高分子压电材料的特点范例6篇

前言:中文期刊网精心挑选了高分子压电材料的特点范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

高分子压电材料的特点

高分子压电材料的特点范文1

首先,智能材料家族将成为可穿戴设备不可或缺的一部分。

由形状记忆合金、光致变色材料、电致变色材料、压电材料、智能高分子材料等组成的庞大的智能材料家族是可穿戴设备的完美搭配。

智能材料中的形状记忆合金具有很强的可弯曲性,并且能够记忆自身的形状,日常使用的抗弯折眼镜框、可植入人体的人造骨骼和人造卫星的太阳能电池板等都是由形状记忆合金制作而成。如果能将这种材料应用于可穿戴设备,它将能够自动记忆人体曲线,在接触到人体的时候自动变化为适应每个人的体型并自动固定。甚至,如果把现在的智能手机直接制作在形状记忆合金之上,那么整个可穿戴设备将能够贴合于人体,实现真正的“与人融合”。

光致变色材料、电致变色材料和智能高分子材料,将能够监测人体的各项生命体征以及外部环境的变化,并通过自身变化直观地表示出来。人们也许可以不用打开显示屏,就能够获得足够多的信息,比如它可以感受周围的气温,甚至是空气污染的程度,并通过颜色变化的方式表现出来。周围的环境变化将不再是冷冰冰的数字,其呈现的方式将更加智能化。压电材料给可穿戴设备的带来的革命将更为巨大,将其植入可穿戴设备中,能够将人体的每一次活动中微小的能量都收集起来,这将能够提供源源不断的电力供应,可穿戴设备将能够摆脱电池的束缚,实现真正的轻量化和长续航。

其次,智能材料与可穿戴设备的结合将彻底革新人们对于“智能”的定义。

高分子压电材料的特点范文2

    2 生物材料的类型与应用 生物材料种类繁多,到目前为止,被详细研究过的生物材料已经超过一千种,在医学临床上广泛应用的也有几十种,涉及材料学科各个领域。依据不同的分类标准,可以分为不同的类型。

    2.1 以材料的生物性能为分类标准根据材料的生物性能,生物材料可分为生物惰性材料、生物活性材料、生物降解材料和生物复合材料四类。

    2.1.1 生物惰性材料 生物惰性材料是指一类在生物环境中能保持稳定,不发生或仅发生微弱化学反应的生物医学材料,主要是生物陶瓷类和医用合金类材料。由于在实际中不存在完全惰性的材料,因此生物惰性材料在机体内也只是基本上不发生化学反应,它与组织间的结合主要是组织长入其粗糙不平的表面形成一种机械嵌联,即形态结合。生物惰性材料主要包括以下几类:(1)氧化物陶瓷 主要包括氧化铝陶瓷和氧化锆陶瓷.氧化铝陶瓷中以纯刚玉及其复合材料的人工关节和人工骨为主,具体包括纯刚玉双杯式人工髋关节;纯刚玉— 金属复合型人工股骨头;纯刚玉—聚甲基丙烯酸酯—钴铬钼合金铰链式膝关节,其他人工骨、人工牙根等。(2)玻璃陶瓷 该材料主要用来制作部分人工关节。(3)Si3N4 陶瓷 该类材料主要用来制作一些作为替代用的较小的人工骨,目前还不能用作承重材料。(4)医用碳素材料 它主要被作为制作人工心脏瓣膜等人工脏器以及人工关节等方面的材料。(5)医用金属材料 该类材料是目前人体承重材料中应用最广泛的材料,在其表面涂上活性生物材料后可增加它与人体环境的相容性.同时它还能制作各类其他人体骨的替代物。

    2.1.2 生物活性材料生物活性材料是一类能诱出或调节生物活性的生物医学材料。但是,也有人认为生物活性是增进细胞活性或新组织再生的性质。现在,生物活性材料的概念已建立了牢固的基础,其应用范围也大大扩充. 一些生物医用高分子材料,特别是某些天然高分子材料及合成高分子材料都被视为生物活性材料.羟基磷灰石是一种典型的生物活性材料。由于人体骨的主要无机质成分为该材料,故当材料植入体内时不仅能传导成骨,而且能与新骨形成骨键合。在肌肉、韧带或皮下种植时,能与组织密合,无炎症或刺激反应.生物活性材料主要有以下几类:

    (1)羟基磷灰石,它是目前研究最多的生物活性材料之一,作为最有代表性的生物活性陶瓷—羟基磷灰石(简称HAP)材料的研究, 在近代生物医学工程学科领域一直受到人们的密切关注.羟基磷灰石 [Ca10(PO4)6(OH)2]是脊椎动物骨和齿的主要无机成分,结构也非常相近,与动物体组织的相容性好、无毒副作用、界面活性优于各类医用钛合金、硅橡胶及植骨用碳素材料。因此可广泛应用于生物硬组织的修复和替换材料,如口腔种植、牙槽脊增高、耳小骨替换、脊椎骨替换等多个方面.另外,在HA 生物陶瓷中耳通气引流管、颌面骨、鼻梁、假眼球以及填充用HA颗粒和抑制癌细胞用HA微晶粉方面也有广泛的应用.又因为该材料受到本身脆性高、抗折强度低的限制,因此在承重材料应用方面受到了限制.现在该材料已引起世界各国学者的广泛关注。目前制备多孔陶瓷和复合材料是该材料的重要发展方向,涂层材料也是重要分支之一。该类材料以医用为目的,主要包括制粉、烧结、性能实验和临床应用几部分。

    (2)磷酸钙生物活性材料 这种材料主要包括磷酸钙骨水泥和磷酸钙陶瓷纤维两类.前者是一种广泛用于骨修补和固定关节的新型材料,有望部分取代传统的PMMA 有机骨水泥. 国内研究抗压强度已达60MPa 以上。后者具有一定的机械强度和生物活性,可用于无机骨水泥的补强及制备有机与无机复合型植入材料。

    (3)磁性材料 生物磁性陶瓷材料主要为治疗癌症用磁性材料,它属于功能性活性生物材料的一种。把它植入肿瘤病灶内,在外部交变磁场作用下,产生磁滞热效应,导致磁性材料区域内局部温度升高,借以杀死肿瘤细胞,抑制肿瘤的发展。动物实验效果良好。

    (4)生物玻璃 生物玻璃主要指微晶玻璃,包括生物活性微晶玻璃和可加工生物活性微晶玻璃两类。目前关于该方向的研究已成为生物材料的主要研究方向之一。

    2.1.3 生物降解材料所谓可降解生物材料是指那些在被植入人体以后,能够不断的发生分解,分解产物能够被生物体所吸收或排出体外的一类材料,主要包括β-TCP 生物降解陶瓷和生物陶瓷药物载体两类,前者主要用于修复良性骨肿瘤或瘤样病变手术刮除后所致缺损,而后者主要用作微药库型载体,可根据要求制成一定形状和大小的中空结构,用于各种骨科疾病。

