。1941年,德国的楚泽采用了继电器,制成了第一部过程控制计算器,实现了100多年前巴贝奇的理想。
5电子计算机
20世纪初,电子管的出现,使计算器的改革有了新的发展,美国宾夕法尼亚大学和有关单位在1946年制成了第一台电子计算机。电子计算机的出现和发展,使人类进入了一个全新的时代。它是20世纪最伟大的发明之一,也当之无愧地被认为是迄今为止由科学和技术所创造的最具影响力的现代工具。
在电子计算机和信息技术高速发展过程中,因特尔公司的创始人之一戈登·摩尔(GodonMoore)对电子计算机产业所依赖的半导体技术的发展作出预言:半导体芯片的集成度将每两年翻一番。事实证明,自20世纪60年代以后的数十年内,芯片的集成度和电子计算机的计算速度实际是每十八个月就翻一番,而价格却随之降低一倍。这种奇迹般的发展速度被公认为“摩尔定律”。
6“摩尔定律”与“计算的极限”
人类是否可以将电子计算机的运算速度永无止境地提升?传统计算机计算能力的提高有没有极限?对此问题,学者们在进行严密论证后给出了否定的答案。如果电子计算机的计算能力无限提高,最终地球上所有的能量将转换为计算的结果——造成熵的降低,这种向低熵方向无限发展的运动被哲学界认为是禁止的,因此,传统电子计算机的计算能力必有上限。
而以IBM研究中心朗道(R.Landauer)为代表的理论科学家认为到21世纪30年代,芯片内导线的宽度将窄到纳米尺度(1纳米=10-9米),此时,导线内运动的电子将不再遵循经典物理规律——牛顿力学沿导线运行,而是按照量子力学的规律表现出奇特的“电子乱窜”的现象,从而导致芯片无法正常工作;同样,芯片中晶体管的体积小到一定临界尺寸(约5纳米)后,晶体管也将受到量子效应干扰而呈现出奇特的反常效应。
哲学家和科学家对此问题的看法十分一致:摩尔定律不久将不再适用。也就是说,电子计算机计算能力飞速发展的可喜景象很可能在21世纪前30年内终止。著名科学家,哈佛大学终身教授威尔逊(EdwardO.Wilson)指出:“科学代表着一个时代最为大胆的猜想(形而上学)。它纯粹是人为的。但我们相信,通过追寻“梦想—发现—解释—梦想”的不断循环,我们可以开拓一个个新领域,世界最终会变得越来越清晰,我们最终会了解宇宙的奥妙。所有的美妙都是彼此联系和有意义的。”
7量子计算系统
量子计算最初思想的提出可以追溯到20世纪80年代。物理学家费曼RichardP.Feynman曾试图用传统的电子计算机模拟量子力学对象的行为。他遇到一个问题:量子力学系统的行为通常是难以理解同时也是难以求解的。以光的干涉现象为例,在干涉过程中,相互作用的光子每增加一个,有可能发生的情况就会多出一倍,也就是问题的规模呈指数级增加。模拟这样的实验所需的计算量实在太大了,不过,在费曼眼里,这却恰恰提供一个契机。因为另一方面,量子力学系统的行为也具有良好的可预测性:在干涉实验中,只要给定初始条件,就可以推测出屏幕上影子的形状。费曼推断认为如果算出干涉实验中发生的现象需要大量的计算,那么搭建这样一个实验,测量其结果,就恰好相当于完成了一个复杂的计算。因此,只要在计算机运行的过程中,允许它在真实的量子力学对象上完成实验,并把实验结果整合到计算中去,就可以获得远远超出传统计算机的运算速度。
