量子计算的应用范例6篇

前言:中文期刊网精心挑选了量子计算的应用范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

量子计算的应用

量子计算的应用范文1

关键词:粒子群优化算法;量子行为;惯性权重;递减策略;0-1背包问题

中图分类号:TP3016文献标识码:B文章编号:1004373X(2008)2015903

Application and Study on Inertia Weight in Particle Swarm Optimization with

Quantum Behavior

HE Wei,QIU Yijiao,TANG Puying

(School of Opto-electronic Information,University of Electronic Science and Technology of China,Chengdu,610054,China)

Abstract:The effect of inertia weight on Particle Swarm Optimization(PSO) is studied,on basis of which adopts four kinds of strategies of inertia weight to regulate the speed of a new Quantum Delta Potential Well based Particle Swarm Optimization(QDPSO).A faster and more stabile algorithm,found by comparing the performances of four equations regulated the inertia weight,solves 0/1 knapsack problem.The result of experiment shows that the modified algorithm improves the precision of optimal solution and has a faster speed and a higher efficiency in convergence.In a word,choosing a parameter of inertia weight suitably can improve the performance of new QDPSO.

Keywords:particle swarm optimization;quantum behavior;inertia weight;decreasing strategy;0/1 knapsack problem

粒子群优化(PSO)算法是一种群智能优化算法,最早由Kennedy和Eberhart于1995年共同提出,其基本思想是对鸟群捕食行为的仿生模拟[1],通过鸟群之间的集体协作,快速搜寻并找到最优解。其基本的进化方程如下:

vt+1=vt+c1・r1(Pt-xt)+c2・r2(Pg-xt)(1)

xt+1=xt+vt+1(2)

其中,r1,r2∈[0,1]为均匀分布的随机数;C1,C2均是正常数;t表示进化代数;Vt,Xt分别表示每个粒子的速度和位置;Pg,Pt分别是粒子群的全局最优和个体最优。

为了改善基本PSO算法的收敛性能,Y・Shi等人提出了惯性权重的方法[2]和用模糊控制器来动态自适应地改变惯性权重的技术[3]。之后Jun Sun等人提出的具有δ函数形式的粒子群算法[4](QDPSO) 使粒子群算法的计算更加简单容易。最近一种新的QDPSO 算法[5] 考虑了速度对位置的影响,通过速度的更新选择位置的更新方程。在经典粒子群算法的可调整参数中,惯性权重是非常重要的参数,较大的权重有利于提高算法的全局搜索能力,而较小的权重会增强算法的局部搜索能力。因此,对这种新的QDPSO算法的速度项引用惯性权重ω,通过研究4种方案,发现惯性权重ω的变化对具有量子行为的粒子群算法的收敛性具有很大改善。可以说惯性权重的适当设置对新的QDPSO算法性能也起着重要的作用。

1 量子行为的粒子群优化算法及其改进

1.1 QDPSO算法

文献[4]的作者认为,若是在PSO系统下的个体粒子具有量子行为,则该粒子将会以与基本PSO算法中的粒子不同的方式运动。在量子空间,粒子的速度和位置不能再依据“不确定原理”被同时确定,所以提出了QDPSO算法。该算法改变了基本PSO算法的粒子更新策略,只用了粒子的位置向量。QDPSO算法的粒子进化方程如下:

P=(a・pid+b・pgd)/(a+b)(3)

L=(1/g)・abs(xid-p)(4)

xid=p+L・(ln(1/u))(5)

其中,a,b,u∈[0,1]为均匀分布的随机数;pid是第i个粒子在第d维空间找到的局部最优解,pgd是群体在第d维空间找到的全局最优解;xid表示第i个粒子在第d维空间找到的当前值;而g必须满足条件:g>ln2,才能保证算法的收敛。

1.2 改进的粒子群算法

新的QDPSO算法利用个体粒子的速度产生一个介于[0,1]之间的数来代替原算法中的由计算机随机产生的数,用以选择该粒子的位置更新方程。更新方程和参数设定

参考文献[5]。

本文考虑到惯性权重随粒子的迭代次数变化影响个体粒子的速度引导该粒子向最优解靠拢,所以采用4种方案对该改进算法进行研究。通过使惯性权重随粒子的迭代次数变化,从而影响速度的更新方程:

vt+1=ω・vt+c1・r1(pt-xt)+c2・r2(pg-xt)(6)

其中,采用4种惯性权重ω方案来影响速度的更新,然后与QDPSO算法进行性能比较:

方案1 ω为从(1,0.875)递减的函数ω=1-k・0.125/genmax。采用这种方案的QDPSO算法称为w1-QDPSO;

方案2 ω为从(0.9,0.4)递减的函数ω=0.9-k・0.5/genmax[6]。采用这种方案的QDPSO算法称为w2-QDPSO;

方案3 ω为一定值0.729 8[7],采用这种方案的QDPSO算法称为w3-QDPSO;

方案4 ω为一凹函数[8]( ωstart-ωend)(t/tmax)2+(ωstart-ωend) (2t/tmax)+ωstart,其中ωstart=0.95,ωend=0.4,tmax为最大的迭代次数。采用这种方案的QDPSO算法称为w4-QDPOS。

综上所述,选择测试函数F1(x)和F2(x)分别为Sphere和Rastrigin(参数设置见文献\),改进后的算法流程如下:

Step 1 初始化种群粒子的速度和位置;

Step 2 通过对两个测试函数进行初始化计算,得到每个粒子的当前位置为粒子最佳位置pbest,初始群体粒子位置的最优值为群体最佳位置gbest;

Step 3 重新把粒子的位置代入测试函数进行计算,得到每个粒子新的适应值,将其与pbest比较,若较好,则将pbest设置为新位置;并将其与gbest比较,若较好,则将gbest设置为新位置;

Step 4 根据公式(6)更新粒子的速度;

Step 5 用个体粒子的速度产生用以选择该粒子位置的更新方程的数据:

rand-q=1/(1+|(vmax-vid)/(vid-vmin)|)(7)

Step 6 由Step 5 产生的数据选择更新粒子位置的方程:

if rand-q>0.5

xid=p+L・(ln(1/u))

else xid=p-L・(ln(1/u))

Step 7 若未达到终止条件(足够小的适应值或预设的最大迭代次数),则返回Step 3。

更新粒子速度时需要注意:如果粒子的速度超出预设的范围,则采取使粒子反向运动的策略,从而保证算法有效进行。

1.3 算法的结果及数据分析

目标函数为F1(x)和F2(x),基本参数是:c1=c2=2.05,g=0.968 5,每种算法都在同一台计算机,同一环境下用Matlab 7.1.0软件运行。结果如表1所示。

表1 函数F1(x)和F2(x)的平均最优适应值(最小值)

FUNCTIONDGmaxω1-QDPSOω2-QDPSOω3-QDPSOω4-QDPSOQDPSO

F1(x)

101 0005.10E-170.001 20.015 23.30E-47.50E-10

201 5002.52E-051.805 763.800 11.372 50.046 5

302 0000.167 952.668 21.99E+332.001 85.15

F2(x)

101 0001.42E-167.11E-177.11E-172.13E-160

201 5007.11E-171.07E-16001.04E-17

302 0007.11E-177.11E-1703.55E-170

表1的数值是对每个函数在粒子数为20个的条件下,测试50次,然后取平均得到的结果。从表中可以看出,对于函数F1(x),比较结果可以明显得知:在随粒子群维数增加的情况下,ω1-QDPSO是比QDPSO得到更好的解,其他几种改进方案的解都比较差;函数F2(x)在随粒子群维数增加的情况下,4种改进方案和QDPSO都能得出比较好的解。

通过实验,可以看出:对于单峰函数F1(x),ω的递减不能太小,从方案ω1-QDPSO和ω2-QDPSO的结果就可以比较出来,而方案ω3-QDPSO和ω4-QDPSO的结果不好,可能是因为它们搜索的区域太小,从而陷入局部最优解。

对于多峰函数F2(x),ω的变化对测试函数的解的精确度没有太大影响,说明了改进方案在此方面没有明显提高。接下来,我们还对算法的收敛速度进行了比较。结果如表2所示。

表2 各种方案收敛到最优解的平均迭代次数

FunctionDGmaxω1-QDPSOω2-QDPSOω3-QDPSOω4-QDPSOQDPSO

F1(x)

101 000688―――993

201 500873 ― ―――

302 000―――――

F2(x)

101 000386223.5108188112

201 500441266.5128226111.5

302 000620280.5127252135

注:表2中“―”表示函数测试50次没有收敛。

表2是对函数测试50次后取得平均值的结果。可见对于函数F1(x),ω1-QDPSO和QDPSO都在10维的情况下收敛,而20维时只有ω1-QDPSO收敛,其他函数都没有收敛,导致这种结果的原因有2种:

(1) 各种方案随ω的变化,削弱或失去了调节能力,在达到最大迭代次数时也未收敛;

(2) 即使在算法已搜索到最优解附近时,由于局部搜索能力太差,跳过了最优解。对于函数F2(x),ω3-QDPSO,ω4-QDPSO,QDPSO收敛速度都比较快,ω1-QDPSO和ω2-QDPSO的收敛速度就相对较慢一些。这是由于对多峰函数测试时,各种方案的初始化范围附近可能存在最优解,所以减少了迭代次数,加快了算法速度。

通过对4种方案的研究,这里选取方案1应用于0-1背包问题,并得到理想的结果。

2 对改进算法应用到0-1背包问题

2.1 0-1背包问题的数学描述

0-1背包问题是一种典型的组合优化问题。0-1背包问题的描述如下:假设有n个物品,其大小和价值分别为wi和ci (其中wi>0,ci >0,i=1,2,…,n),背包的容量假设为V(V>0)。要求在背包的容量限制内,使所装物品的总价值最大。该问题的数学模型可表示为:

max f(x1,x2,…,xn)=∑ni=1ni=1 cixi∑ni=1wi・xi≤V,

xi∈[0,1],(i=1,2,…,n)(8)

其中,当将物品i装入背包时xi=1;否则xi=0。

2.2 0-1背包问题的改进粒子群算法

改进粒子群算法应用到0-1背包问题的思想:粒子群中粒子的个数与每个粒子的维数相等。先定义二进制数x,x只能取0和1。再把粒子的种群数看作背包的个数n,对于每个粒子xi(其中i=1,2,…,n表示粒子个数)有n个维数,即1个粒子有n个位置。然后初始化每个粒子的速度vij,(其中j=1,2,…,n表示每个粒子位置的维数),每个粒子的每一维都对应一个初始化了的速度。对公式(8)进行变化:

min f(x1,x2,…,xn)=-∑ni=1cixi(9)

解决背包问题的步骤:

(1) 初始化粒子的速度和位置;