    2.1.4 生物复合材料生物复合材料又称为生物医用复合材料,它是由两种或两种以上不同材料复合而成的生物医学材料,并且与其所有单体的性能相比,复合材料的性能都有较大程度的提高的材料。制备该类材料的目的就是进一步提高或改善某一种生物材料的性能。该类材料主要用于修复或替换人体组织、器官或增进其功能以及人工器官的制造,它除应具有预期的物理化学性质之外,还必须满足生物相容性的要求,这里不仅要求组分材料自身必须满足生物相容性要求,而且复合之后不允许出现有损材料生物学性能的性质。按基材分生物复合材料可分为高分子基、金属基和陶瓷基三类,它们既可以作为生物复合材料的基材,又可作为增强体或填料,它们之间的相互搭配或组合形成了大量性质各异的生物医学复合材料,利用生物技术,一些活体组织、细胞和诱导组织再生的生长因子被引入了生物医学材料,大大改善了其生物学性能,并可使其具有药物治疗功能,已成为生物医学材料的一个十分重要的发展方向,根据材料植入体内后引起的组织反应类型和水平,它又可分为近于生物惰性的、生物活性的、可生物降解和吸收等几种类型。人和动物中绝大多数组织均可视为复合材料,生物医学复合材料的发展为获得真正仿生的生物材料开辟了广阔的途径。

    2.2 以材料的属性为分类标准

    2.2.1 生物医用金属材料生物医用金属材料是用作生物医学材料的金属或合金,又称外科用金属材料或医用金属材料,是一类惰性材料,这类材料具有高的机械强度和抗疲劳性能,是临床应用最广泛的承力植入材料。该类材料的应用非常广泛,及硬组织、软组织、人工器官和外科辅助器材等各个方面,除了要求它具有良好的力学性能及相关的物理性质外,优良的抗生理腐蚀性和生物相容性也是其必须具备的条件。医用金属材料应用中的主要问题是由于生理环境的腐蚀而造成的金属离子向周围组织扩散及植入材料自身性质的退变,前者可能导致毒副作用,后者常常导致植入的失败。已经用于临床的医用金属材料主要有不锈钢、钴基合金和钛基合金等三大类。此外,还有形状记忆合金、贵金属以及纯金属钽、铌、锆等。

    2.2.2 生物医用高分子材料 医用高分子材料是生物医学材料中发展最早、应用最广泛、用量最大的材料,也是一个正在迅速发展的领域。它有天然产物和人工合成两个来源,该材料除应满足一般的物理、化学性能要求外,还必须具有足够好的生物相容性。按性质医用高分子材料可分为非降解型和可生物降解型两类。对于前者,要求其在生物环境中能长期保持稳定,不发生降解、交联或物理磨损等,并具有良好的物理机械性能。并不要求它绝对稳定,但是要求其本身和少量的降解产物不对机体产生明显的毒副作用,同时材料不致发生灾难性破坏。该类材料主要用于人体软、硬组织修复体、人工器官、人造血管、接触镜、膜材、粘接剂和管腔制品等方面。这类材料主要包括聚乙烯、聚丙烯、聚丙烯酸酯、芳香聚酯、聚硅氧烷、聚甲醛等. 而可降解型高分子主要包括胶原、线性脂肪族聚酯、甲壳素、纤维素、聚氨基酸、聚乙烯醇、聚己丙酯等。它们可在生物环境作用下发生结构破坏和性能蜕变,其降解产物能通过正常的新陈代谢或被机体吸收利用或被排出体外,主要用于药物释放和送达载体及非永久性植入装置.按使用的目的或用途,医用高分子材料还可分为心血管系统、软组织及硬组 织等修复材料。用于心血管系统的医用高分子材料应当着重要求其抗凝血性好,不破坏红细胞、血小板,不改变血液中的蛋白并不干扰电解质等。

    2.2.3 生物医用无机非金属材料或称为生物陶瓷。生物医用非金属材料,又称生物陶瓷。包括陶瓷、玻璃、碳素等无机非金属材料。此类材料化学性能稳定,具有良好的生物相容性。一般来说,生物陶瓷主要包括惰性生物陶瓷、活性生物陶瓷和功能活性生物陶瓷三类。其中惰性生物陶瓷和活性生物陶瓷在前面已经简要作了介绍,而功能活性生物陶瓷是近年来提出的一个新概念.随着生物陶瓷材料研究的深入和越来越多医学问题的出现,对生物陶瓷材料的要求也越来越高。原先的生物陶瓷材料无论是生物惰性的还是生物活性的,强调的是材料在生物体内的组织力学环境和生化环境的适应性,而现在组织电学适应性和能参与生物体物质、能量交换的功能已成为生物材料应具备的条件。因此,又提出了功能活性生物材料的概念。它主要包括以下两类:(1)模拟性生物陶瓷材料 该类材料是将天然有机物(如骨胶原、纤维蛋白以及骨形成因子等)和无机生物材料复合,来模拟人体硬组织成分和结构,以改善材料的力学性能和手术的可操作性,并能发挥天然有机物的促进人体硬组织生长的特性。(2)带有治疗功能的生物陶瓷复合材料 该类材料是利用骨的压电效应能刺激骨折愈合的特点,使压电陶瓷与生物活性陶瓷复合,在进行骨置换的同时,利用生物体自身运动对置换体产生的压电效应来刺激骨损伤部位的早期硬组织生长。具体来说是由于肿瘤中血管供氧不足,当局部被加热到43~45℃时,癌细胞很容易被杀死。现在最常用的是将铁氧体与生物活性陶瓷复合,填充在因骨肿瘤而产生的骨缺损部位,利用外加交变磁场,充填物因磁滞损耗而产生局部发热,杀死癌细胞,又不影响周围正常组织。现在,功能活性生物陶瓷的研究还处于探索阶段,临床应用鲜有报道,但其发展应用前景是很光明的。各种不同种类的生物陶瓷的物理、化学和生物性能差别很大,在医学领域用途也不同.尤其是功能活性陶瓷更有不可估量的发展前途.临床应用中,生物陶瓷存在的主要问题是强度和韧性较差.氧化铝、氧化锆陶瓷耐压、耐磨和化学稳定性比金属、有机材料都好,但其脆性的问题也没有得到解决。生物活性陶瓷的强度则很难满足人体承力较大部位的需要。

    2.2.4 生物医用复合材料此类材料在2.1.4 中已有介绍,此处不再详述

    2.2.5 生物衍生材料生物衍生材料是由经过特殊处理的天然生物组织形成的生物医用材

    料,也称为生物再生材料.生物组织可取自同种或异种动物体的组织. 特殊处理包括维持组织原有构型而进行的固定、灭菌和消除抗原性的轻微处理,以及拆散原有构型、重建新的物理形态的强烈处理.由于经过处理的生物组织已失去生命力,生物衍生材料是无生命力的材料. 但是,由于生物衍生材料或是具有类似于自然组织的构型和功能,或是其组成类似于自然组织,在维持人体动态过程的修复和替换中具有重要作用.主要用于人工心瓣膜、血管修复体、皮肤掩膜、纤维蛋白制品、骨修复体、巩膜修复体、鼻种植体、血液唧筒、血浆增强剂和血液透析膜等.