在费曼设想的启发下,1985年英国牛津大学教授多伊奇DavidDeutsch提出是否可以用物理学定律推导出一种超越传统的计算概念的方法即推导出更强的丘奇——图灵论题。费曼指出使用量子计算机时,不需要考虑计算是如何实现的,即把计算看作由“神谕”来实现的:这类计算在量子计算中被称为“神谕”(Oracle)。种种迹象表明:量子计算在一些特定的计算领域内确实比传统计算更强,例如,现代信息安全技术的安全性在很大程度上依赖于把一个大整数(如1024位的十进制数)分解为两个质数的乘积的难度。这个问题是一个典型的“困难问题”,困难的原因是目前在传统电子计算机上还没有找到一种有效的办法将这种计算快速地进行。目前,就是将全世界的所有大大小小的电子计算机全部利用起来来计算上面的这个1024位整数的质因子分解问题,大约需要28万年,这已经远远超过了人类所能够等待的时间。而且,分解的难度随着整数位数的增多指数级增大,也就是说如果要分解2046位的整数,所需要的时间已经远远超过宇宙现有的年龄。而利用一台量子计算机,我们只需要大约40分钟的时间就可以分解1024位的整数了。
8量子计算中的神谕
人类的计算工具,从木棍、石头到算盘,经过电子管计算机,晶体管计算机,到现在的电子计算机,再到量子计算。笔者发现这其中的过程让人思考:首先是人们发现用石头或者棍棒可以帮助人们进行计算,随后,人们发明了算盘,来帮助人们进行计算。当人们发现不仅人手可以搬动“算珠”,机器也可以用来搬动“算珠”,而且效率更高,速度更快。随后,人们用继电器替代了纯机械,最后人们用电子代替了继电器。就在人们改进计算工具的同时,数学家们开始对计算的本质展开了研究,图灵机模型告诉了人们答案。
量子计算的出现,则彻底打破了这种认识与创新规律。它建立在对量子力学实验的在现实世界的不可计算性。试图利用一个实验来代替一系列复杂的大量运算。可以说。这是一种革命性的思考与解决问题的方式。
因为在此之前,所有计算均是模拟一个快速的“算盘”,即使是最先进的电子计算机的CPU内部,64位的寄存器(register),也是等价于一个有着64根轴的二进制算盘。量子计算则完全不同,对于量子计算的核心部件,类似于古代希腊中的“神谕”,没有人弄清楚神谕内部的机理,却对“神谕”内部产生的结果深信不疑。人们可以把它当作一个黑盒子,人们通过输入,可以得到输出,但是对于黑盒子内部发生了什么和为什么这样发生确并不知道。
9“神谕”的挑战与人类自身的回应人类的思考能力,随着计算工具的不断进化而不断加强。电子计算机和互联网的出现,大大加强了人类整体的科研能力,那么,量子计算系统的产生,会给人类整体带来更加强大的科研能力和思考能力,并最终解决困扰当今时代的量子“神谕”。不仅如此,量子计算系统会更加深刻的揭示计算的本质,把人类对计算本质的认识从牛顿世界中扩充到量子世界中。
如果观察历史,会发现人类文明不断增多的“发现”已经构成了我们理解世界的“公理”,人们的公理系统在不断的增大,随着该系统的不断增大,人们认清并解决了许多问题。人类的认识模式似乎符合下面的规律:
“计算工具不断发展—整体思维能力的不断增强—公理系统的不断扩大—旧的神谕被解决—新的神谕不断产生”不断循环。
无论量子计算的本质是否被发现,也不会妨碍量子计算时代的到来。量子计算是计算科学本身的一次新的革命,也许许多困扰人类的问题,将会随着量子计算机工具的发展而得到解决,它将“计算科学”从牛顿时代引向量子时代,并会给人类文明带来更加深刻的影响。
参考文献
[1]M.A.NielsenandI.L.Chuang,QuantumComputationandQuantumInformation[M].CambridgeUniversityPress,2000.
