前言:中文期刊网精心挑选了计算机视觉的运用范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
计算机视觉的运用范文1
关键词:视觉原理;计算机视觉艺术;数字媒体;应用
利用计算机所具有的视觉艺术,大众仅仅利用需要实施身体动作来直接性的操作以及控制,根本就不需要学习就能够启动以及进行一定的操作,这样更加方便老年人以及儿童的实际操作。在数字媒体当中,应该对计算机视觉艺术进行充分利用,更加方便人们的实际操作,同时还能够保证其更好的感受艺术方面所具有的魅力,让群众在足够放松的时刻能够对创作者的实际思想以及意图进行充分的了解以及掌握,对艺术价值进行充分发挥,进而来有效提升艺术人文的实际价值。
1对计算机视觉原理进行分析
通常来讲,计算机视觉还称为机械视觉,属于是机械来对人类视觉进行一定的模仿的光学识别系统,利用光学系统、感应器、光源等来实现物体定位、动作的追踪以及视线的判断等相关的功能。一般情况下,工程技术所运用的基本都是计算机视觉,当有着一定的环境以及模式时,计算机视觉在进行持续性的工作时,能够有效保证持续工作有着非常高的正确性以及准确性,还能够对人工不可以完成的任务进行很好的完成。当计算机视觉在进行实际的工作过程中,最为基本的条件是先对映像进行处理,之后输入模拟讯号,对数字影像进行一定的处理以及分析。实际的工作流程是:影像在摄入之后,应该对其进行一定的强化,除去噪声,之后对图像特征进行一定的压缩以及获取。在对数据库样本进行一定的对比之后,对程序进行有效的分析以及判断,做出有效的指令。
2对数字媒体当中计算机视觉艺术的实际应用进行分析
2.1艺术与计算机进行一定的融合时,应该对动画、声音以及图像等因素进行有效结合,在对艺术语言表现形式进行丰富的同时,应该提高作品的感染力
在有些结合视觉艺术以及数字媒体时,应该保证在对画面进行观看时,应该有效的欣赏画面,还可以有效的感受到声色等。利用高度仿真的听觉、触觉以及视觉,保证大众在进行玩游戏时,可以对虚拟世界进行真实的感受,还能够利用动作以及肢体语言等来和计算机实现有效的交流。保证大众不是对电影单独的进行欣赏,还应该更好的参与到其中,体会艺术的表演。
2.2在数字媒体当中运用计算机视觉艺术能够对艺术的实际表达形式进行有效的丰富
随着交互技术的逐渐成熟以及发展,让该技术得到了有效的拓展以及广泛的运用。运用交互技术,应该让人们不受到被动的欣赏,应该积极的参与到视觉艺术当中,保证大众的积极参与以及做出判断,同能够利用各种选择来呈现出过程以及解决,对观众的兴趣进行充分的调动,进而来有效提高大众的参与积极性。
2.3在电子游戏当中,运用计算机视觉艺术,应该在相对比较大型的电子游戏当中进行计算机视觉技术的运用
在实际的游戏过程当中,大部分的玩家基本上不再是仅仅运用键盘以及鼠标来实施游戏,大部分都是利用身体行动来移动。通常情况下,机器利用摄像机部来对玩家的具体身体动作进行一定的捕捉,玩家能够与机器相连接的手枪进行有效的操作,射中屏幕当中的对象。同时,手机上的相对比较小型的电子游戏,仅仅需要手指来滑动屏幕,就能够实现实物的运动以及跳跃等,进而来躲避障碍。除此之外,仅仅需要稍微的倾斜一些收集,就能够实现人物两侧的奔跑,同时还能够保证声光效果,实现互动,具有非常大的震撼力,会在很大程度上促进大众参与的积极性。
2.4分析数字媒体中计算机视觉技术的应用,保证数字媒体技术有效表现艺术