    3. 生物材料的性能评价 目前关于生物材料性能评价的研究主要集中在生物相容性方面.因为生物相容性是生物材料研究中始终贯穿的主题.它是指生命体组织对生物材料产生反应的一种性能,该材料既能是非活性的又能是活性的.一般是指材料与宿主之间的相容性,包括组织相容性和血液相容性.现在普遍认为,生物相容性包括两大原则,一是生物安全性原则,二是生物功能性原则.生物安全性是植入体内的生物材料要满足的首要性能,是材料与宿主之间能否结合完好的关键.关于生物材料生物学评价标准的研究始于20 世纪70 年代,目前形成了从细胞水平到整体动物的较完整的评价框架.国际标准化组织(ISO)以 10993编号了17个相关标准,同时对生物学评价方法也进行了标准化.迫于现代社会动物保护和减少动物试验的压力,国际上各国专家对体外评价方法进行了大量的研究,同时利用现代分子生物学手段来评价生物材料的安全性、使评价方法从整体动物和细胞水平深入到分子水平.主要在体外细胞毒性试验、遗传性和致癌性试验以及血液相容性评价方法等方面进行了一些研究.但具体评价方法和指标都未统一,更没有标准化.随着对生物材料生物相容性的深入研究,人们发现评价生物材料对生物功能的影响也很重要.关于这一方面的研究主要是体外法。具体来说侧重于对细胞功能的影响和分子生物学评价方面的一些研究。总之,关于生物功能性的原则是提出不久的一个新的生物材料的评价方面,它必将随着研究的不断深入而向前发展.而涉及材料的化学稳定性、疲劳性能、摩擦、磨损性能的生物材料在人体内长期埋植的稳定性是需要开展评价研究的一个重要方面。

    4 生物材料的发展趋势展望 生物材料科学是20 世纪新兴学科中最耀眼的新星之一。现在,生物材料科学已成为一门与人类现代医疗保健系统密切相关的边缘学科。其重要性不仅因为它与人类自身密切相关,还因为它跨越了材料、医学、物理、生物化学和现代高科技等诸多学科领域。现在对于该材料的研究已从被动地适应生物环境发展到有目的地设计材料,以达到与生物组织的有机连接。并随着生命科学和材料科学的发展,生物材料必将走向功能性半生命方向。生物材料的临床应用已从短期的替换和填充发展成永久性牢固种植,并与其它高科技(如电子技术、信息处理技术)相结合,制备富有应用潜力的医疗器械。生物材料的研究在世界各国也日益受到重视.四年一次的世界生物材料大会代表着国际上生物材料研究的发展动态和目前的水平。分析认为,以下几个方面是生物材料今后研究发展的几个主要方向:

    (1)发展具有主动诱导、激发人体组织和器官再生修复功能的,能参与人体能量和物质交换产生相互结合的功能性活性生物材料,将成为生物材料研究的主要方向之一。

    (2)把生物陶瓷与高分子聚合物或生物玻璃进行二元或多元复合,来制备接近人体骨真实情况的骨修复或替代材料将成为研究的重要方向之一。

    (3)制备接近天然人骨形态的、纳微米相结合的、用于承重的、多孔型生物复合材料将成为方向之一。

    (4)用于延长药效时间、提高药物效率和稳定性、减少用量及对机体的毒副作用的药物传递材料将成为研究热点之一。

    (5)血液相容性人工脏器材料的研究也是突破方向之一。

    (6)如何能够制备出纳米尺寸的生物材料的工艺以及纳米生物材料本身将成为研究热点之一。

高分子压电材料的特点范文3

关键词: LabVIEW; 机床; 振动信号; 分析

中图分类号:TP39 文献标志码:B 文章编号:1006-8228(2012)11-37-02

Analysis system of machine vibration signal based on LabVIEW

Li Dongdong, Huang Sheng, Wu Donglin

(Guangzhou College, South China University of Technology, Guangzhou, Guangdong 510800, China)

Abstract: LabVIEW is a graphical programming language which is the most popular one in today's virtual instrument development. A kind of analysis system of machine vibration signal is designed based on LabVIEW 8.5, with the characteristics of the signal. The system consists of hardware and test analysis software, as the core of virtual instrument, which consists of controlling hardware management module and analysis function module, completing virtual instrument-specific logic analysis process. Signal is processed with LabVIEW and a variety of functions are realized, such as frequency domain analysis, time domain analysis, phase analysis, spectral analysis, correlation analysis, etc. Compared with the traditional test methods, a significant increase in the flexibility of the test system is realized. Test costs and energy consumption are reduced by the system. The good test results show that the system works well.

Key words: LabVIEW; machine; vibration signal; analysis

0 引言

机床在加工工件过程中,刀具和工件之间常常发生强烈的振动。振动会使机床和刀具磨损加剧,从而缩短机床和刀具的使用寿命;振动并伴随有噪音,危害工人身心健康,使工作环境恶化。对于超精密机床,虽然具有很高的刚度,但振动会导致加工表面微观特征发生改变,是影响表面粗糙度的主要因素之一。必须采取必要的预防措施来减小或防止机床振动对超精密加工表面质量的影响。所以,对机床振动信号的分析研究具有重要意义。

振动信号分析作为故障诊断的一种方法,以其不拆卸机体,不影响设备的正常工作,测量范围广等优点,广泛应用于各类工业和工程之中。随着计算机技术、信息技术以及虚拟仪器技术的发展,越来越多的人开始通过虚拟仪器对机械的振动信号进行采集与分析[1]。

美国NI公司的图形化编程语言LabVIEW成为当今虚拟仪器开发最流行的一种语言。LabVIEW的最大特点是用图标代码来代替编程语言创建应用程序。LabVIEW有丰富的函数、工具包、软件包、数值分析、信号处理、设备驱动等功能,还有应用于专业领域的专业模块, 解决了传统的虚拟仪器系统采用C/C++/汇编等语言存在的编程难、调试过程繁琐、开发周期长、对编程人员要求高等问题,它在研究、开发、生产、测试工作中得到广泛应用[2]。