量子计算发展范文4
实际上,量子信息以多种形式存在着,比如一个光子的两极化状态,电子的自转或是原子的激发状态。目前,已经发展出多种技术用以传输这样的状态。可是,目前依然存在许多阻碍技术发展的问题。比如,两极化光量子能在超过100公里的范围内用于传输量子信息,但只是从概率上说。超导设备通过芯片无损地通讯,但是只维持一瞬间,之后就有可能被其他相互作用争夺了信息传输。
两种方式
现在,全球在远距离通信方面最先进的科技是用于可见光的量子信息的瞬间传输。量子信息以(quantumbits)量子比特为单位计或是qubits,这些可以通过光一瞬间分散的特性表现,比如它的两级状态,或是以电磁波的连续状态形容,比如微波电场的密度和强度。瞬间传输信息,需要发送和接收双方都拥有一对纠缠的量子系统。当发送者改变系统状态时,接收者系统会同样受到影响。
两极化量子比特在距离方面的表现最好,其最高纪录能达到143公里。不过目前,仅有50%的量子比特能够瞬间传输。实际上,瞬间传输需要传送方进行名为“铃流检测“的操作。操作中,两个量子的两极被充分相连形成四种可能性组合。简单的光学和光电探测器能够最多分辨两种。
长距离的传输也会带来进一步的技术难题,比如对大气乱流和地面活动的弥补。所以,需要利用一些先进科技同步传输的两端,比如使用原子钟。现代经典的通讯更加依赖于卫星技术。
持续变量的体系衡量所有铃流检测的结果更加容易,只用简单的线性光学和标准的光电探测器即可进行。这样的系统能够同时传送许多量子比特,因此在高速量子通讯中更加青睐使用这样的系统。
我们需要找到一种方式能够综合分散变量(长距离传输)与持续变量(快速确定的传输)中最好的特性。有实验表明,将分散量子比特与持续变量纠缠粒子的结合,就能够完整瞬间传输量子信息。我们需要进一步研究扩大实验中的距离,并整合其他量子技术类型,比如用于移动通讯储存的量子存储器。混合技术的研究需要在不同领域、不同团队之间展开更广泛的合作与交流。
量子网络
实现全球分布的量子计算机或量子网络,其中最大的阻碍之一就是网络之间纠缠的节点。所谓量子比特(量子位)能够在任意两个量子之间瞬间移动,并且依靠本地量子计算机进行处理。
理想状态的节点,在任意一双量子间纠缠,或是创造出一个巨大多重纠缠的“团簇”,向所有的节点散布。团簇状态就是连接实验室中创造出的数以千计的节点。而最大的挑战就是证明它们如何在长距离之间展开,就如同怎样在各节点存储量子态一样,以及如何利用量子节点不断地更新它们。
在近乎完美的精确和大容量下,量子存储器需要将电磁辐射转化为物理变化。“自转集合”代表了一种量子存储器。超冷原子气体包括了100万原子的铷元素,它能够将单个的光量子转化为称为自转波的集合原子。储存时间接近100毫秒,需要在全球之间发送光信号。
量子网络需要存储器存入量子信息,保护信息免受不需要的交互作用的影响。因此,量子计算需要通过这样存储器的技术支持以及通过中继器实现长距离的量子纠缠分布。
超导量子比特是以物理数量定义的,比如电感器的流量或电容器的电荷,通过释放或吸收微波光量子,与量子处理器之间相互作用。为达到固体量子存储的成功集合,量子信息的可逆的存储和检索将成为可能。这需要微波光量子与固态量子存储器原子自转之间有效的交接,与处理器相连接。如果成功,这项混合技术将是最有希望扩大成为大型分布式的量子计算机的设备。
另一方面,量子计算对经典计算做了极大的扩充,在数学形式上,经典计算可看做是一类特殊的量子计算。量子网络对每一个叠加分量进行变换,所有这些变换同时完成,并按一定的概率幅叠加起来,给出结果,这种计算称作量子并行计算。
未来的发展
为了实现这一愿景,量子瞬间传输科技需要发展以下三方面:
第一,在分散变量与连续变量之间进行更多的理论与实践相结合的研究。这样可以综合目前各种不同的研究方法,进行整合深入发掘最佳的成果。继续进行两极化量子比特的卫星实验,利用自由空间或光纤进行跨越城市之间的信息互通的连续变量的瞬间传输。
第二,最成功的技术就是整合数据通信和数据存储。我们需要促进超导量子处理器和固态量子存储器之间找到更加高效的结合点。这能够改善微波光子存储与检索性能。而下一步切实的发展,是实现在超导量子比特与本地量子存储器的氮晶格空位中心之间进行芯片上的瞬间传输。
量子计算发展范文5
美国:列入国家战略实现系列突破
在美国,对量子通信的理论和实验研究开始得较早,并最先被列入到国家战略、国防和安全的研发计划。
上世纪末,美国政府便将量子信息列为“保持国家竞争力”计划的重点支持课题。而隶属于政府的美国国家标准与技术研究所(NIST)则将量子信息作为三个重点研究方向之一。随后,美国加州理工大学、麻省理工学院和南加州大学联合成立了量子信息与计算研究所,直接归美国军队研究部门管辖,从属于美国国防部高级研究计划局超大规模计算工程系统。体制上的规划与布局,为各机构与部门间的研发铺平了道路。
早在1989年,美国IBM公司在实验室中以10bit/s的传输速率成功实现了世界上第一个量子信息传输,虽然传输距离只有32公分,但却拉开了量子通信实验研究的序幕。1994年,美国国防高级研究计划局便开始着手,用3到5年的时间全面推进量子通信技术方面的研究,而且已经通过军队实施了相应方式的向战场和向全球传输报文能力的量子通信计划。
在大量科研资源与研发力量投入的情况下,美国在量子通信研究方面取得了一系列的突破。2000年,Los Alamos国家实验室宣布,他们于全日照条件下实现了1.6公里自由空间的量子密钥分发,使量子通信向实用工程化迈进了一大步。不仅如此,在美国国防部2013年至2017年科技发展“五年计划”中,“量子信息与控制技术”已被列为未来重点关注的六大颠覆性研究领域,同时将IBM、美国国防部高级研究计划局、中国科学技术大学、美国洛克希德马丁公司和日本NTT公司列为该领域的重要研究机构;美国国防部支持的“高级研究与发展活动”(ARDA)计划到2014年将量子通信应用拓展到卫星通信、城域以及长距离光纤网络。
如今,量子技术已经成为美国军方六大技术方向之一,即对未来美军的战略需求和军事任务行动能产生长期、广泛、深远、重大的影响。量子通信产业已渗透到美国国家发展的各个层面,包括国防、外交、经济、信息、社会等不同领域的内容。
当前,以美国为代表的世界主要军事强国关注的量子科技发展动向主要涉及量子通信、量子计算及量子密钥等领域。美国国防部高级研究计划局启动了多项量子通信方面的相关研究计划,对其开展了广泛探索。可以说,量子通信技术在军事应用方面有着无与伦比的广阔前景。
在量子通信领域未来发展规划下,美国Los Alamos国家实验室正在创建一套辐射状的量子互联网,同时美国非常重视量子计算机领域的技术拓展,谷歌、微软、IBM都已投入研究量子计算机技术,以量子计算机技术研究为突破点,延伸到物质科学、生命科学、能源科学领域,形成规模优势。
欧盟:联合攻关共建量子互联网
提前“操练”,打牢根基,政策法规护航,并贯穿到与国家利益、国家安全以及国家对内对外战略影响相关的不同环节,这是欧盟在量子通信领域发展方面采取的主要手段。
早在20世纪90年代,欧洲就意识到量子信息处理和通信技术的巨大潜力,充分认定其高风险性和长期应用前景,从欧盟第五研发框架计划(FP5)开始,就持续对泛欧洲乃至全球的量子通信研究给予重点支持。