(2) 将初始化的位置向量代入式(9),在所得每个粒子的解中找到最优解pbest,并令pbest=gbest;

(3) 通过式(6)更新粒子的速度,对所得最优解进行修正,然后再次代入函数方程中继续寻找新的最优解;

(4) 若达到终止条件,则结束迭代,输出到存储向量,即为所求结果;否则,k=k+1,转步骤(3)。

2.3 实验仿真

为了验证ω1-QDPSO求解0/1背包问题的可行性及有效性,这里进行了2组实验,每组实验用ω1-QDPSO算法进行测试,每组算法运行50次。

实验一:取参数popsize=10,dimsize=10,c1=c2=2.05,genmax=1 000,g=0.968 5;N=10,V=269,W={95,4,60,32,23,72,80,62,65,46},C={55,10,47,5,4,50,8,61,85,87},得到实验结果是max f=295,收敛平均迭代次数11。

实验二:取参数popsize=20,dimsize=20,c1=c2=2.05,genmax=1 000,g=0.968 5;N=20,V=878,W={92,4,43,83,84,68,92,82,6,44,32,18,56,83,25,96,70,48,14,58},C={44,46,90,72,91,40,75,35,8,54,78,40,77,15,61,17,75,29,75,63},得到实验结果是max f=1 024,收敛平均迭代次数23。

ω1-QDPSO算法求解0-1背包问题,与文献[9]中提出的用带有死亡罚函数的粒子群优化算法求解0-1背包问题相比,其运行速度明显提高。

3 结 语

本文通过采用4种方案对具有量子行为的粒子群优化算法的惯性权重研究分析表明,QDPSO改进算法中惯性权重的改变对性能的影响与经典PSO算法相比既具继承性又具发展性,在算法精度上ω1-QDPSO的结果比较优,而在计算速度上ω3-QDPSO和ω4-QDPSO的结果更优。选择其中算法性能相对较好的ω1-QDPSO算法应用于0-1背包问题,可以看出改进算法性能的改善在应用中得到更好的体现。

参考文献

[1]Kennedy J,Eberhart R C.Particle Swarm Optimization[C].Proc.IEEE International Conference on Neural Networks USA,IEEE Press.,1995(4):1 942-1 948.

[2]Shi Y,Eberhart R C.A Modified Particle Swarm Optimizer [C].IEEE International Conference of Evolutionary Computation,Anchorage,Alaska,1998.

[3]Shi Y,Elberhart R C.Fuzzy Adaptive Particle Swarm Optimization [A].Proceeding of Congress on Evolutionary Computation[C].Seoul,Korea,2001.

[4]Sun Jun,Feng Bin,Xu Wenbo.Particle Swarm Optimization with Particles Having Quantum Behavior [A].Proc.2004 Congress on Evolutionary Computation[C].2004:325-331.

[5]马金玲,唐普英.一种基于量子行为的改进粒子群算法\.计算机应用研究,2007,43(36):89-90,180.

[6]Shi Y,Elberhart R C.Empirical Study of Partical Swarm Optimization\.Proceeding of 1999 Congress on Evolutionary Computation.Piscataway,NJ,IEEE Service Centerm,1999:1 945-1 950.

[7]曾建潮,介婧,崔志华.微粒群算法\.北京:科学出版社,2004.

[8]陈贵敏,贾建援,韩琪.粒子群优化算法的惯性权值递减策略研究\.西安交通大学学报,2006,40(1):53-56,61.

量子计算的应用范文2

[关键词]固态电子盘 抗恶劣环境计算机 指标

中图分类号:P256 文献标识码:A 文章编号:1009-914X(2015)40-0007-02

1、概述

近年来随着计算机技术的飞速发展,对抗恶劣环境计算机的各项性能指标提出更高要求,应用领域不断扩大。在研制、开发抗恶劣环境计算机的过程中发现,制约其可靠性的关键部件之一就是外部存储器。

以往抗恶劣环境计算机外部存储器采用的机械式硬盘。由于机械式硬盘是机电一体化产品,其工作温度、机械震动等环境适应性远不能满足抗恶劣环境计算机的要求。随着半导体存储技术日渐成熟、完善,固态电子盘逐步取代机械式硬盘成为抗恶劣环境计算机的外部存储器。但由于储存容量较小难以满足大数据量存储,为寻求一种大容量高可靠性的外部存储设备,我们着手对大容量固态电子盘的研制开发工作。

2、构成

固态电子盘由存储载体、控制器、接口以及电源管理等部分构成。

2.1 存储载体

固态电子盘利用超大规模集成电路flash存储芯片阵列作为储存载体,取代硬盘高速旋转磁盘载体。其特点是减少寻道延迟时间,由于没有精密机械设备提高了使用寿命,降低了功耗。为提高存储容量存储载体选用k9k4g080um存储芯片。

2.2 控制器

控制器是固态电子盘的关键元器件之一,完成存储数据在flash存储芯片阵列读写管理。

2.3 接口

固态电子盘接口设计与标准硬盘接口一致,接口采用2.0mm标准IDE接口。

3、设计方案

3.1 Flash盘控制器

经过查阅大量的资料及分析,Flash盘控制器采用了SST公司生产具有的IDE接口控制器SST55ld019。该控制器具有电路简单、速度快、可靠性高等特点。其中最大特点是控制容量大(最高可达24G),为今后固态电子盘持续升级带来很大方便。其功能框图如图1:

SST55ld019控制器内部包含了一个微控制器和嵌入式Flash文件管理系统。控制器和主机的接口允许数据写入Flash介质以及从Flash介质读出。MCU负责把IDE命令转换成Flash介质操作所需的数据和控制信号。SRAM缓冲极大地优化了主机和Flash介质之间的数据传输。内部DMA直接把缓冲数据传输到Flash介质,越过MCU,提高数据吞吐率。嵌入式Flash文件系统为基于文件的操作系统提供了方便。多任务接口可以对多个Flash介质器件进行读/写、编程和擦除操作。SCI接口用于重新进行芯片初始化过程和配置ID号,为硬件调试提供方便。

NAND Flash存储器

NAND Flash存储器是固态电子盘的关键元器件之一,其性能直接影响到设备性能优劣。

该存储器为采用页面管理方式,基本存储容量为128MΧ8,页容量为512字节。其原理框图见图2所示:

NAND型闪存的基本存储单元是页(Page)(可以看到,NAND型闪存的页就类似硬盘的扇区,硬盘的一个扇区也为512字节)。每一页的有效容量是512字节的倍数。所谓的有效容量是指用于数据存储的部分,实际上还要加上16字节的校验信息,因此我们可以在闪存厂商的技术资料当中看到“(512+16)Byte”的表示方式。目前2Gb以下容量的NAND型闪存绝大多数是(512+16)字节的页面容量,2Gb以上容量的NAND型闪存则将页容量扩大到(2048+64)字节。

NAND型闪存以块为单位进行擦除操作。闪存的写入操作必须在空白区域进行,如果目标区域已经有数据,必须先擦除后写入,因此擦除操作是闪存的基本操作。一般每个块包含32个512字节的页,容量16KB;而大容量闪存采用2KB页时,则每个块包含64个页,容量128KB。

寻址时,NAND型闪存通过8条I/O接口数据线传输地址信息包,每包传送8位地址信息。由于闪存芯片容量比较大,一组8位地址只够寻址256个页,显然是不够的,因此通常一次地址传送需要分若干组,占用若干个时钟周期。NAND的地址信息包括列地址(页面中的起始操作地址)、块地址和相应的页面地址,传送时分别分组,至少需要三次,占用三个周期。随着容量的增大,地址信息会更多,需要占用更多的时钟周期传输,因此,NAND型闪存的一个重要特点就是容量越大,寻址时间越长。而且,由于传送地址周期比其他存储介质长,因此NAND型闪存与其他存储介质相比不太适合大量的小容量数据的读写请求。

决定NAND型Flash存储介质的主要因素有:页数量、页容量、块容量、I/O位宽、频率等等。

目前我们所选用的K9K4G080u Flash存储介质为页数量为512MΧ8,页容量为2KB,则它的寻址时间(即传送地址时间)为4个周期。

NAND型闪存的读取步骤分为:发送命令和寻址信息将数据传向页面寄存器(随机读稳定时间)数据传出(每周期8bit,需要传送512+16或2K+64次)。NAND型闪存的写步骤分为:发送寻址信息将数据传向页面寄存器发送命令信息数据从寄存器写入页面。K9K4G080 Flash存储介质读一个页需要:6个命令、寻址周期×50ns+12μs+(2K+64)×50ns=131.1μs;K9K4G08U0M实际读传输率:2KB字节÷131.1μs=15.6MB/s;写一个页需要:6个命令、寻址周期×50ns+(2K+64)×50ns+300μs=405.9μs。K9K1G080实际写传输率:2112字节÷405.9μs=5MB/s。

块是擦除操作的基本单位,由于每个块的擦除时间几乎相同(擦除操作一般需要2ms,而之前若干周期的命令和地址信息占用的时间可以忽略不计),块的容量将直接决定擦除性能。大容量NAND型闪存的页容量提高,而每个块的页数量也有所提高,一般4Gb芯片的为2KB字节×64个页=128KB。

接口设计

为提高固态电子盘的通用性,接口设计为目前硬盘广泛使用的标准IDE接口。该接口在物理上实现了IDE-40芯插座和IDE-44芯插座兼容的方式,可直接连接到PC机硬盘连线,也可直接用于连接移动式(笔记本连接方式)接口,电信号与通用标准IDE接口完全兼容。其排列如图3所示。

电路设计

由于NAND Flash存储器的工作电压是+3.3V,Flash盘控制器同时使用+5V和3.3V。因此在固态电子盘上单独设计了一个电源转换和稳压电路,通过这部分电路为固态电子盘提供所需要的5V和3.3V工作电压和断电保护。

固态电子盘外部时钟设计为可调节模式,通过RC振荡来激发外部时钟,通过选择不同的电阻和电容来调节到我们需要的外部时钟,这里,我们的外部时钟在10~100MHz可选,不同的外部时钟可影响到固态电子盘的读写性能。外部时钟越高,读写速度越快。

3.5 固态电子盘设计

通过上述分析固态电子盘用SST55ld019控制器来驱动24片K9K4G080 Flash存储芯片。并将全部元器件放置在一块PCB板上。高速PCB设计为多层印制版,大小为 99×65mm?。外部时钟频率设计为23MHz,总容量为12G,最大读速度:15.6MB/S;最大写速度:5MB/S。接口设计为笔记本式标准的2.0mm间距IDE接口,支持主/副盘选择。其原理框图如下图所示:

由固态电子盘的原理框图可以得到,电子盘的设计逻辑实现了IDE接口,并将有关信号嵌入系统总线中,又在物理上实现了IDE-40芯插座和IDE-44芯插座兼容的方式,可直接连接到PC机硬盘连线,也可直接用于连接移动式(笔记本连接方式)接口。