1 系统的总体方案

本分析系统以LabVIEW 8.5为开发平台开发, 系统流程如图1所示。系统由硬件和测试分析软件两大部分组成。硬件是虚拟仪器工作的基础,主要由传感器及调理电路、数据采集卡和计算机组成,完成对被测信号的采集、传输、运算处理及显示测试结果等;软件是虚拟仪器的核心,系统软件由控制底层硬件管理模块与分析功能模块组成,完成虚拟仪器特定的逻辑分析处理过程[3]。

[虚拟仪器控制面板\&][数据采集卡\&][信号调理\&][传感器\&][振动源\&]

图1 系统方案流程图

2 系统的硬件结构设计

高分子压电材料的特点范文4

【关键词】有机磷农药;传感器;检测

1.引言

有机磷农药是20世纪30年末问世的第二代人工合成农药,具有广谱、高效、品种多和残毒期短等特点,经常被用作杀虫剂喷洒在果树和蔬菜上。如果残留在水果和蔬菜上的有机磷或环境中的有机磷进入到有机体内,大部分会对生物体内胆碱酯酶有抑制作用,使其失去分解乙酰胆碱的能力,造成乙酰胆碱积累,引起神经功能紊乱,从而导致肌体的损害。因此,对农产品中的有机磷残留进行快速、高效的检测具有重要意义。以理化方法为主的波谱法、色谱法、色质联用法等传统检测手段,操作复杂,耗时长。在国内外近年来开展的快速、高效的检测方法研究中,传感器技术特别是生物传感器技术得到广泛应用,起到了重要作用。

2.常用传感器检测技术

2.1 电子鼻(气敏传感器)检测技术

电子鼻因模拟嗅觉系统而得名,是模仿生物鼻的一种电子系统,是二十世纪90年展起来的分析、识别和检测复杂嗅觉及大多数挥发性气体成分的仪器。电子鼻主要是由气敏传感器阵列和模式识别系统两部分组成。气敏传感器相当于人类嗅觉系统中的嗅觉细胞,是电子鼻检测性能优劣的基础。单个气敏传感器的功能十分有限,目前还没有发现只对某种气体单一敏感的传感器材料,单个传感器对不同的响应可能会有变化,但它不具备自动识别气体种类和数量的能力。因此由具有光谱响应特性、高灵敏度、对不同气体(气味)灵敏度不同的气敏传感器组成传感器阵列,利用其交叉敏感性,来提高电子鼻的检测性能。利用信号预处理方法滤除模式采集过程中引入的噪声和干扰,提高信噪比,同时消除信号的模糊和失真,人为增强有用信号。模式识别系统也称为信息处理系统,相当于动物的大脑,通过对传感器阵列的输出信号进行适当的处理,对单一和混合气体组分信息进行定性识别和浓度定量分析。

利用电子鼻技术检测有气味的农药具有简单、快捷、成本低等特点,但是该技术受到敏感材料、制造工艺、数据处理方法等多方面的限制。

2.2 光电比色(光电传感器)技术

在一定条件下,有机磷农药可以和多种显色剂发生显色反应,其吸光值与农药的浓度呈一定的相关性。获取显色反应后的吸光度谱图,确定特征吸收峰后,采用同波长的高亮度单色发光二极管做为光源,利用光敏二极管实现光电转换。由于光电转换部分的电信号十分微弱,将存在很大的干扰和非线性,运用数据融合等处理方法,对所检测的数据进行滤波、辨识、优化等,提高检测数据的可靠性。该方法费用低、时间短、灵敏度较高,但是受显色反应的时间和环境温度因素影响较大。

光电传感器还可以转换为颜色传感器,如常用的LCS011是根据测量光源相对物体的光谱透射特性,利用发光二极管发射出蓝、绿、黄、红四种单色光,由光接收器接收。通过计算机输出四种颜色值。显色样品浓度不同表现为测得的四个颜色值不同。利用数据分析方法建立颜色值与样品浓度的数学模型。

CCD(电荷藕合器件图像传感器)数码相机的核心是感光器,用一种高感光度的半导体材料制成,能把光线转变成电荷,通过模数转换器芯片转换成数字信号,数字信号经过压缩以后由相机内部的闪速存储器或内置硬盘卡保存,因而可以轻而易举地把数据传输给计算机。利用CCD数码相机可以获得静止的二维图像,利用图像处理技术可以对获得的二维图像进行处理并建立数学模型。

2.3 分子印迹(印迹传感器)技术

分子印迹技术是近年来发展起来的一门结合高分子化学、材料科学、化学工程及生物化学的交叉学科技术。它是利用分子印迹聚合物模拟酶-底物或抗体-抗原之间的相互作用,对印迹分子进行专一识别。分子印迹聚合物传感器的制备是该技术近年来的重要应用方向之一。通常将其识别元件以膜或粉末形式固定在转换器表面。这种传感器通常具有很高的灵敏度与选择性。如González等[1]制备的地高辛荧光传感器,其检出限可达3.17×10-5mg/L,且不受其结构类似物的干扰。

近年来分子印迹传感器在不同种类农药检测研究中得到进展。目前,印迹传感器技术可用于敌草净、对硫磷、氯霉素等多种农药的检测,对大部分农药检测限可达μmol/L级。随着分子印迹和微电子技术的发展,印迹传感器技术作为一种新的农药检测方法,具有广阔的发展前景。

3.生物传感器技术

生物传感器是生物反应技术与传感技术有机结合的产物,是利用生物物质(如酶、蛋白质、DNA、抗体、抗原、生物膜、微生物、细胞等)作为识别元件,将生化反应转换成可定量的物理、化学信号(如光、热、声、质量、颜色、电化学等),这些变化通过不同原理的传感器(如光敏管、压电装置、热敏电阻、离子选择性电极等)转换成第二信号(通常为电信号),经放大后显示或记录,从而达到分析监测的目的。目前在农残检测中得到广泛关注,种类繁多。与传统的分析方法相比,生物传感器具有如下特点:一般不需要预处理、可重复使用、可连续监测易实现自动化测量等,成本低,便于推广普及。

3.1 酶传感器

该类传感器以酶为敏感元件,将酶通过某种方式与固相载体结合,然后将其装在一个小柱子中成为一个固定化反应柱,或将酶固定在电极上以电化学的方式传导酶反应产物的信息。肖飞等[2]制备的酶抑制电流型传感器,在检测有机磷农药时具有快速、线性范围宽、灵敏度高等特点,对有机磷农药呋喃丹最低检测限为4.0nmol/L。刘润等[3]等以戊二醛为交联剂,牛血清白蛋白物质,制成的生物传感器具有良好的重现性和回收率,对辛硫磷和氧化乐果的检出限分别为3.6×10-4g/L和5.9×10-4g/L。李元光等用乙酰胆碱酯酶电极和单片机结合研制的掌上型有机磷农药现场检测仪可测定0.5μg/mL-43.1μg/mL的敌敌畏和0.1μg/mL-15μg/mL的对硫磷,且仪器的响应时间短,仅需3min。