紧接着,欧盟了《欧洲研究与发展框架规划》,专门提出了用于发展量子信息技术的《欧洲量子科学技术》计划以及《欧洲量子信息处理与通信》计划。与此同时,还专门成立了包括英国、法国、德国、意大利、奥地利和西班牙等国在内的量子信息物理学研究网。
2008年,欧盟《量子信息处理与通信战略报告》,提出欧洲在未来五年和十年的量子通信发展目标。同年9月,欧盟了关于量子密码的商业白皮书,启动量子通信技术标准化研究,并联合了来自12个欧盟国家的41个伙伴小组成立了“基于量子密码的安全通信”(SECOQC)工程。这是继欧洲核子中心和国际空间站后又一大规模的国际科技合作。自1993年开始,欧盟就加强了对量子通信技术领域的研究和开发,在理论研究和实验技术上均取得了重大突破,涉及的领域包括量子密码通信、量子远程传态和量子密集编码等。利用欧盟国家的联合技术力量,在多个研究机构之间形成有效的合作体制,是欧洲量子通信领域一直走在前列的“制胜法宝”。
在量子信息物理学研究网的框架下,1993年至2011年期间,英国、瑞士、奥地利、德国、法国、瑞典等国的科学家曾连续创造了量子密钥分发、量子密码通信、太空绝密传输量子信息及量子信息存储等一系列的根本性突破,为下一步量子互联网的全面建设铺平道路。
从2007年至2014年,欧盟开始致力于量子密码通信和量子密集编码研究,实现了量子漫步、太空和地球之间的信息传输,为卫星之间以及卫星与地面站之间进行量子通信提供了可能性。
发展量子通信技术的终极目标就是为了构建广域乃至全球范围的绝对安全的量子通信网络体系。2008年以来,欧盟加紧推进星载量子通信计划。一场世界范围的技术与才智竞赛已悄然拉开帷幕。欧洲不应落后,更不能让人才和知识流失。于是,就在今年4月19日,欧盟委员会正式宣布,计划启动总额10亿欧元的量子技术旗舰项目,目标是建立极具竞争性的欧洲量子产业,包括量子通信、量子计算及量子测量等,以增强欧洲在量子研究方面的科学领导力和卓越性。
日本:紧跟大势有所作为
日本政府和科技界一贯重视量子科技领域的研发攻关,并将量子技术视为本国占据一定优势的高新科技领域进行重点发展、重点引导。
美国和欧盟在量子通信领域的一连串突飞猛进,使日本备感形势紧迫。
早在2000年,日本邮政省就将量子通信技术作为一项国家级高技术列入开发计划,预备10年内投资400多亿日元,主要致力于研究光量子密码及光量子信息传输技术,并专门制订了跨度为10年的中长期定向研究目标,计划到2020年使保密通信网络和量子通信网络技术达到实用化水平,最终建成全国性高速量子通信网,实现通信技术应用上的飞跃,在竞争中占据先机。
在当年题为《创造面向21世纪划时代的量子信息通信技术》的报告中曾明确指出,国家应该充实及完善该领域的研究开发体制, 并促进民间企业和大学等进行研究开发。在接到该报告书后,邮政省正式启动了研究和开发量子信息通信的活动。该技术的实用化预计会发生在2030年至2100年期间。
尽管日本对量子通信技术的研究晚于美国和欧盟,但相关研究发展迅速。在国家科技政策和战略计划的支持和引导下,日本科研机构的研发积极性高涨,投入了大量研发资本积极参与和承担量子通信技术的研究工作,实际地介入到量子通信技术的研发和产业化开发当中。
数年前,日本提出了以新一代量子通信技术为对象的长期研究战略,并计划在2020~2030年间建成绝对安全保密的高速量子通信网。目前,日本每年投入2亿美元,规划在5至10年内建成全国性的高速量子通信网。不仅如此,日本的国家情报通信研究机构(NICT)也启动了一个长期支持计划。日本国立信息通信研究院也计划在2020年实现量子中继,到2040年建成极限容量、无条件安全的广域光纤与自由空间量子通信网络。