电子盘的设计是通过将IDE信号逻辑嵌入到Flash盘控制器中,通过驱动器和总线驱动器的转换,将命令和数据地址总线转换成多个并行的数据地址总线和命令,操作时通由FALE和FCLE来锁存信号区分,并用译码器来将片选信号转换成多个片选信号,以此实现一个控制器与多个NAND Flash存储介质的连接,从而实现增大电子盘容量。

同时,我们用全固件和工业级的芯片和器件设计整个固态电子盘,满足了高低温和震动冲击的要求,适应了恶劣环境下对硬盘要求的需要。

4、固态电子盘的提升

通过设计12G固态电子盘,我们掌握了一些设计固态电子盘的关键技术和资料。目前,我们所设计成型的固态电子盘容量还不是很大,不能满足大容量的数据存储和交换。但是,通过改进性设计和选用高性能的Flash盘控制器以及大容量的Flash存储芯片,我们可以提高固态电子盘的存储容量和读写速度以及性能。

高性能的Flash盘控制器可以控制更多的Flash存储芯片,并提高时钟频率,同时也增加对Flash存储介质的读频率。选用大容量的Flash存储介质,不仅增大了Flash存储介质本身的页容量、页数量和块容量,同时也增加了I/O位宽,将数据线增大到16条,带宽增加一倍,再通过时钟频率的增大,则其读写性能将大大增加,以一个K9K4G160u为列,每页为2KB,但结构为(1K+32)×16bit。K9K4G16U0u读一个页需要:6个命令、寻址周期×50ns+25μs+(1K+32)×50ns=78.1μs。K9K4G160u实际读传输率:2KB字节÷78.1μs=26.2MB/s。K9K4G16写一个页需要:6个命令、寻址周期×50ns+(1K+32)×50ns+300μs=353.1μs。K9K4G160u实际写传输率:2KB字节÷353.1μs=5.8MB/s。从以上可以看出,它的读写性能比起K9K4G080u大大增加。

通过改进使固态电子盘总容量可增大到24G以上,更加适用于大容量的数据存储和交换,更能满足恶劣环境下对数据存储和交换的需要。并能根据实际需要,通过原理设计和重新选用芯片,设计出512M~24G或更大容量的电子盘,满足用户需求。

5、结束语

目前,已设计的12G容量固态电子盘已投入使用,并能在全加固和恶劣环境下运行正常,各项技术指标均达到了设计要求。

参考文献

[1]李文博,Flash阵列存储技术研究[D].哈尔滨工业大学,2010年

[2] SST:SST55LD019 Data Sheet.

[3] ATA Flash Disk Controller External Clock Option Application Note.

[4] ds_k9xxg08uxm_rev09 Data Sheet.

[5]鲁昌龙,固态硬盘存储系统模型及存储管理层算法的研究[D].景德镇陶瓷学院,2011年.

量子计算的应用范文3

关键词:量子保密;通信技术;应用;未来发展

引言

随着信息化时代的到来,人们无时无刻都在接发文字信息、视频信息、电子信息等,给人们的生活、工作、学习和社会各个领域带来了新的改变。为了保障信息通信的安全,防止信息传递过程中存在的泄露风险,采取量子保密通信技术,有效避免信息被攻击破译,保障了信息传递的绝对安全[1]。量子保密通信改变了传统加密通信的局限性和不安全性,解决了存在的安全隐患问题,根据量子力学原理与科学信息技术的有效结合,采用高精度量子测量技术和高精准量子计算技术进行计算、编码和信息传输,发挥了高效安全的通信性能。量子计算利用量子力学规律来调控量子信息单元进行计算,能够进行大规模、多线程地数据处理,具有超强的计算能力和精密的逻辑性[2]。在依靠量子比特工作中,由于量子位存在的并行性、纠缠性和叠加性,量子算法在进行问题处理时就能够做出传统计算无法比拟的超强处理能力,实现超高精度、超高速度的工作效率[3]。随着国内外量子信息技术科技的发展,针对现有公钥体系在单向计算时存在的易被攻击威胁,造成信息发生泄漏的严重后果,开展量子密钥分发技术的保密通信的创新研发,满足了当前信息化社会和数字化经济时代的需求。通过量子保密通信技术的研究与应用,推动了量子保密通信标准化工作的进行和未来的无限发展。

1量子保密通信技术应用

1.1量子密钥分发技术应用

量子密钥分发是根据量子测不准原理、量子不可分割和量子态不可复制的特性来实现,量子生成的通信密码校验绝对的安全性,不会被任何方式破解。通信双方建立量子密码分享协议,发送方和接受方以单光子的状态作为信息载体来建立密钥,保证密钥分发的安全性,密钥分发采取一次一密的加密体制建立安全通信密码。密钥分发完成后需要进行信息协同和隐私保密增强,纠正密钥中存在的错误,使密钥保持一致性,进一步增强信息隐私的保密安全。根据协议随机选择调制每一个光子的基矢,随机的基矢可以对接收端进行监测,在偏振编码过程中采用单光子的水平偏振态(0°)、垂直偏振态(90°)、偏振态(+45°)和偏振态(-45°)的4个量子态,来进行不同自由度的编码,可以选择垂直方向,也可以沿水平方向或其它角度作为量子信息的载体。发送方随机使用2组基矢,按照事先约定的单光子水平偏振态通过量子信道发送给协议用户,当用户接收到光子后也随机地使用2组基矢进行偏振态的测量,如果制备基矢和检测基矢兼容,则表示收发随机数完全一致,如果存在不同,发送方和用户在从新进行比对制备基和测量基基矢,直到收发双方拥有完全一致的随机数序列密钥。密钥分发、生成后不会被破译或计算破解,即使在密钥生成过程中被窃听也会被通信方发现,仍然不会泄密,保证了绝对的安全性[4]。

1.2量子保密通信与后量子安全加密应用

近年来,我国在量子信息技术领域发展迅速,在量子保密通信的研发中获得突破性进展,利用量子保密通信技术克服了传统通信技术存在的安全隐患问题,保证了通信的安全性和可靠性[5]。量子保密通信具备巨大的信息存储与携带性能,量子计算机可以面对各种复杂难度的计算,并能进行高时速、高精准的并行计算处理能力。量子保密通信是在原有的公钥体系进行创新改进,采取量子密钥分发和加密的量子保密通信方案,以应对原有量子计算体系内存在的安全威胁,并对现有加密体制进行升级,应用计算破解能力的后量子加密技术提高了被破解能力,避免信息泄露。量子保密通信与后量子加密的应用,为未来量子安全信息加密技术的创新发展具有重要的意义[6]。

1.2.1量子保密通信方案量子保密通信利用量子态的叠加性和量子不可克隆原理,采取密钥分发的密码技术,对传输的信息进行一次一密的加密方法,完善了加密体制,实现了信息传输的安全性。

1.2.2后量子加密后量子加密技术是一种新的加密方法,通过运用许多先进的技术对现有的加密体制算法进行升级改进,例如网格编码算法和椭圆曲线算法等,增加了防御能力,可以完全抵抗黑客的计算破解,后量子新型信息加密技术能够与现有的信息安全系统实现兼容和平滑升级演进。

1.3量子保密通信应用

量子保密通信为未来信息安全提供了保障,是信息领域的重要技术手段,在量子保密通信中量子密钥分发作为关键技术,与典型网络组织和现有通信系统结构相融合,建立了网络管控、安全服务、密钥生成层、密钥分发层、密钥应用层等组织结构,实现了通信网络的可用性和安全可靠性,并应具备灵活高效、可扩展的未来发展的建设需求。系统分为发送装置和接受装置,利用公共信道对密钥分发协议合法的通信双方发送共享的随机密钥。其中,密钥生成层将生成制备的量子密钥提供給上层,在密钥中继、密钥转发、密钥存储、密钥输出过程中,密钥应用层为量子密钥的保密通信服务提供服务,网络管控平台负责网络运营管理,安全服务平台则负责密码服务和安全管理。量子密钥分发是以量子物理与信息学为基础,利用量子态纠缠重叠的力学特性,在通讯双方之间产生并分享一个随机的安全的密钥,运用一次一密的加密方法,通过量子信道完成信息的安全传送。由于传统量子信道在传送数据进行量子密钥服务的加密业务时,量子信道存在传输损耗,量子密钥分发距离会被限制距离,需设置中继节点来完成长距离的接力传送,导致安全防护存在困难,存在安全隐患。因此在现有较大规模的量子保密通信网络中,都采用可信中继技术是异或后的中继技术,量子密钥只会在节点处暂存经过异或后,不会对中继节点造成影响,具有信息传输的安全性和高效率。

2量子保密通信目前发展状况

随着量子保密通信的发展,世界各国试用点呈现逐步成熟趋势,但在应用推广方面暴露出一些问题。主要包括三个方面:(1)应用场景受到限制当前,量子保密通信主要面向金融、政府等长期安全性较高的特定场景之中,市场规模较为分散,传统通信业界对于量子保密通信应用目前仍然处于热情度较低的状态。此外,由于量子态信号与传统信号混合传输时,将引入劣化性能,导致量子保密通信组网需要借助额外独立光纤链路才能获取所需资源。(2)技术瓶颈待解决在百公里长距离传输情况下,量子保密通信可用安全码率大约为15kbit/s量级,相比于当前光传达网技术实现的量级信息传输差距较大,无法实现对信号的一一加密。此外,在量子保密通信组网方面,由于量子态存储技术尚不成熟,因此,有关量子存储方面难以实现,其中涉及的关键技术仍需进一步验证分析。(3)安全性存在一定风险在实际通信过程中,信道节点不理想特性使其难以满足安全性标准,成为不法分子利用的安全漏洞,所以针对通信安全性升级将是运营维护所面临的一个难题,现阶段,由于通信密钥生成码率也相对较低,很难满足一次一密要求。现阶段,我国量子保密通信技术在业务、市场、商用的应用都处于推广初期阶段,在量子密钥分发技术组网理念和技术研究中,仍然面临一些问题有待研究和探讨。