3.2 微生物传感器

微生物传感器的测定原理有两种类型:一类是利用微生物在同化底物时消耗氧的呼吸作用;另一类是利用不同的微生物含有不同的酶,这和动植物组织一样,把它作为酶源。由于酶对底物有高度专一性,但价格昂贵、稳定性差,因而许多生物传感器中用全活细胞,如细菌、酵母和真蒲等,用其制成的传感器称为微生物传感器。利用活微生物的代谢功能检测污染物,其优点是能适应宽范围的pH和温度,使用寿命长、价格低,但有选择性差的缺点。常见的微生物传感器有电化学型、光学型、热敏电阻型、压电高频阻抗型和燃料电池型。

3.3 免疫传感器

免疫传感器利用的是抗体和抗原之间的免疫化学反应,可用于对相应农药残留进行快速定量定性检测。免疫传感器分为竞争法和夹心法两类。根据使用的信号转换器,可分为电化学免疫传感器、光学免疫传感器、压电免疫传感器及表面等离子体共振(SPR)型传感器。酶、微生物传感器在测定污染物时有催化过程,可直接通过放大、转换系统产生相应的信号,而免疫传感器中的抗体与污染物作用时没有催化过程,需要有其它体系帮助才能完成物理信号的转换和放大。酶生物传感器技术满足了现场环境检测和快速检测的需要。近年来,测定有机磷农药的胆碱酯酶生物传感器取得了很大进步,但是由于胆碱酯酶对有机磷农药的选择性差、重复利用率低、,生物材料易失活的缺点使得此类传感器很难市场化。

3.4 压电生物传感器

压电生物传感器是将高灵敏度的压电质量传感器与特定的生物反应结合在一起的生物分析方法,其工作原理是压电晶体的振荡频率会因表面吸附而降低,把对某种物质有特效的敏感材料涂敷晶体置在石英表面,当涂敷晶体与配基接触时就会发生吸附,从而可定量地测定待测物质的含量。刘展眉等[4]以PVP-TMEDA涂敷的压电传感器检测有机磷农药,检测限可达10-9g。

3.5 纳米传感器

利用纳米粒子固定生物分子,可以增加固定的分子数量,从而增强反应信号。Singh等[5]用sol gel方法合成硅纳米颗粒,其直径为20nm或200nm。用该纳米颗粒固定乙酰胆碱脂酶构建有机磷农药生物传感器,结合离子敏场效应管检测,响应时间小于10s、灵敏度较高,对杀虫剂对硝苯磷脂的检测下限可达1×10-6mol/L。Cai等[6]把胶体金纳米颗粒固定在胱氨酸修饰的金电极表面,增大了有效固定面积,使得检测下限降低。在聚丁二炔的头端修饰上具有特异识别功能的生物分子,在溶液状态下,待测分子的结合拉动聚丁二炔纳米颗粒的结构变化,从而产生肉眼可见的蓝、红颜色变化,结合紫外检测,结果更为灵敏,该方法有可能发展成一种简单、方便的新型智能生物传感器。

3.6 液晶型化学传感器

美国威斯康星大学Abbott研究小组于1998年首次报道了液晶型化学传感器技术,该技术与其他的传感器技术的设计思想完全不同。它是在显微镜载玻片上制备出具有纳米级波纹状超薄金属膜,通过自组装技术,在膜上制备出具有一定分子识别能力的敏感膜,然后在敏感膜表面设法附着液晶分子。由于液晶分子在敏感膜表面具有整齐的取向排列,当自组装敏感膜遇到特定的化学物质时,液晶取向排列发生变化,从而改变液晶折射光线的能力,导致传感器的颜色和亮度的转变。赵建军等[7]研制的液晶型化学传感器在气相条件下检测沙林模拟剂甲基磷酸二甲酯的线性范围为0.03-1.00g/m3。

4.结论

从目前的发展趋势可以看出,农药残留检测的发展趋势是基本检测方式的改变。本文从有机磷农药的检测方法出发,重点总结了传感器技术在该领域的应用和发展。单一使用气敏、光敏、压电等传感器进行检测时存在检测农药的品种受限、精确度和准确性受多种因素影响较大。发展迅猛的生物传感器呈现多样化的趋势,尽管技术还不成熟,却有着广阔的应用前景,使农药残留快速检测技术呈现多元化的局面。

参考文献

[1]González G P,Hernando P F,Alegría J S D.An optical sensor for the determination of digoxin in serum samples based on a molecularly imprinted polymer membrane[J].Analytica Chimica Acta,2009,638(2):209-212.

[2]肖飞,曲云鹤,卫银银,等.AChE/PAMAM-Au/CNTs/GC传感器用于有机磷农药检测的研究[J].化学传感器,2008(4):36-40.

[3]刘润,郝玉翠,康天敌.基于碳纳米管修饰电极检测有机磷农药的生物传感器[J].分析实验室,2007,26(9):9-12.

[4]刘展眉,陈睿,江纪修.有机磷农药的压电检测法的研究[J].华南师范大学学报(自然科学版),1998(3):35-38.

[5]Singh A K,Flouders A W,Volponi J V.Development of sensors for direct detection of organophosphates.PartⅠ:immobilization,characterization and stabilization of acetylcholinesterase and organophosphate hydrolase on silica supports.Biosensors,1999,14:703-713.

[6]Cai H,Xu C,He P.Colloid auenhenced DNA immobilization for the electrochemical detection of sequence specific DNA.Journal of Electroanalytical Chemistry,2001,510(1-2):78-85.

[7]赵建军,余建华,左言军,等.液晶型化学传感器检测有机磷农药化合物的研究[J].防化研究,2004(1):26-29.

高分子压电材料的特点范文5

关键词:土木工程;智能材料;应用

前言

随着人们对土木工程质量和使用功能的要求不断提高,包括光纤、压磁、压电、记忆合金等各种智能材料在土木工程领域得到了广泛的应用,有效解决了土木工程中结构构件的强度和刚度变化以及形变等问题,有关智能材料的研究越来越受到世界各国研究人员的重视。

1 智能材料的概念

有关智能材料(Intelligent material)目前在世界范围内还没有一个统一的概念,但通常来说,智能材料就是指本身具备感知外部和内部环境的变化,对之进行分析、处理、判断,并采取一定的措施进行适度响应的智能特征的材料。在土木工程领域,智能材料是继天然材料、合成高分子材料、人工设计材料后的第四代材料。