高强度的研发投入,“产官学”联合攻关的方式极大推进了研究开发,推动了量子通信的关键技术如超高速计算机、光量子传输技术和无法破译的光量子密码技术的攻关和实用化、工程化探索,在量子通信专利申请上成绩显著。比如NEC、东芝、日本国立信息通信研究院、东京大学、玉川大学、日立、松下、NTT、三菱、富士通、佳能、JST等,各大企业和科研机构在量子通信领域的专利申请量居全球领先,专利质量较高,技术水平突出。
就目前而言,在量子通信领域的研究优势上,日本主要集中在延长量子通信传输距离、提高信息传输速度和改进量子通讯的加密协议等方面。
量子计算发展范文6
[关键词]高效 复杂 绝对安全
中图分类号:TP39 文献标识码:A 文章编号:1009-914X(2016)10-0295-01
人类的实践活动产生需求,并在具备了一定的技术条件后,就有新的计算机产生。虽然计算机技术取得了非常巨大的进步,但随着人类实践活动的不断拓展,对计算机技术也在不断提出新的需求。现在得到广泛应用的电子计算机提高性能的一个重要途径,就是不断提高集成电路芯片的集成度。但是,受到芯片散热,器件工艺技术及制造成本等因素的制约,芯片集成度的持续提高将会遇到很大的困难,进而影响到计算机速度新的突破。因此量子计算机的研究和探索成为了当今计算机技术发展的一个重要趋势。
基于量子理论的量子计算机,遵循量子力学规律进行高速数学和逻辑运算、存储及处理量子信息的物理装置。量子计算机源于对可逆计算机的研究。量子计算机应用的量子比特,可以同时处在多个状态,而不像传统计算机那样只能处于0或1的二进制状态。Qubit,是通过囚禁原子技术,降低原子温度让原子保持量子形态。量子的最大特点是其包罗万象,可以根据用户所提取信息而定。这种设置从根本上提升了计算机的运行速度。量子计算机可同时处理0及1以上,只需3个Byte(字节)便可处理1600万项任务,理论上,现时最快的超级计算机需要花10亿年处理那极端复杂的排程运算,量子计算机只1分钟即可完成。
原子的旋转可能向上也可能向下,但不可能同时都进行。对量子来说,原子被描述为两种状态的总和,一个向上转的原子和一个向下转的原子的总和。每一种物体都被使用所有不可思议状态的总和来描述。一串原子排列在一个磁场中,以相同的方式旋转。如果一束激光照射在这串原子上方,激光束会跃下这组原子,迅速翻转一些原子的旋转轴。通过测量进入的和离开的激光束的差异,我们完成了一次复杂的量子“计算”,涉及了许多自旋的快速移动。从数学抽象上看,量子计算机执行以集合为基本运算单元的计算。
一、关于量子计算机在信息传输安全的问题
量子计算机对信息传输的帮助。“就是绝对的安全。”用量子加密通信就能保证绝对的安全!在光缆传输信息的时候,由单个光子作为信息的载体,携带所需的信息。因此从光子角度看。
尝试窃听信息
窃听信息首先就意味着光子被截获,接收方将无法获得信息。按照目前的科技水平,光子的捕获是可行的,但并不能达到窃听信息的目的。
2012年诺贝尔物理学奖得主阿罗什已经发现一种超高Q值的腔体,能够将光子存储在镜子之间,时间超过0.1秒。这就意味着人们对信息的截获,而且并不影响接收端的接受,因为网络信息的传输本身就存在延迟的问题,而且0.1秒人们的感官一般是感觉不到这种细微的差别的。同时这个代价是巨大的,只有著名的学术机构才可能拥有这套设备,并且在上万次的实验中才有可能成功一次。而且将光量子储存在腔体之后,就可以无破坏地对相同的场进行重复测量,将场投影到具有确定光子数数目的状态上(即Fock态),同时可以观察腔体获得或丢失单个光子时引发的光量子跃迁。因此这种信息的捕获和解读并不会影响下文中所提到的光子状态的改变.但是这里又会出现另一个问题,一个光子所携带的信息是有限的,若想同时捕获两个光子的概率为10^(-34),而且捕获一个光子所需的时间为10^(-11)秒。因此,若想捕获由量子计算机传输的全部信息,对于现在的人类来说是完全不可能的,正如潘建伟院士所说,这就是完全的加密。