3量子保密通信标准化工作策略与未来发展

3.1量子保密通信标准化工作策略

在未来量子保密通信技术研发中,应保证量子保密通信设备系统的功能与性能的一致性和可靠性,增加设备系统和网络层面的兼容性、灵活性和安全性,在设备和系统技术、安全性能、组网以及加密等各个方面,逐步完善应用体制,在未来发展中形成完整的标准规范体系。首先,在国家政策支持的基础上,应加强量子密钥分发技术前沿技术领域的研究工作,创新开发新型协议技术、系统器件和架构方案,加快提升量子密钥分发技术和系统设备成熟度、实用化水平和性价比,不断提高量子密钥分发和后量子加密的技术水平,完善加密体制。然后,应加强量子保密通信的商业化应用和市场开拓规划的工作策略和未来发展方向,积极推进产业合作,开展多样化的商业部署模式,制定标准化工作策略,为应用发展做好引导和培育市场需求。最后,应加快我国量子保密通信网络项目工程的建设,升级设备完善标准,提高量子密钥分发系统的网管和运维能力,使量子保密通信系统和网络在完善的密钥管理设备与加密通信设备进行安全可靠的通信,以商业化应用推广和市场化发展为未来建设目标,增加网络建设的实际可用性和安全性等标准的建设规模。目前,我国量子保密通信技术已经实现了实用化、产业化的发展水平,在国家政策的大力支持下在社会各领域得到了广泛的应用。随着国家实施创新驱动发展战略规划,量子信息技术作为我国科技创新的重要发展技术,应加快发展量子信息产业,推动量子技术与社会经济领域的深度融合,增加产业经济的发展,为国家安全、国防军事提供强大的技术支持,新兴的量子信息产业推动了我国战略性发展方向。

3.2未来发展前景

量子保密通信技术在未来发展进程中,量子保密通信网络建设和产业发展是未来量子技术发展的关键,需要加强技术成熟度、设备可靠性和投入产出性价比等各方面的研究,开展标准化工作策略以促进技术和产业的快速发展。近年来,随着量子保密通信技术的不断创新,世界各国在量子保密通信技术与产业的市场竞争日趋激烈,我国虽然处于世界领先地位,应需加强对量子技术研究机构、系统设备厂商和建设运营单位进行大力扶持,在政策支持优势下强化关键技术创新和可持续发展能力,以增强科技实力,提高市场竞争能力。积极推广大规模产业链发展,标准规范产业发展方向,促进量子保密通信商业化推广、产业链壮大和产业化得到健康发展。

3.2.1分发系统性能指标和实用化水平有提升空间量子密钥分发系统在现有光纤网络之中单跨传输距离在百公里以内,密钥成码率有待进一步提高。同时,量子密钥系统工程化也具有一定提升空间。此外,量子保密通信系统仍需要密钥管理,将其与信息通信行业紧密融合,加密通信设备。

3.2.2抗量子计算破解的安全加密面向未来量子计算对于现有加密体系存在的破解威胁,需设计抗量子计算破解安全加密方案,快速提升量子密钥分发技术和实用化水平,这是赢得加密技术体制的关键。

3.2.3量子保密通信商业化开拓仍需进一步探索量子保密通信是对现有通信技术的一种有效安全性提升技术,能够解决密钥分发安全性问题,提升通信安全性等级,具有长期性和高安全性。尤其在金融专网方面,其产业规模相对有限,因此,在后续研究进程中,逐渐完善量子通信保密技术,将其推广到投入产出性行业之中,从设备升级、标准完善、市场探索等方面进行逐一推广与应用。因此,在今后发展过程中,应凝聚各方形成合力,提升工程化实用水平,引导应用产业健康发展,重视标准化测试,引导产业健康发展。

量子计算的应用范文4

量子通信,安全“大卫士”

说起量子卫星,就得先讲讲什么是量子。对一般人来说,“量子”一词似乎有点深奥,难以理解。实际上,量子是组成物质的基本单元,是能量不能再分割的最小单位。如,量子是光能量的最小单位,不存在“半个光子”。

量子通信的安全性,就是基于单个光子的不可分割性和量子态的不可复制性,从而保证了信息不被窃听和不可破解的安全性。

量子通信绝对安全,还因为量子有两个基本特性,即量子的叠加和量子纠缠。量子叠加,是指一个量子系统可以处在不同量子态的叠加态上。也就是说,任何一个干扰包括光照都会使量子改变状态,即它刚才还在随机蹦Q,忽然就停止不动了,变幻莫测。

著名的“薛定谔虐猫”理论就形象描述了这一现象:装在盒子里的猫,在盒子没打开时,猫可以同时既是活的又是死的,只有打开看才知道。这表明,量子状态随机变化,两种状态可叠加存在,这就是量子的叠加态;量子纠缠,是指量子间具有像孙悟空和其分身那样“心有灵犀”的功能,两个量子无论相隔多远,若对其中一个量子态做任何改变,另一个会立刻感受到,并做相应的状态改变,这就为远距离同步传递不被破解的信息提供了可能性。

欧洲、美国、日本等国的科学家很早就对量子通信进行研究实验,但由于种种原因而成效甚微。我国研究量子通信虽然起步较晚,于2011年才启动量子卫星研制计划,然而在党和国家极其重视和大力支持下,一举获得开创性的突破,成功地发射了“墨子号”量子卫星,成为这一科技领域的领路者。

“墨子号”开创安全通信新时代

“墨子号”量子卫星发射后,将实验远距离传输不可破解信息的方式,即卫星升空后,其主要任务是建立一个量子密钥分发网络,并在太空中首次进行量子纠缠分发实验,从而展现一种让用户免受最精明的窃听者伤害的安全网络,开创安全通信的新时代。

潘建伟院士是研制“墨子号”量子卫星的领军人物。20世纪80年代初,法国科学家阿兰・阿斯佩首次用实验证实了“量子纠缠”现象存在后,潘建伟于20世纪90年代赴量子力学创始人薛定谔的祖国奥地利留学,学习最先进、最完整的量子科学知识,奠定了其在量子科学方面的基础。潘建伟学成回国后,很快就投入到量子通信方面的研究实验。

2003年,潘建伟研究小组正式成立,主攻自由空间量子通信方面的研究。他们在实验点制备出成对的纠缠光子,再利用专门设计加工的发射望远镜将容易发散的细小光束“增肥”后,向东西相距13千米的两个实验站发送。然后,实验站的接收端用同样型号的望远镜收集。实验人员发现,在如此远距离的传送中,竟有许多纠缠光子“夫妻对”仍能保持相互纠缠状态,其携带信息的数量和质量完全能满足基于卫星的全球化量子通信的要求。

在国家的大力支持下,量子卫星研制团队经过精心研究实验,终于在2016年8月16日将我国研制的世界首颗量子卫星成功发射。这次发射不仅使我国走到世界量子通信研究领域的最前沿,更重要的是,它使我们在获得网络安全“圣杯”(即令黑客无法渗透的数字通信系统)方面大大领先于全球竞争对手。

全球的量子通信网络,起步

首颗量子卫星上天,我国在国际上将率先实现高速星地量子通信,借助连接地面光纤量子通信网络,初步构成全球量子通信网络。

据潘建伟院士透露,京沪干线大尺度光纤量子通信骨干网工程将于2016年下半年完工交付。该工程将构建千公里级高可信、可扩展、军民融合的广域光纤量子通信网络,并建成大尺度量子通信技术验证、应用研究和应用示范研究平台。

参与量子卫星研制的奥地利科学家/潘建伟导师蔡林格强调说:“量子卫星有助于信息传递者和接收者远距离交换令信息无法破解的密钥,而量子卫星将首先同北京交换密钥,今后还可在北京和维也纳之间分发量子密钥”,逐步构筑成全球量子通信网络。

值得庆贺的是,“墨子号”卫星发射后一直表现很好,所有参数都已达标,有些甚至高于预期。“墨子号”卫星发射升空一周时,中科院国家天文台兴隆观测站观测到罕见的红、绿光束。人们形象地说,“墨子号”实现了天地“握手”, 这一观测显示“墨子号”可以正常通信联系了。

量子通信,许你美好未来

目前,量子通信这一“永不被破解”的信息安全传输方式,已在市场上得以产业应用,如工商银行等多家银行率先试用量子通信加密技术。工商银行通过国盾的量子加密技术,将数据从数据中心传输到同城的另一个机房内。这样做是因为通过设备产生量子密钥,再对数据进行加密传输是不会被窃取的,这对金融数据传输非常必要。

早在2008年10月,中国科技大学通过实验将合肥市内的本校区、杏林苑、滨湖新区三个本不相干的点连接在一起。由于这三个点组成三节点可扩展的量子通信网络,因而实现了全球首个量子保密电话系统建设,开创了量子通信网的先河。随后,五节点,四十六节点,合肥、济南城域网,“京沪”城际网……量子通信网在不断扩张。

如今量子通信卫星发射成功后,量子通信网络如虎添翼,就能真正升到“广域”“洲际”传播,为信息保密传输开辟了“天地一体”的广阔天地。预计今年12月贯通的量子通信京沪干线(总长2000多千米)建成后,将主要用于军事、金融、政务等领域的信息安全传输。此外,媒体、大型企业、金融机构等都可以成为量子通信用户。量子通信关键技术的研发,初步形成构建空地一体广域量子通信网络体系的能力,并在全天时量子通信上取得突破。

量子通信的应用前景美好,但普及应用是逐步进行的,就像电话、手机的普及过程一样。起初,量子通信会应用于科学研究、国防、政务和金融等领域,之后才会在大众中广泛应用。至于要让每个人都能用上,估计需要10至15年。届时,每个人的家里、手机上或许会有一个量子加密芯片,银行转款、电子账户等操作将不用担心被盗用或者遭到攻击。

量子计算机,有望走入现实

更引人注目的是,随着对量子科学的深入研究和量子卫星的成功发射,进一步促进了量子计算机的发展。

在“墨子号”发射前不久,中国科技大学量子实验室成功研发出半导体量子芯片和量子存储技术,取得了量子计算机研制的突破性进展。量子芯片用于计算机的逻辑运算和信息处理,被称为计算机的“大脑”;有了量子存储装置,科学家利用它能实现超远距离的量子信息传输。因此,该技术的突破特别振奋人心。

为什么要研制量子计算机?早在1981年,物理学家理查德・费曼就提出了此观点:如果用传统电子计算机模拟量子力学,那么微观粒子的数量越多,计算量就越大,也就越不可能实现模拟。这种情况下要实现量子力学的模拟,就必须用和它的原理相同的方式。人们认为他的说法有道理,而且也得到事实的证明。于是,量子力学和计算机科学便开始结合,人们开始研究量子计算机了。

量子计算机优势大,关键在于它一个量子位可同时处于0和1两个状态,这是由量子叠加特性决定的。与此形成对比的是,传统电子计算机中的晶体管一次只能处于0或1的状态。如此一来,如果要进行海量运算量子计算机更合适。

因为,传统电子计算机只能按时间顺序来进行运算;而量子计算机能做到超并行运算,即它的N个量子位可同时表示2的N次方个状态,数量呈指数增长。譬如,目前我国性能最强大的天河二号超级计算机需要100年才能处理的任务,一台量子计算机只需0.01秒就能完成。

因而,量子计算机适用于庞大运算量的项目,如太空探测、核爆模拟、密码破解、气候变化、药物研究和模拟复杂的化学反应等。量子计算机对解决精确的天气预报和大城市交通拥堵等难题,也能大显身手,迎接挑战。

现在量子计算机研制已露出希望的曙光,出现这种具有高超速运算能力的计算机已为时不远。目前,中国科技大学研制的量子芯片已达到容错计算的精度,但逻辑比特数量仅有3个,当逻辑比特数量超过30个时,量子计算的性能将超越传统计算机。看来,量子计算机由科幻变为现实已指日可待。

量子计算的应用范文5

多年以前,高科技最牛的美国就已不把电子计算机列为高科技产品了。

但巨高性能计算机仍是信息时代的高科技标志物件之一。2012年诺贝尔物理学奖发给了法国人塞尔日·阿罗什和美国人大卫·维恩兰德,这两位科学家的研究成果为新一代超级量子计算机的诞生提供了可能性。

恶搞一下:法国人浪漫,而简称美国人为美人,那么,浪漫人美人=?