2 智能材料的特点

在土木工程中,智能材料根据其功能特点的不同可分为感知材料和智能驱动材料两大类,其中感知材料就是自身可感知外界环境或内部刺激的材料,而智能驱动材料是指当外界环境因素或内部状态发生变化时可对这种变化做出响应或驱动的材料。总体上来说,智能材料主要有七个功能,即:(1)感知功能:可对外界或内部的刺激进行监测和识别;(2)反馈功能:将监测到的内容传输、反馈;(3)信息识别和积累功能:对反馈的信息进行识别和记忆;(4)响应功能:对外界和内在变化进行及时、灵活的响应;(5)自诊断功能:对于信息进行诊断、分析;(6)自修复能力:按照设定的方式对故障进行修复;(7)自适应能力:在外部刺激消除后可自行恢复到原状态。可见,智能材料可实现结构或构件的自我监控、诊断、检测、修复和适应等各种功能,实际工程中,要想实现这么多功能一般需要多种智能材料的组合来达到目的。

3 智能材料在土木工程中的应用

土木工程中应用的常见智能材料有光导纤维、压电材料、压磁材料、形状记忆合金等等。

3.1 光导纤维

光导纤维简称光纤,是一种纤维状的光通信介质材料,普遍用于各种高要求的通信传输中,具有传输速度快、无信号衰减、并行处理能力强、信息容量大等多种优点。在土木工程中,可充分利用光导纤维的特点,将其用于监测、传感以及信息远距离传输等,目前较成熟的做法是将光纤埋置于混凝土结构中,作为传感原件,以实现对混凝土结构的监测、诊断、分析等功能。众所周知,混凝土结构具有抗拉强度较差、钢筋易锈蚀等缺点,而且在大体积混凝土浇筑过程中由于结构内外温差较大容易出现温度裂缝,此时通过光纤作为传感元件即可实现对混凝土内外温差的监控,当出现内外温差高于设计要求时,光纤可及时将信息反馈给管理人员,实现即时报警,以便及时采取措施控制内外温差,提高混凝土结构的施工质量。

3.2 光导纤维的应用

光导纤维由外包层与内芯构成,是一种纤维状光通信介质材料,该材料采用先进的信息传输技术起初用于通信传输系统,由于作为信息载体的光子在速度与容量上高于电子,因此得到较为迅速的发展。光子所具有的高并行处理能力与高信息率,潜力在信息容量与处理速度得到充分发挥。光纤材料在监测、传感及信息远距离传输等方面得到应用,将光纤作为传感元件埋入传统混凝土结构中针对结构方面各项指标实现自动监测、诊断、控制、预报及评价等功能,而且将形状记忆合金等驱动元件埋入,有机结合信息处理系统与控制元件,使混凝土结构具有智能功能,进而实现混凝土结构自我诊断与修复。在土木工程结构诊断及主动控制地震响应中,光纤材料一直作为设计传感器的一种比较理想的材料,我国目前也已将其用于检测评定三峡大坝。

3.3 压电材料

压电材料是指受到压力作用时会在两端面间出现电压的晶体材料。在土木工程领域常将其用做对结构振动、形变等进行感知的元件,当前,对于压电材料的研究主要集中于实现对结构振动的主动控制中,这也是未来的发展趋势。工程实际中常用作建筑物对噪声的主动控制、静变形控制的传感器,以及对建筑物结构安全性、健康状况进行监测和评定等。

3.4 压磁材料

在土木工程中,常用的压磁材料包括磁流变材料和磁致伸缩智能材料等。磁流变材料的工作原理是在外加磁场的作用下,磁流变液悬浮体系的流变性能发生变化,且当磁场强度高于临界场强时,磁流变体迅速由液态转变为固态,因此可在电视塔、超高层建筑以及大跨度桥梁中可利用压磁材料的这一性质实现对地震的半自动控制,将地震对建筑物的破坏大幅降低。此外,磁致伸缩材料由于具有较强的磁致伸缩效应使其在电磁和机械之间可进行可逆转换,在土木工程领域的应用前景被广泛看好。

3.5 形状记忆合金

形状记忆合金是具有形状记忆效应的一种智能合金材料,在将其形状改变后,在一定的条件下其形状记忆效应可被激发出来,产生强大的回复应力和回复应变,同时形状记忆合金也具备较强的能量传输储存能力,因此在土木工程中可将其置于结构中,实现对结构的自我诊断、增加材料的韧性和强度等,在结构出现变形、裂缝、损伤以及受到外界振动影响时,较大部分的能量都可被形状记忆合金吸收并耗散掉,因此增加了结构的安全可靠性,最常用的是利用其这一优点实现对地震作用的被动控制,工程实践中,将形状记忆合金安置于结构层间、底部或建筑物四角等受地震力作用较大部位,实现对地震能量的吸收和消耗。

4 结束语

综上所述,各种智能材料在土木工程中得以广泛应用,对于提高土木工程的安全性、适用性、耐久性具有极为重要的意义,同时由于智能材料本身具备的自动监控、传感、修复、自适应等能力对于发展主动式智能建筑具有十分重要的现实意义,对于改变传统建筑的使用功能和抵御地震、飓风等自然灾害的能力具有重要作用,当前在我国智能材料的研究和应用还处于相对落后的局面,但相信随着人们对智能材料的认识越来越深,更多的智能材料将被用于土木工程领域。

参考文献

[1]张亚东.智能材料在土木工程中的应用研究[J].科技资讯,2011(30):49.

[2]黄浦时.关于智能材料在土木工程建设中的研究[J].数字化用户,2013(11):27.

高分子压电材料的特点范文6

Properties of Electrospun Polysaccharide Nanofiber and Application in Regenerative Medicine

Li Xin et al.

(College of Food Science,Fujian Agriculture and Forestry University,Fuzhou 350002,China)

Abstract:Electrospining is an effective method for preparing polymer nanofibers. Electrospun nanofibers possess excellent characteristic such as good biocompatibility,controllable biodegradability,large specific surface area and high porosity. So it has shown promise in the fields of regenerative medicine. The research progress of several major natural polymer electrospun fibers such as chitosan,konjac glucomannan,natural cellulose,hyaluronic acid and its derivatives,etc. as well as important applications in biomedical field were mainly discussed.

Key words:Electrospinning;Polysaccharide;Regenerative medicine

再生?t学利用生物学及工程学的理论方法创造已经丢失或功能损害的组织和器官,使其具备正常组织和器官的机构和功能。再生医学探索领域包括通过移植细胞悬浮体或聚合体来代替受损组织;生产能够替代天然组织的生物化人工组织或器官的植入;通过药物手段对损伤组织进行再生诱导。而静电纺丝制备的纳米纤维直径小于细胞,可模拟天然细胞外基质的结构和生物功能,是理想的细胞粘附增殖基质;此外,其天然的电纺原料具有很好的生物相容性及可降解性,可作为载体进入人体,并容易被吸收;纳米纤维与人的多数组织、器官在形式和结构上类似,使其有应用于组织器官的潜力。静电纺丝纳米纤维还具有比表面积大、孔隙率高等特性,因此在再生医学领域引起了很大的关注,并已经在药物缓释控释载体、组织工程支架以及创伤辅料等方面得到了很好的应用。