二、尝试克隆信息
尝试克隆信息则意味着单个光子的状态改变,接收方一样会发现问题。根据海森堡不确定性原理,量子的不可分割和量子的不可克隆,决定了在绝大多数情况下窃听必然被发现(除了上文中提到的特殊情况)。在此基础上,量子密钥分发“一次一密,完全随机”,就保证了加密内容不可破译,也就是理论上的绝对安全。但是还有另一种极为特殊的情况,“除非改变熵增不可减这一宇宙法则被改变,这种逆过程在目前人类所处的三维空间世界里还无法想象,毕竟,多维平行世界目前还无法体验。就如牛顿经典力学适用于低速宏观世界,在高速微观世界就得用爱因斯坦相对论和量子理论一样。至少在目前人类已经感知的世界中,绝对的安全就出现了。
关于量子隐形传态和量子计算。
利用量子纠缠技术,借助卫星网络、光纤网络等信道,传输量子态携带的量子信息。量子态就可以在一个地方消失,不需要任何载体的携带,又在另一个地方瞬间出现。这就可以极大的加快现在的信息传输速度。根据海森堡的不确定性关系,量子本身是可以同时存在于两个地方的。一般情况来说量子波是可以瞬间展开充满宇宙的。
数据是不会丢失的。如果用光子作为信息的载体,就很有可能面临信息的丢失。但是这一点目前可以结合伦纳德・欧拉的最小作用量原理,粒子的运行轨迹是使得此路线上的任何两点之间的作用总是尽可能小。同时加上海森堡的不确定性原理,ΔPΔX~h当量子想要跃迁到更远的地方时,由于量子干涉的规模也会变大,所以量子本身只会运动很小的距离(这是在极大概率下发生的) 。例如,在一个0.0009m2的空间中,让1微克的物体完全移动出去大概需要10^21秒。这个数值是宇宙年龄的1000倍,因此数据的丢失是几乎不会发生的,光子可以几乎按照人们预先设计好的路线,完成信息的传输,因此量子计算机的实现,对信息的传输是绝对安全的。
关于量子通信的实际应用
在量子通信的实际应用中,我们则需要保证终端的安全,身份的安全,传输途径的安全,以及相关软件和云应用环境的安全,因此理论上的绝对安全在实际应用中会受到这样那样的条件限制。
2015年12月11日,谷歌量子人工智能实验室宣布量子计算机最新进展:在两次测试中D-Wave2X的运行速度比传统模拟装置计算机芯片运行速度快1亿倍。
这项突破性的成果打破了业内对于量子计算机真伪的存疑。这次,谷歌和NASA一同证实了量子计算机的可操作性。
由于量子形态的不稳定,量子计算机只是在理论层面可行,加上能够用运用量子计算的算法有限相对编程也较传统计算机难度更大,因此并不具备可行性。这次的2X系统,采用了1152Qubit的架构,对比之前的系统,研发团队重点从提升量子的运行速度转移到保持量子稳定性以提升性能上。
即便克服了量子稳定性的问题,量子计算机在实际落地推广方面会遇到一些实质问题,如何在实验上实现对微观量子态的操纵。已经提出的方案主要利用了原子和光腔相互作用、冷阱束缚离子、电子或核自旋共振、量子点操纵、超导量子干涉等。很难说哪一种方案更有前景,只是量子点方案和超导约瑟夫森结方案更适合集成化和小型化。也许我们需要一种全新的设计,而这种新设计又是以某种新材料为基础,就像半导体材料对于电子计算机一样。但摩尔定律的失效,对半导体行业和量子计算机的发展无疑又产生了一个更大的障碍。研究量子计算机的目的绝不是要用它来取代现有的计算机,而是为了在某些方面满足人类对实践活动的需要。随着科技的发展,量子计算机将变成可能。
参考文献