文艺范儿的信息

不往滥俗里想,那么,答案就是很文艺化的表达了。其实,“信息”最初是相当文艺范儿的,而不是20世纪中期才开始热门起来的科技词汇。

一般认为,中文的“信息”一词出自南唐诗人李中《暮春怀故人》:“梦断美人沉信息,目穿长路倚楼台。”—— “美眉音信消息全无啊,梦里也梦不到你,我独自上楼倚栏,望眼欲穿望到长路尽头也不见你。”这么拙劣地意译,也让人感觉到深深的思念。

其实,在李中之前一百多年,与李商隐齐名的唐朝大诗人杜牧《寄远》里就有“信息”了:“塞外音书无信息,道旁车马起尘埃。”还有比小杜更早的,唐朝诗人崔备的《清溪路中寄诸公》:“别来无信息,可谓井瓶沉。”

宋朝的婉约派大词人柳永、李清照也用过“信息”这个词。因金兵入侵而流离失所的李清照思念当年安乐的故乡,心理上把信息的价格定成了真正的天价:“不乞隋珠与和璧,只乞乡关新信息。”——千年前的唐宋中国,其高科技虽是世界第一,但信息技术还是跟现在没法比的,要靠驿马、鸿雁甚至人步行来传递信息,速度慢而效率低,信息珍贵啊。

在地球的西方呢?虽然香农1948年就划时代地把信息引为数学研究的对象,赋予其新的科学的涵义;至1956年,“人工智能”术语也出现了。可最早讨论数据、信息、知识与智慧之间关系的,却是得过诺贝尔文学奖的大诗人艾略特(T. S. Eliot;钱钟书故意译为“爱利恶德”)。他在1934年的诗歌“The Rock”中写道:

Where is the Life we have lost in living?

Where is the wisdom we have lost in knowledge?

Where is the knowledge we have lost in information?

Where is the information we have lost in data?

我们迷失于生活中的生命在哪里?

我们迷失于知识中的智慧在哪里?

我们迷失于信息中的知识在哪里?

我们迷失于数据中的信息在哪里?

尽管第四句是好事者后加的,但诗人还是直指本质地提出了信息暴炸时代最困扰人的难题:如何不让我们的生命和智慧都迷失在数据中?

量子计算机和量子信息技术,提供了一种让生命和智慧不要淹没在数据的海洋中的途径、工具和可能。

量子与量子计算机

量子理论是现代物理学的两大基石之一,为从微观理解宏观提供了理论基础。客观世界有物质、能量两种存在形式,物质和能量可以互相转换(见爱因斯坦的质能方程),量子理论就是从研究极度微观领域物质的能量入手而建立起来的。

我们知道,微观世界中有许多不同于宏观世界的现象和规则。经典物理学理论中的能量是连续变化的,可取任意值,但科学家们发现微观世界中的很多物理现象无法解释。1900年12月14日,普朗克在解释“黑体辐射”时提出:像原子是一切物质的构成单元一样,“能量子(量子)”是能量的最小单元,原子吸收或发射能量是一份一份地进行的。这是量子物理理论的诞生。

1905年,爱因斯坦把量子概念引进光的传播过程,提出“光量子(光子)”的概念,并提出光的“波粒二象性”。1920年代,德布罗意提出“物质波”概念,即一切物质粒子均有波粒二象性,海森堡等建立了量子矩阵力学,薛定谔建立了量子波动力学,量子理论进入了量子力学阶段。1928年,狄拉克完成了矩阵力学和波动力学之间的数学转换,对量子力学理论进行了系统的总结,成功地将相对论和量子力学两大理论体系结合起来,使量子理论进入量子场论阶段。

“量子”词源拉丁语quantum,意为“某数量的某事物”。现代物理学中,某些物理量的变化是以最小的单位跳跃式进行的,而不是连续的,这个最小的基本单位叫做量子;或者说,一个物理量如果有不可连续分割的最小的基本单位,则这个物理量(所有的有形性质)是“可量子化的”,或者说其物理量的数值会是特定的数值而非任意值。例如,在(休息状态)的原子中,电子的能量是可量子化的,这能决定原子的稳定和一般问题。

虽然量子理论与我们日常经验感觉的世界大不一样,但量子力学已经在真实世界应用。激光器工作的原理,实际上就是激发一个特定量子散发能量。现代社会要处理大量数据和信息,需要计算的机器(计算机)。量子力学的突破,使瓦格纳等于1930年发现半导体同时有导体和绝缘体的性质,后来才有了用于电子计算机的同时作为电子信号放大器和转换器的晶体管,再有了集成电路芯片,今天的一个尖端芯片可集聚数十亿个微处理器。

随着计算机科技的发展,发现能耗导致发热而影响芯片集成度,限制了计算速度;能耗源于计算过程中的不可逆操作,但计算机都可找到对应的可逆计算机且不影响运算能力。既然都能改为可逆操作,在量子力学中则可用一个幺正变换来表示。1969年,威斯纳提出“基于量子力学的计算设备”,豪勒夫等于1970年代论述了“基于量子力学的信息处理”。1980年代量子计算机的理论变得很热闹。费曼发现模拟量子现象时,数据量大至无法用电子计算机计算,在1982年提出用量子系统实现通用计算以减少运算时间;杜斯于1985年提出量子图灵机模型。1994年,数学家彼得·秀尔提出量子质因子分解算法,因其可破解现行银行和网络应用中的加密,许多人开始研究实际的量子计算机。

在物理上,传统的电子计算机可以被描述为对输入信号串行按一定算法进行变换的机器,其算法由机器内部半导体集成逻辑电路来实现,其输入态和输出态都是传统信号(输入态和输出态都是某一力学量的本征态),存储数据的每个单元(比特bit)要么是“0”要么是“1”,即在某一时间仅能存储4个二进制数(00、01、10、11)中的一个。而量子计算机靠控制原子或小分子的状态,用量子算法运算数据,输入态和输出态为一般的叠加态,其相互之间通常不正交,其中的变换为所有可能的幺正变换;因为量子态有叠加性(重叠)和相干性(牵连、纠缠)两个本质特性,量子比特(量子位qubit)可是“0”或“1”或两个“0”或两个“1”,即可同时存储4个二进制数(00、01、10、11),实现量子并行计算(量子计算机对每一个叠加分量实现的变换相当于一种传统计算,所有传统计算同时完成,并按一定的概率振幅叠加,给出量子计算机的输出结果),从而呈指数级地提高了运算能力——一台未来的量子计算机3分钟就能搞定当今世界上所有电子计算机合起来100万年才能处理完的数据。用量子力学语言说,传统计算机是没有用到量子力学中重叠和牵连特性的一种特殊的量子计算机。从理论上讲,一个250量子比特(由250个原子构成)的存储器,可能存储2的250次方个二进制数,比人类已知宇宙中的全部原子数还多。而且,集成芯片制造业很快将步入16纳米的工艺,而量子效应将严重影响芯片的设计和生产,又因传统技术的物理局限性,硅芯片已到尽头,突破的希望在于量子计算。

量子世界的死猫活猫与粒子控制

喜好科技的文艺青年可能看过美剧《生活大爆炸》,其中有那只著名的“薛定谔猫”:一只被关在黑箱里的猫,箱里有毒药瓶,瓶上有锤子,锤子由电子开关控制,电子开关由一个独立的放射性原子控制;若原子核衰变放出粒子触动开关,锤落砸瓶放毒,则猫死。薛定谔构想的这个实验,被引为解释量子世界的经典。而量子理论认为,单个原子的状态其实不是非此即彼,或说箱里的原子既衰变又没有衰变,表现为一种概率;对应到猫,则是既死又活。若我们不揭开盖子观察,永远也不知道猫的死活,它永远处于非死非活的叠加态。

宏观态的确定性,其实是亿万微观粒子、无数种概率的宏观统计结果。微观粒子通常表现为两种截然不同的状态纠缠一起,一旦用宏观方法观察这种量子态,只要稍一揭开箱盖,叠加态立即就塌缩了(扰破坏掉),薛定谔猫就突然由量子的又死又活叠加态变成宏观的确定态。用实验研究量子,首先要捕获单个的量子。即若不分离出单个粒子,则粒子神秘的量子性质便会消失。科学家们长期以来头疼的是,未找到既不破坏量子态,又能实际观测它的实验方法,他们只能在头脑中进行思想实验,而无法实际验证其预言。

而阿罗什和维恩兰德的研究,发明了在保持个体粒子的量子力学属性的情况下对其进行观测和操控的方法,则可实证地说出薛定谔猫究竟是死猫还是活猫,而且为研制超级量子计算机带来了更大可能,因为量子计算机中最基础的部分——得到1个量子比特已获成功。

光子和原子是量子世界中的两种基本粒子,光子形成可见光或其他电磁波,原子构成物质。他们研究光与物质间的基本相互作用,方法大同小异:维因兰德利用光或光子来捕捉、控制以及测量带电原子或者离子。他平行放置两面极精巧的镜子,镜间是真空空腔,温度接近绝对零度(约-273℃)。一个光子进入空腔后,在两镜面间不断反射。阿罗什则通过发射原子穿过阱,控制并测量了捕获的光子或粒子。他用一系列电极营造出一个电场囚笼,粒子像是被装进碗里的玻璃球;然后用激光冷却粒子,最终有一个最冷的粒子停在了碗底。阿罗什在捕获单个光子后,引入了特殊的里德伯原子,作为观测工具,从而得到光子的数据。维因兰德向碗中发射激光,通过观测光谱线而得到碗底粒子的数据。

2007年以来,加拿大、美国、德国和中国的科学家都说自己研制出了某种级别的量子计算机,但到今天却仍无一个投入实用。光钟更接近现实,因为可操控单个量子,就能按意愿调控量子的振荡(相当于钟摆)频率,越高越精;目前实验的光钟,若从宇宙产生起开始计时,至今只误差5秒。光钟可使卫星定位和计算太空船的位置更精确……