1 静电纺丝原理

静电纺丝是一种连续制备纳米纤维的高效技术。主要装置包括3个部分:供给静电压的高压电源装置、装填纺丝液针管的喷丝装置和接地的收集装置。高压电源可以提供1~30kV的直流电,高压电源使液体带电并被极化,最终从泰勒锥喷出形成射流。喷丝装置是一个注射管,纺丝液装在带有针头的管中,溶液多为聚合物溶液或是熔融状态的熔体。收集装置一般为接地的金属板,此外,还有a、b等接收形式,因此,使其收集到多样的纤维排列方式[1]。其制备纳米纤维过程如图1所示。静电纺丝是让具有一定程度分子缠结的聚合物溶液在高压静电的作用下使表面电荷斥力超过表面张力,产生泰勒锥并高速喷射出聚合物射流。纺丝溶液的粘度是纺丝纤维形成的关键:若粘度太小,在电场力的作用下会分离成小液滴;而射流粘度太高时,由于相邻单元的电斥力致使射流侧向凸出,几乎不能制得纤维[2]。因此,可以通过使用合适的溶剂、调控溶液浓度等方式来提高静电纺丝的效果。相比其他制备纳米纤维的方法,如自组装法、相分离法、模板合成法,静电纺丝具有设备简单、可纺物质种类多、成本低、技术可控等优点。由于静电纺丝溶液中溶有很多功能性物质,且所得的纳米材料具有高比表面积、高孔隙率、良好韧性及轻便的特点[3]。因此具有广泛的用途,可望应用于生物医学领域。

当前静电纺丝聚合物材料包括合成的、天然的以及二者的混合物。相比于合成聚合物原料(聚乙烯、聚丙烯及芳香族聚酯等),天然聚合物(如多糖、蛋白质、脂类等)具有低毒性、优良的生物相容性、可再生及生物降解性[4]。最近研究电纺多糖及其衍生物的数量增加,然而关于多糖的加工性的困难(例如:差溶解度和高表面张力)限制了其应用。在这篇综述中,总结了壳聚糖、魔芋葡甘聚糖、纤维素、透明质酸等多糖的特征,以及目前正在使用或者有潜力应用的静电纺丝纳米纤维。

2 静电纺多糖的研究

多糖是单糖的均聚物或共聚物,多糖可以在多种生物中发现,包括微生物来源(例如葡聚糖)、动物来源(如壳聚糖和透明质酸)和植物来源(如藻酸盐、纤维素和淀粉)。多糖的化学结构、化学成分、分子重量和离子性质多种多样有助于其功能和生物活性的展现[5]。迄今为止已经进行了许多研究,如电纺丝多糖及其衍生物制造的纳米纤维在再生医学中具有潜在的应用。

2.1 壳聚糖 壳聚糖(CS)是天然生物大分子甲壳素通过脱乙酰而得到的衍生物。它由(1,4)连接的N-乙酰基-β-D-葡糖胺组成,是世界上第二大天然聚合物。它不仅具有优良的生物可降解性、生物相容性和生物黏附性,而且易加工成为膜状物或多孔支架[6]。甲壳素类纤维独特的生物特性具体表现为组织亲和性、无免疫抗原性、促愈合性、抑菌性等,因而成为重要的生物医学材料之一。

Liang等[7]发现带负电的磷黄病毒(PV)和带正电荷的壳聚糖(CS)通过逐层(LBL)自组装技术交替沉积在带负电荷的纤维素垫上。通过扫描电子显微镜(SEM)观察LBL膜涂层的形貌。之后通过在模拟体液(SBF)溶液中温育不同时间的纤维垫进行体外仿生矿化。扫描电子显微镜(SEM),X射线光电子能谱(XPS)和X射线衍射(XRD)用于表征支架上沉积的矿物相的形态和结构。细胞培养实验表明,具有LBL结构膜的支架对于MC3T3-E1细胞具有良好的细胞相容性。同时,细胞增殖受沉积层的数量和最外层的组成的影响。共聚焦激光扫描显微镜(CLSM)和SEM成像显示MC3T3-E1细胞在生物复合支架表面对细胞粘附和扩散具有良好性能。因此,CS/PV纳米纤维毡有望应用于生物医学。

杨文静[8]以静电纺丝的方法制备了CS/PCL血管支架。采用SEM和电子万能试验机检测了该支架的结构和力学性能,将内皮祖细胞(EPCs)与该支架膜复合培养,评估了该血管支架维持细胞黏附、繁殖和分化的能力。SEM表征和力学性能测试表明CS/PCL支架具有和天然细胞外基质/纳米结构相似的多孔结构,当CS与PCL的质量比为0.5时,静电纺丝所制备CS/PCL血管弹性变性能力较强。此外,CS/PCL具有CS和PCL的共同优点,具有良好的细胞相容性,表面多孔结构有利于细胞黏附生长。这为组织工程内皮种子细胞的种植提供一种合适支架。

陈岚[9]尝试静电纺丝法制备类人胶原蛋白(Human-like collagen,HLC)-壳聚糖(chitosan)纳米纤维薄膜,通过加入大分子量的聚环氧乙烷(PEO)改善了HLC与chitosan的纺丝性质,使其可纺。形貌均一的类人胶原蛋白/壳聚糖复合材料克服了纯组分材料降解过快的缺陷,能够有效促进细胞贴附与增殖,组织相容性良好。

2.2 魔芋葡甘露聚糖 魔芋葡甘露聚糖是一种从魔芋块茎中提取的天然高分子聚合物,具有生物相容性、可降解性和水溶性,不溶于甲醇、乙醇、丙酮、乙醚等有机溶剂。有一定的黏度,符合静电纺丝对纺丝溶液的基本要求。因其生物降解性、可再生性和低成本得到了?V泛的关注。魔芋葡甘露聚糖(KGM)由α-1,4的D甘露糖和D-葡萄糖组成,比例为1.6∶1,每12或18个重复单元含有乙酰基[10]。同时,KGM是一种良好的膳食纤维,具有预防和治疗高血压、高血脂、心血管等疾病的药理作用,也可以作为医用材料用于医学。正是因为静电纺丝得到的纳米材料具有很好的生物相容性和结构相容性[11],已经在组织工程支架、创伤修复、药物释放等方面得到了应用。

目前KGM的纳米技术研究大多有关于其结构或KGM与其他材料的复合物。由于缺乏有机物溶剂,许多天然聚合物不能从其水溶液中静电纺丝。Huarong Nie[12]等在研究中发现,通过电纺水溶液制成的魔芋葡甘聚糖(KGM)纤维支架的平均直径在150nm至300nm范围内。在没有任何化学交联剂使用情况下,KGM水溶液通过低浓度NaOH稀释处理后,实现脱乙酰基,提高了KGM纤维支架的稳定性。同时,KGM/壳聚糖双组分膜比较容易从稀酸溶液中获得,随着壳聚糖含量的增加,平均纤维直径从350nm降低到180nm。关于生物学特性的研究表明纳米纤维支架为骨髓基质细胞提供更合适的空间,添加KGM可以提高壳聚糖材料的生物相容性。预计KGM及其复合纳米纤维支架将具有潜在应用于一种新型生物医学材料。

王静[13]将羟基磷灰石、魔芋葡甘聚糖、透明质酸钠三者复合,制备可用于骨组织工程的三维多孔骨组织工程支架材料,并对复合支架进行了体外干细胞相容性实验,探讨复合支架的使用性能。景森[14]发现,可以在 KGM 材料中引入一些具有生物特异性识别能力的多肽(如缩氨酸),或分子识别介质(如整连蛋白)以上实验研究结果表明所制备的复合支架具有一定的降解性、无毒性和良好的生物相容性,有望用作骨支架材料。

2.3 纤维素 纤维素由(1,4)连接的β-D-葡萄糖单元组成。由于其作为丰富的可再生资源和良好的生物降解性和生物系统相容性引起了很大的关注。纤维素的材料已经广泛应用于制药和生物学领域,包括用作吸附珠、过滤器、人造组织皮肤和防化服[15]。然而纤维素的加工受其在有机溶剂中有限的溶解度而限制。纤维素比淀粉更容易结晶,纤维素需要320℃和25MPa压力才能在水中变成无定形。

纤维素不熔化,因此必须从溶液中加工。直接溶解纤维素的几种溶剂已被研究并用于静电纺丝,包括N-甲基吗啉N-氧化物/水(NMMO/水)和氯化锂/二甲基乙酰(LiCl/DMAc)。最近已经有离子液体用于制造电纺纤维素纳米纤维,然而这些溶剂的挥发性低,因此不能完全在静电纺丝过程中蒸发。此外,电纺丝温度必须升高到溶剂熔融温度以上(例如NMMO/水约85℃)。对于LiCl/DMAc溶剂系统,难以完全除去锂或静电纺丝后凝结氯离子。纤维素衍生物因其增强纤维素的溶解度从而提高其电纺丝性能已被广泛利用。纤维素衍生物可以容易地电纺成纤维,然后通过水或乙醇水解转化为纤维素。纤维素用于静电纺丝的衍生物包括醋酸纤维素(CA),三乙酸纤维素(CTA),羟丙基纤维素(HPC),乙基纤维素(EC),甲基纤维素(MC)和乙基氰乙基纤维素(E-CEC)。电纺纤维素纳米纤维基质已被用作为亲和力或阻隔膜,类似于膀胱的三维结构基质抗菌膜以及酶固定膜,药物输送膜[16-17]。

超细氧化纤维素(OC)基质是通过静电纺丝CA产生的超细纤维素的氧化随后进行乙酰化制备的。Khil等[18]人通过使用不同含量NO2氧化剂制备了具有不同羧基的OC基体。在PBS中孵育4d内,OC基质的重量损失大于90%。将电纺CA纳米纤维膜用高碘酸纳氧化产生醛基,共价连接其上含有IgG结合结构域的蛋白质A/G配体[19]。该膜为小规模快速纯化抗体提供了有用的工具。张等人[20]也用二乙基氨基乙基官能化的纳米纤维膜(DEAE)组作为弱阴离子交换组制造再生纤维素,并评价他们生物分离应用的潜力。DEAE功能化纤维素纳米纤维具有增强牛血清蛋白(BSA)的粘合能力。直径超细的纤维素通过静电纺丝和碱性水解制备100nm的CA。电纺丝纳米纤维的表面通过与PEG二酰氯反应被激活,然后使用简单的碳二亚胺化学共价结合脂肪酶。结合的脂肪酶在升高的温度下显示出比游离脂肪酶更高的催化活性,在60和70℃下高至8~10倍。

来自纤维素及其衍生物的电纺丝纳米纤维通过将功能性化合物(例如药物)掺入纺丝溶液而被官能化。通过向丙酮/水(80/20,w/w)中的CA溶液中加入硝酸银制备抗微生物CA纳米纤维膜。随后通过用UV光照射电纺纤维将银离子光还原成银纳米颗粒。颗粒均匀分散在纤维上表面,其粒度范围为10~20nm。CA含有银纳米颗粒的纤维对金黄色葡萄球菌,肺炎克雷伯菌,大肠杆菌和铜绿假单胞菌显示非常强的抗微生物活性。具有杀菌性能的纳米纤维也由静电纺制含有氯己定(CHX)的CA溶液杀菌剂和有机钛酸酯Tyzor TE(TTE)作为交联剂制备的[21]。所得纤维基质由于CHX固定在纤维上及未释放结合而在抑制区内,因此在接触时表现出对表皮葡萄球菌和大肠杆菌的杀菌性能。

2.4 透明质酸 透明质酸(HA)是一种线性多糖,由(1,4)连接的α-D-葡萄糖酸的交替二单元和(1,3)连接的β-N-乙酰基-D-葡萄糖胺组成。HA是结缔组织(ECM)的主要成分,具有重要的生物学功能[22]。由于优异的生物相容性和生物降解性,HA及其衍生物已被广泛应用生物医学领域包括组织工程支架,伤口敷料,药物输送系统和植入材料。

作为天然ECM的主要组成部分,类似于藻酸盐,电解HA水溶液是非常困难的,因为HA水溶液的粘度和表面张力异常高从而阻碍静电纺丝过程。另外,由于静电纺丝时溶剂的蒸发不充分,HA的强保水能力导致电纺丝纳米纤维在集电体上融合。只有在吹制辅助静电纺丝(电喷吹系统)的发展之后,才能从水溶液中将HA制成纳米纤维膜[23]。使用DMF/水制造HA纳米纤维混合物(平均直径=200nm),显著地降低了表面张力,而不改变HA溶液的粘度。HA/明胶纳米纤维基质也可以通过这种方法生产(平均直径=190~500nm)。HA通过与明胶,PEO和玉米蛋白混合而电纺丝。添加HA提高明胶水溶液形成明胶/HA纳米纤维的电纺丝能力。一系列玉米蛋白/HA混合纤维膜与亚甲基二苯交联制二异氰酸酯(MDI),其混合纤维平均直径随着玉米蛋白含量的增加而增加[24]。基于HA的纳米纤维膜已经非常有吸引力作为仿生组织工程支架,伤口愈合材料,和药物输送系统。所以为了模仿天然ECM的架构使用硫醇化-HA衍生物(例如:3,3-二硫代双(丙酰二酰肼)改性透明质酸;HADTPH)电纺丝形成纳米纤维基质。NIH3T3成纤维细胞连接到基质上在基质内扩展树突形态,这表明HA-DTPH纳米纤维在细胞包封和组织再生基质中的潜在应用[25]。

3 总结