神话般的量子信息技术

科幻作家克莱顿(著有《侏罗纪公园》、《失去的世界》等)在科幻小说《时间线》中,曾文艺化地描述量子计算,用了“量子多宇宙”、“量子泡沫虫洞”、“量子运输”、“量子纠缠态”、“电子的32个量子态”等让常人倍感高深的说法。其中一些如今正在证实或变现。

如果清朝政府的通信密码不被日本破译,那么李鸿章后去日本谈判时就很可能是另外一种结局,今天也不会有的问题了。目前世界的密码系统大都采用单项数学函数的方式,应用了因数分解等数学原理,例如目前网络上常用的密码算法。秀尔提出的量子算法利用量子计算的并行性,能轻松破解以大数因式分解算法为根基的密码体系。量子算法中,量子搜寻算法等也能分分钟攻破现有密码体系。可说量子这种技术在现代军事上的意义不亚于核弹。但同时,量子信息技术也将发展出一种理论上永远无法破译的密码——量子密码。

保密通信分为加密、接收、解密三个过程,密钥的保密和不被破解至为关键。量子密码采用量子态作为密钥,是不可复制的,至少在理论上是无破译的可能。量子通信是用量子态的微观粒子携带的量子信息作为加密和解密用的密钥,其密钥安全性不再由数学计算,而是由微观粒子所遵循的物理规律来保证,窃密者只有突破物理法则才有可能盗取密钥(根据海森堡的测不准原理,任何测量都无法穷尽量子的所有信息)。而且量子通信中,量子纠缠态(有共同来源的两个粒子存在着纠缠关系,似有“心灵感应”,无论距离多远,一个粒子的状态发生变化,另一个粒子也发生变化,速度远远超过光速,一旦受扰即不再纠缠。爱因斯坦称这种发生机理至今未解的量子纠缠为“幽灵般的超距作用”)被用于传输和保证信息安全,使任何窃密行为都会扰乱传送密钥的量子状态,从而留下痕迹。

量子计算的应用范文6

关键词: 信息安全;密码学;量子计算;抗量子计算密码

中图分类号:TP 183 文献标志码:A 文章编号:1672-8513(2011)05-0388-08

The Challenge of Quantum Computing to Information Security and Our Countermeasures

ZHANG Huanguo, GUAN Haiming, WANG Houzheng

(Key Lab of Aerospace Information Security and Trusted Computing of Ministry of Education, Computer School, Whan University, Wuhan 430072, China)

Abstract: What cryptosystem to use is a severe challenge that we face in the quantum computing era. It is the only correct choice to research and establish an independent resistant quantum computing cryptosystem. This paper introduces to the research and development of resistant quantum computing cryptography, especially the signature scheme based on HASH function,lattice-based public key cryptosystem,MQ public key cryptosystem and public key cryptosystem based on error correcting codes. Also the paper gives some suggestions for further research on the quantum information theory,the complexity theory of quantum computing,design and analysis of resistant quantum computing cryptosystems .

Key words: information security; cryptography; quantum computing; resistant quantum computing cryptography

1 量子信息时代

量子信息技术的研究对象是实现量子态的相干叠加并对其进行有效处理、传输和存储,以创建新一代高性能的、安全的计算机和通信系统.量子通信和量子计算的理论基础是量子物理学.量子信息科学技术是在20世纪末期发展起来的新学科,预计在21世纪将有大的发展[1].

量子有许多经典物理所没有的奇妙特性.量子的纠缠态就是其中突出的一个.原来存在相互作用、以后不再有相互作用的2个量子系统之间存在瞬时的超距量子关联,这种状态被称为量子纠缠态[1].

量子的另一个奇妙特性是量子通信具有保密特性.这是因为量子态具有测不准和不可克隆的属性,根据这种属性除了合法的收发信人之外的任何人窃取信息,都将破坏量子的状态.这样,窃取者不仅得不到信息,而且窃取行为还会被发现,从而使量子通信具有保密的特性.目前,量子保密通信比较成熟的技术是,利用量子器件产生随机数作为密钥,再利用量子通信分配密钥,最后按传统的“一次一密”方式加密.量子纠缠态的超距作用预示,如果能够利用量子纠缠态进行通信,将获得超距和超高速通信.

量子计算机是一种以量子物理实现信息处理的新型计算机.奇妙的是量子计算具有天然的并行性.n量子位的量子计算机的一个操作能够处理2n个状态,具有指数级的处理能力,所以可以用多项式时间解决一些指数复杂度的问题.这就使得一些原来在电子计算机上无法解决的困难问题,在量子计算机上却是可以解决的.

2 量子计算机对现有密码提出严重挑战

针对密码破译的量子计算机算法主要有以下2种.

第1种量子破译算法叫做Grover算法[3].这是贝尔实验室的Grover在1996年提出的一种通用的搜索破译算法,其计算复杂度为O(N).对于密码破译来说,这一算法的作用相当于把密码的密钥长度减少到原来的一半.这已经对现有密码构成很大的威胁,但是并未构成本质的威胁,因为只要把密钥加长1倍就可以了.

第2种量子破译算法叫做Shor算法[4].这是贝尔实验室的Shor在1997年提出的在量子计算机上求解离散对数和因子分解问题的多项式时间算法.利用这种算法能够对目前广泛使用的RSA、ECC公钥密码和DH密钥协商体制进行有效攻击.对于椭圆曲线离散对数问题,Proos和Zalka指出:在N量子位(qbit)的量子计算机上可以容易地求解k比特的椭圆曲线离散对数问题[7],其中N≈5k+8(k)1/2+5log 2k.对于整数的因子分解问题,Beauregard指出:在N量子位的量子计算机上可以容易地分解k比特的整数[5],其中N≈2k.根据这种分析,利用1448qbit的计算机可以求解256位的椭圆曲线离散对数,因此也就可以破译256位的椭圆曲线密码,这可能威胁到我国第2代身份证的安全.利用2048qbit的计算机可以分解1024位的整数,因此也就可以破译1024位的RSA密码,这就可能威胁到我们电子商务的安全

Shor算法的攻击能力还在进一步扩展,已从求广义解离散傅里叶变换问题扩展到求解隐藏子群问题(HSP),凡是能归结为HSP的公钥密码将不再安全.所以,一旦量子计算机能够走向实用,现在广泛应用的许多公钥密码将不再安全,量子计算机对我们的密码提出了严重的挑战.

3 抗量子计算密码的发展现状

抗量子计算密码(Resistant Quantum Computing Cryptography)主要包括以下3类:

第1类,量子密码;第2类,DNA密码;第3类是基于量子计算不擅长计算的那些数学问题所构建的密码.

量子保密的安全性建立在量子态的测不准与不可克隆属性之上,而不是基于计算的[1,6].类似地,DNA密码的安全性建立在一些生物困难问题之上,也不是基于计算的[7-8].因此,它们都是抗量子计算的.由于技术的复杂性,目前量子密码和DNA密码尚不成熟.

第3类抗量子计算密码是基于量子计算机不擅长的数学问题构建的密码.基于量子计算机不擅长计算的那些数学问题构建密码,就可以抵御量子计算机的攻击.本文主要讨论这一类抗量子计算密码[9].

所有量子计算机不能攻破的密码都是抗量子计算的密码.国际上关于抗量子计算密码的研究主要集中在以下4个方面.

3.1 基于HASH函数的数字签名

1989年Merkle提出了认证树签名方案(MSS)[10]. Merkle 签名树方案的安全性仅仅依赖于Hash函数的安全性.目前量子计算机还没有对一般Hash函数的有效攻击方法, 因此Merkle签名方案具有抗量子计算性质.与基于数学困难性问题的公钥密码相比,Merkle签名方案不需要构造单向陷门函数,给定1个单向函数(通常采用Hash函数)便能造1个Merkle签名方案.在密码学上构造1个单向函数要比构造1个单向陷门函数要容易的多,因为设计单向函数不必考虑隐藏求逆的思路, 从而可以不受限制地运用置换、迭代、移位、反馈等简单编码技巧的巧妙组合,以简单的计算机指令或廉价的逻辑电路达到高度复杂的数学效果.新的Hash标准SHA-3[11]的征集过程中,涌现出了许多新的安全的Hash函数,利用这些新的Hash算法可以构造出一批新的实用Merkle签名算法.

Merkle 签名树方案的优点是签名和验证签名效率较高,缺点是签名和密钥较长,签名次数受限.在最初的Merkle签名方案中, 签名的次数与需要构造的二叉树紧密相关.签名的次数越多,所需要构造的二叉树越大,同时消耗的时间和空间代价也就越大.因此该方案的签名次数是受限制的.近年来,许多学者对此作了广泛的研究,提出了一些修改方案,大大地增加了签名的次数, 如CMSS方案[12]、GMSS方案[13]、DMSS方案等[14].Buchmann, Dahmen 等提出了XOR树算法[12,15],只需要采用抗原像攻击和抗第2原像攻击的Hash函数,便能构造出安全的签名方案.而在以往的Merkle签名树方案中,则要求Hash函数必须是抗强碰撞的.这是对原始Merkle签名方案的有益改进.上述这些成果,在理论上已基本成熟,在技术上已基本满足工程应用要求, 一些成果已经应用到了Microsoft Outlook 以及移动路由协议中[16].

虽然基于Hash函数的数字签名方案已经开始应用,但是还有许多问题需要深入研究.如增加签名的次数、减小签名和密钥的尺寸、优化认证树的遍历方案以及如何实现加密和基于身份的认证等功能,均值得进一步研究.

3.2 基于纠错码的公钥密码

基于纠错码的公钥密码的基本思想是: 把纠错的方法作为私钥, 加密时对明文进行纠错编码,并主动加入一定数量的错误, 解密时运用私钥纠正错误, 恢复出明文.

McEliece利用Goppa码有快速译码算法的特点, 提出了第1个基于纠错编码的McEliece公钥密码体制[17].该体制描述如下, 设G是二元Goppa码[n;k;d]的生成矩阵,其中n=2h;d=2t+1;k=n-ht,明密文集合分别为GF(2)k和GF(2)n.随机选取有限域GF(2)上的k阶可逆矩阵S和n阶置换矩阵P,并设G′=SGP,则私钥为,公钥为G′.如果要加密一个明文m∈GF(2)k,则计算c=mG′+z,这里z∈GF(2)n是重量为t的随机向量.要解密密文c, 首先计算cP-1=mSGPP-1+zP-1=mSG+zP-1,由于P是置换矩阵, 显然z与zP-1的重量相等且为t,于是可利用Goppa的快速译码算法将cP-1译码成m′= mS,则相应明文m= m′S-1.

1978年Berlekamp等证明了一般线性码的译码问题是NPC问题[18],McEliece密码的安全性就建立在这一基础上.McEliece密码已经经受了30多年来的广泛密码分析,被认为是目前安全性最高的公钥密码体制之一.虽然McEliece 公钥密码的安全性高且加解密运算比较快, 但该方案也有它的弱点, 一是它的公钥尺寸太大,二是只能加密不能签名.

1986年Niederreiter提出了另一个基于纠错码的公钥密码体制[19]. 与McEliece密码不同的是它隐藏的是Goppa码的校验矩阵.该系统的私钥包括二元Goppa码[n;k;d]的校验矩阵H以及GF(2)上的可逆矩阵M和置换矩阵P.公钥为错误图样的重量t和矩阵H′=MHP.假如明文为重量为t 的n 维向量m, 则密文为c=mH′T .解密时,首先根据加密表达式可推导出z(MT )-1=mPTHT,然后通过Goppa码的快速译码算法得到mPT,从而可求出明文m .1994年我国学者李元兴、王新梅等[20]证明了Niederreiter密码与McEliece密码在安全性上是等价的.

McEliece密码和Niederreiter密码方案不能用于签名的主要原由是,用Hash算法所提取的待签消息摘要向量能正确解码的概率极低.2001年Courtois等提出了基于纠错码的CFS签名方案[21].CFS 签名方案能做到可证明安全, 短签名性质是它的最大优点. 其缺点是密钥量大、签名效率低,影响了其实用性.

因此, 如何用纠错码构造一个既能加密又签名的密码, 是一个相当困难但却非常有价值的开放课题.

3.3 基于格的公钥密码

近年来,基于格理论的公钥密码体制引起了国内外学者的广泛关注.格上的一些难解问题已被证明是NP难的,如最短向量问题(SVP)、最近向量问题(CVP)等.基于格问题建立公钥密码方案具有如下优势:①由于格上的一些困难性问题还未发现量子多项式破译算法,因此我们认为基于格上困难问题的密码具有抗量子计算的性质.②格上的运算大多为线性运算,较RSA等数论密码实现效率高,特别适合智能卡等计算能力有限的设备.③根据计算复杂性理论,问题类的复杂性是指该问题类在最坏情况下的复杂度.为了确保基于该类困难问题的密码是安全的,我们希望该问题类的平均复杂性是困难的,而不仅仅在最坏情况下是困难的.Ajtai在文献[22]中开创性地证明了:格中一些问题类的平均复杂度等于其最坏情况下的复杂度.Ajtai和Dwork利用这一结论设计了AD公钥密码方案[23].这是公钥密码中第1个能被证明其任一随机实例与最坏情况相当.尽管AD公钥方案具有良好的安全性, 但它的密钥量过大以及实现效率太低、而缺乏实用性.

1996年Hoffstein、Pipher和Silverman提出NTRU(Number Theory Research Unit)公钥密码[24]. 这是目前基于格的公钥密码中最具影响的密码方案.NTRU的安全性建立在在一个大维数的格中寻找最短向量的困难性之上.NTRU 密码的优点是运算速度快,存储空间小.然而, 基于NTRU的数字签名方案却并不成功.

2000年Hoffstein等利用NTRU格提出了NSS签名体制[25], 这个体制在签名时泄露了私钥信息,导致了一类统计攻击,后来被证明是不安全的.2001年设计者改进了NSS 体制,提出了R-NSS 签名体制[26],不幸的是它的签名仍然泄露部分私钥信息.Gentry 和Szydlo 结合最大公因子方法和统计方法,对R-NSS 作了有效的攻击.2003年Hoffstein等提出了NTRUSign数字签名体制[27].NTRUSign 签名算法较NSS与R-NSS两个签名方案做了很大的改进,在签名过程中增加了对消息的扰动, 大大减少签名中对私钥信息的泄露, 但却极大地降低了签名的效率, 且密钥生成过于复杂.但这些签名方案都不是零知识的,也就是说,签名值会泄露私钥的部分相关信息.以NTRUSign 方案为例,其推荐参数为(N;q;df;dg;B;t;N)= (251;128;73;71;1;"transpose";310),设计值保守推荐该方案每个密钥对最多只能签署107 次,实际中一般认为最多可签署230次.因此,如何避免这种信息泄露缺陷值得我们深入研究.2008 年我国学者胡予濮提出了一种新的NTRU 签名方案[28],其特点是无限制泄露的最终形式只是关于私钥的一组复杂的非线性方程组,从而提高了安全性.总体上这些签名方案出现的时间都还较短,还需要经历一段时间的安全分析和完善.

由上可知,进一步研究格上的困难问题,基于格的困难问题设计构造既能安全加密又能安全签名的密码,都是值得研究的重要问题.

3.4 MQ公钥密码

MQ公钥密码体制, 即多变量二次多项式公钥密码体制(Multivariate Quadratic Polynomials Public Key Cryptosystems).以下简称为MQ密码.它最早出现于上世纪80年代,由于早期的一些MQ密码均被破译,加之经典公钥密码如RSA算法的广泛应用,使得MQ公钥算法一度遭受冷落.但近10年来MQ密码的研究重新受到重视,成为密码学界的研究热点之一.其主要有3个原因:一是量子计算对经典公钥密码的挑战;二是MQ密码孕育了代数攻击的出现[29-31],许多密码(如AES)的安全性均可转化为MQ问题,人们试图借鉴MQ密码的攻击方法来分析这些密码,反过来代数攻击的兴起又带动了MQ密码的蓬勃发展;三是MQ密码的实现效率比经典公钥密码快得多.在目前已经构造出的MQ密码中, 有一些非常适用于智能卡、RFID、移动电话、无线传感器网络等计算能力有限的设备, 这是RSA等经典公钥密码所不具备的优势.

MQ密码的安全性基于有限域上的多变量二次方程组的难解性.这是目前抗量子密码学领域中论文数量最多、最活跃的研究分支.

设U、T 是GF(q)上可逆线性变换(也叫做仿射双射变换),而F 是GF(q)上多元二次非线性可逆变换函数,称为MQ密码的中心映射.MQ密码的公钥P为T 、F 和U 的复合所构成的单向陷门函数,即P = T•F•U,而私钥D 由U、T 及F 的逆映射组成,即D = {U -1; F -1; T -1}.如何构造具有良好密码性质的非线性可逆变换F是MQ密码设计的核心.根据中心映射的类型划分,目前MQ密码体制主要有:Matsumoto-Imai体制、隐藏域方程(HFE) 体制、油醋(OV)体制及三角形(STS)体制[32].

1988年日本的Matsumoto和Imai运用"大域-小域"的原理设计出第1个MQ方案,即著名的MI算法[33].该方案受到了日本政府的高度重视,被确定为日本密码标准的候选方案.1995年Patarin利用线性化方程方法成功攻破了原始的MI算法[34].然而,MI密码是多变量公钥密码发展的一个里程碑,为该领域带来了一种全新的设计思想,并且得到了广泛地研究和推广.改进MI算法最著名的是SFLASH签名体制[35],它在2003年被欧洲NESSIE 项目收录,用于智能卡的签名标准算法.该标准签名算法在2007年美密会上被Dubois、Fouque、Shamir等彻底攻破[36].2008年丁津泰等结合内部扰动和加模式方法给出了MI的改进方案[37-38].2010年本文作者王后珍、张焕国也给出了一种SFLASH的改进方案[39-40],改进后的方案可以抵抗文献[36]的攻击.但这些改进方案的安全性还需进一步研究.

1996年Patarin针对MI算法的弱点提出了隐藏域方程HFE(Hidden Field Equations)方案[41].HFE可看作为是对MI的实质性改进.2003 年Faugere利用F5算法成功破解了HFE体制的Challenge-1[42].HFE主要有2种改进算法.一是HFEv-体制,它是结合了醋变量方法和减方法改进而成,特殊参数化HFEv-体制的Quartz签名算法[43].二是IPHFE体制[44],这是丁津泰等结合内部扰动方法对HFE的改进.这2种MQ密码至今还未发现有效的攻击方法.

油醋(OilVinegar)体制[45]是Patarin在1997年利用线性化方程的原理,构造的一种MQ公钥密码体制.签名时只需随机选择一组醋变量代入油醋多项式,然后结合要签名的文件,解一个关于油变量的线性方程组.油醋签名体制主要分为3类:1997年Patarin提出的平衡油醋(OilVinegar)体制, 1999年欧密会上Kipnis、Patarin 和Goubin 提出的不平衡油醋(Unbalanced Oil and Vinegar)体制[46]以及丁津泰在ACNS2005会议上提出的彩虹(Rainbow)体制[47].平衡的油醋体制中,油变量和醋变量的个数相等,但平衡的油醋体制并不安全.彩虹体制是一种多层的油醋体制,即每一层都是油醋多项式,而且该层的所有变量都是下一层的醋变量,它也是目前被认为是相对安全的MQ密码之一.

三角形体制是现有MQ密码中较为特殊的一类,它的签名效率比MI和HFE还快,而且均是在较小的有限域上进行.1999年Moh基于Tame变换提出了TTM 密码体制[48],并在美国申请了专利.丁津泰等指出当时所有的TTM实例均满足线性化方程.Moh等随后又提出了一个新的TTM 实例,这个新的实例被我国学者胡磊、聂旭云等利用高阶线性化方程成功攻破[49].目前三角形体制的设计主要是围绕锁多项式的构造、结合其它增强多变量密码安全性的方法如加减(plus-minus) 模式以及其它的代数结构如有理映射等.

我国学者也对MQ密码做了大量研究,取得了一些有影响的研究成果.2007年管海明引入单向函数链对MQ密码进行扩展,提出了有理分式公钥密码系统[50].胡磊、聂旭云等利用高阶线性化方程成功攻破了Moh提出的一个TTM新实例[51].2010年本文作者王后珍、张焕国给出了一种SFLASH的改进方案[39-40].2010年王后珍、张焕国基于扩展MQ,设计了一种Hash函数[52-53],该Hash函数具有一些明显的特点.同年,王后珍、张焕国借鉴有理分式密码单向函数链的思想[52],对MQ密码进行了扩展,设计了一种新的抗量子计算扩展MQ密码[54].这些研究对于扩展MQ密码结构,做了有益的探索.但是这些方案提出的时间较短,其安全性有待进一步分析.

根据上面的介绍,目前还没有一种公认安全的MQ公钥密码体制.目前MQ公钥密码的主要缺点是:只能签名,不能安全加密(加密时安全性降低),公钥大小较长,很难设计出既安全又高效的MQ公钥密码体制.

3.5 小结

无论是量子密码、DNA密码,还是基于量子计算不擅长计算的那些数学问题所构建的密码,都还存在许多不完善之处,都还需要深入研究.

量子保密通信比较成熟的是,利用量子器件产生随机数作为密钥,再利用量子通信分配密钥,最后按“一次一密”方式加密.在这里,量子的作用主要是密钥产生和密钥分配,而加密还是采用的传统密码.因此,严格说这只能叫量子保密,尚不能叫量子密码.另外,目前的量子数字签名和认证方面还存在一些困难.

对于DNA密码,目前虽然已经提出了DNA传统密码和DNA公钥密码的概念和方案,但是理论和技术都还不成熟[9-10].

对于基于量子计算不擅长计算的那些数学问题所构建的密码,现有的密码方案也有许多不足.如,Merkle树签名可以签名,不能加密;基于纠错码的密码可以加密,签名不理想;NTRU密码可以加密,签名不理想;MQ密码可以签名,加密不理想.这说明目前尚没有形成的理想的密码体制.而且这些密码的安全性还缺少严格的理论分析.

总之,目前尚未形成理想的抗量子密码.

4 我们的研究工作

我们的研究小组从2007年开始研究抗量子计算密码.目前获得了国家自然科学基金等项目的支持,并取得了以下2个阶段性研究成果.

4.1 利用多变量问题,设计了一种新的Hash函数

Hash 函数在数字签名、完整性校验等信息安全技术中被广泛应用.目前 Hash 函数的设计主要有3类方法:①直接构造法.它采用大量的逻辑运算来确保Hash函数的安全性. MD系列和SHA系列的Hash函数均是采用这种方法设计的.②基于分组密码的Hash 函数,其安全性依赖于分组密码的安全性.③基于难解性问题的构造法.利用一些难解性问题诸如离散对数、因子分解等来构造Hash 函数.在合理的假设下,这种Hash函数是可证明安全的,但一般来讲其效率较低.

我们基于多变量非线性多项式方程组的难解性问题,构造了一种新的Hash 函数[54-55].它的安全性建立在多变量非线性多项式方程组的求解困难性之上.方程组的次数越高就越安全,但是效率就越低.它的效率主要取决多变量方程组的稀疏程度,方程组越稀疏效率就越高,但安全性就越低.我们可以权衡安全性和效率来控制多变量多项式方程组的次数和稠密度,以构造出满足用户需求的多变量Hash 函数.

4.2 对MQ密码进行了扩展,把Hash认证技术引入MQ密码,得到一种新的扩展MQ密码

扩展MQ密码的基本思想是对传统MQ密码的算法空间进行拓展. 如图1所示, 我们通过秘密变换L将传统MQ密码的公钥映G:GF(q)nGF(q)n, 拓展隐藏到更大算法空间中得到新的公钥映射G′:GF(q)n+δGF(q)n+μ, 且G′的输入输出空间是不对称的, 原像空间大于像空间(δ>|μ|), 即具有压缩性, 但却并未改变映射G的可逆性质. 同时, 算法空间的拓展破坏了传统MQ密码的一些特殊代数结构性质, 从攻击者的角度, 由于无法从G′中成功分解出原公钥映射G, 因此必须在拓展空间中求解更大规模的非线性方程组G′, 另外, 新方案中引入Hash认证技术, 攻击者伪造签名时, 伪造的签名不仅要满足公钥方程G′、 还要通过Hash函数认证, 双重安全性保护极大地提升了传统MQ公钥密码系统的安全性. 底层MQ体制及Hash函数可灵活选取, 由此可构造出一类新的抗量子计算公钥密码体制.这种扩展MQ密码的特点是,既可安全签名,又可安全加密[56].

我们提出的基于多变量问题的Hash函数和扩展MQ密码,具有自己的优点,也有自己的缺点.其安全性还需要经过广泛的分析与实践检验才能被实际证明.

5 今后的研究工作

5.1 量子信息论

量子信息建立在量子的物理属性之上,由于量子的物理属性较之电子的物理属性有许多特殊的性质,据此我们估计量子的信息特征也会有一些特殊的性质.这些特殊性质将会使量子信息论对经典信息论有一些新的扩展.但是,具体有哪些扩展,以及这些新扩展的理论体系和应用价值体现在哪里?我们尚不清楚.这是值得我们研究的重要问题.

5.2 量子计算理论

这里主要讨论量子可计算性理论和量子计算复杂性理论.

可计算性理论是研究计算的一般性质的数学理论.它通过建立计算的数学模型,精确区分哪些是可计算的,哪些是不可计算的.如果我们研究清楚量子可计算性理论,将有可能构造出量子计算环境下的绝对安全密码.但是我们目前对量子可计算性理论尚不清楚,迫切需要开展研究.

计算复杂性理论使用数学方法对计算中所需的各种资源的耗费作定量的分析,并研究各类问题之间在计算复杂程度上的相互关系和基本性质.它是密码学的理论基础之一,公钥密码的安全性建立在计算复杂性理论之上.因此,抗量子计算密码应当建立在量子计算复杂性理论之上.为此,应当研究以下问题.

1) 量子计算的问题求解方法和特点.量子计算复杂性建立在量子图灵机模型之上,问题的计算是并行的.但是目前我们对量子图灵机的计算特点及其问题求解方法还不十分清楚,因此必须首先研究量子计算问题求解的方法和特点.

2) 量子计算复杂性与传统计算复杂性之间的关系.与电子计算机环境的P问题、NP问题相对应, 我们记量子计算环境的可解问题为QP问题, 难解问题为QNP问题.目前人们对量子计算复杂性与传统计算复杂性的关系还不够清楚,还有许多问题需要研究.如NP与QNP之间的关系是怎样的? NPC与QP的关系是怎样的?NPC与QNP的关系是怎样的?能否定义QNPC问题?这些问题关系到我们应基于哪些问题构造密码以及所构造的密码是否具有抗量子计算攻击的能力.

3) 典型难计算问题的量子计算复杂度分析.我们需要研究传统计算环境下的一些NP难问题和NPC问题,是属于QP还是属于QNP问题?

5.3 量子计算环境下的密码安全性理论

在分析一个密码的安全性时,应首先分析它在电子计算环境下的安全性,如果它是安全的,再进一步分析它在量子计算环境下的安全性.如果它在电子计算环境下是不安全的,则可肯定它在量子计算环境下是不安全的.

1) 现有量子计算攻击算法的攻击能力分析.我们现在需要研究的是Shor算法除了攻击广义离散傅里叶变换以及HSP问题外,还能攻击哪些其它问题?如果能攻击,攻击复杂度是多大?

2) 寻找新的量子计算攻击算法.因为密码的安全性依赖于新攻击算法的发现.为了确保我们所构造的密码在相对长时间内是安全的,必须寻找新的量子计算攻击算法.

3) 密码在量子计算环境下的安全性分析.目前普遍认为, 基于格问题、MQ问题、纠错码的译码问题设计的公钥密码是抗量子计算的.但是,这种认识尚未经过量子计算复杂性理论的严格的论证.这些密码所依赖的困难问题是否真正属于QNP问题?这些密码在量子计算环境下的实际安全性如何?只有经过了严格的安全性分析,我们才能相信这些密码.

5.4 抗量子计算密码的构造理论与关键技术

通过量子计算复杂性理论和密码在量子计算环境下的安全性分析的研究,为设计抗量子计算密码奠定了理论基础,并得到了一些可构造抗量子计算的实际困难问题.但要实际设计出安全的密码,还要研究抗量子计算密码的构造理论与关键技术.

1) 量子计算环境下的单向陷门设计理论与方法.理论上,公钥密码的理论模型是单向陷门函数.要构造一个抗量子计算公钥密码首先就要设计一个量子计算环境下的单向陷门函数.单向陷门函数的概念是简单的,但是单向陷门函数的设计是困难的.在传统计算复杂性下单向陷门函数的设计已经十分困难,我们估计在量子计算复杂性下单向陷门函数的设计将更加困难.

2) 抗量子计算密码的算法设计与实现技术.有了单向陷门函数,还要进一步设计出密码算法.有了密码算法,还要有高效的实现技术.这些都是十分重要的问题.都需要认真研究才能做好.

6 结语

量子计算时代我们使用什么密码,是摆在我们面前的重大战略问题.研究并建立我国独立自主的抗量子计算密码是我们的唯一正确的选择.本文主要讨论了基于量子计算机不擅长计算的数学问题所构建的一类抗量子计算的密码,介绍了其发展现状,并给出了进一步研究的建议.

参考文献:

[1]张镇九,张昭理,李爱民.量子计算与通信保密[M].武汉:华中师范大学出版社,2002.

[2]管海明. 国外量子计算机进展、对信息安全的挑战与对策[J].计算机安全,2009(4):1-5.

[3]GROVER L K. A fast quantum mechanical algorithm for database search[C]// Proceedings of the Twenty-Eighth Annual Symposium on the Theory of Computing. New York: ACM Press, 1996.

[4]SHOR P W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer [J]. SIAM J Computer, 1997(26) :1484-1509.

[5]HANKERSON D, MENEZES A, VANSTONE S. 椭圆曲线密码学导论[M].张焕国,译.北京:电子工业出版社,2005.

[6]曾贵华. 量子密码学[M].北京:科学出版社,2006.

[7]来学嘉, 卢明欣, 秦磊, 等. 基于DNA 技术的非对称加密与签名方法[J]. 中国科学E辑:信息科学, 2010, 40(2): 240-248.

[8]卢明欣,来学嘉,肖国镇,等. 基于DNA技术的对称加密方法[J]. 中国科学E辑:信息科学, 2007(2): 175-182.

[9]BERNSTEIN D J, BUCHMANN J A, DAHMEN E. Post-quantum cryptography [M]. Berlin:Springer, 2009.

[10]MERKLE R C. A certified digital signature[C]//Advances in Cryptology-CRYPTO 1989 Proceedings, LNCS. Berlin:Springer, 1989,435:218-238.

[11]NIST. Plan for new cryptographic hash functions[EB/OL]. [2010-12-30]..

[49]DING J, HU L, NIE X Y, et al. High order linearization equation (HOLE) attack on multivariate public key cryptosystems[C]//Proceedings of PKC 2007. Berlin: Springer-Verlag, 2007: 233-248.

[50]管海明.有理分式公钥密码体制[C]//第五届中国信息与通信安全学术会议(CCICS’2007)论文集.科学出版社,2007:135-141.

[51]胡磊,聂旭云.多变量公钥密码的研究进展[C]//中国密码学发展报告.北京:电子工业出版社, 2007: 235-254.

[52]王后珍,张焕国.多变量Hash函数的构造理论与方法[J].中国科学:信息科学版,2010,40(10):1299-1311.

[53]WANG H Z, ZHANG H G. Design theory and method of multivariate hash function[J].SCIENCE CHINA:Information Sciences, 2010, 53(10):1 917-2 158.

[54]王后珍, 张焕国.一种新的轻量数字签名方法[J].通信学报,2010(11):25-29.

收稿日期:2011-04-20.