同时在实用艺术以及纯艺术当中,也会运用到数字媒体,该技术能够让相对比较单纯的个人视觉实现有效的创造,同时还能够把艺术箱社会性视觉产品进行转化,并得到一定的经济效益。同时,大众能够通过剪切以及拷贝等相关的方式来有效获取视觉技术,之后有效的转化艺术资源,有效奠定了创作视觉艺术的基础。现阶段,大众对于个性化以及独特性有着逐渐提高的需求,在对相对比较独特的视觉技术进行追求时,在一定程度上提高了评价视觉作品的标准。在数字媒体当中运用计算机视觉技术,会在很大程度上提高大众对美的享受,保证大众能够充分感受到舒适以及愉快的感觉,同时还能够得到审美方面的评价,在该过程当中,不能够参杂任何的因素,应该让计算机视觉因素仅仅对视觉美感以及视觉形式进行充分的追求,可以有效体现艺术的本质。同时,数字媒体有着美方面的品格,有效结合计算机视觉艺术,保证数字媒体艺术的美以及真。这个实际的运用过程能够有效提升审美方面的机制,更好的领悟视觉艺术当中所存在的美。
3结语
综上所述,在数字媒体当中,计算机视觉技术的运用,应该有效结合图像、动画、声音以及文本等多个因素,在对语言表现的具体形式进行一定的丰富时,应该让作品具有更大的感染力。除此之外,还应该保证视觉技术有何足够的光声效果,利用一定的互动,会具有非常大的震撼能力,积极促进大众的参与程度。还可以在很大程度上满足大众对于美方面的追求,进而对其所具有的艺术价值进行充分发挥,有效提升艺术所具有的人文价值。
参考文献
[1]刘晓,王会霞.计算机视觉艺术在数字媒体领域的应用研究[J].互联网天地,2015,07:21-24.
[2]丛婧.浅谈计算机视觉艺术在数字媒体的应用[J].电子制作,2013,18:75.
计算机视觉的运用范文2
一、计算机视觉检测技术含义
计算机的视觉又叫做机器视觉,通过利用计算机或者是其他的一些机械设备来帮助人们视线事物到图片的过程,从而进行三维世界的感知活动。计算机的快速发展,离不开神经心理学,心理学和认知科学方面的研究和发展,计算机视觉检测技术的发展方向就是对周围的三维空间进行感知和分析。一旦能够拥有这种能力,计算机不仅能感知到周围的总体环境,而且,还能够具有对物体进行描述,识别理解和储存的能力。
二、计算机视觉检测的基本原理
要实现人工智能对视觉的计算机处理是很重要的方面在计算机视觉应用领域中如果要让我们的计算机明白图像的信息就必须经过一系列的处理过程―――数字图像处理.数字图像的处理包括5个步骤:图像预处理(去除噪声)、分割处理分割后区域、测量、图像判读、图像技术.根据抽象程度和处理方法的不同图像技术可分为三个层次:图像处理、图像分析和图像理解.这三个层次的有机结合也称为图像工程.而计算机视觉(Computer vision)则是用计算机实现人的视觉功能对客观世界三维场景的感知、识别和理解.视觉检测按其所处理的数据类型又大致可分为二值图像、灰度图像、彩色图像和深度图像的视觉检测.另外还有X射线检测、超声波检测和红外线检测。
作为新兴检测技术计算机视觉检测充分利用了计算机视觉研究成果采用像传感器来实现对被测物体的尺寸及空间位置的三维测量能较好地满足现代制造业的发展需求.与一般意义上的图像处理相比计算机视觉检测更强调精度、速度和无损性以及工业现场环境下的可靠性.例如基于三角法的主动视觉测量理具有抗干扰能力强、效率高、精度合适等优点非常适合制造业生产现场的在线、非接触产品检测及生产监控.对人类视觉感知能力的计算机模拟促进了计算机视觉技术的产生和发展制造业上获取这些信息的目的有:(1)计算出观察点到目标物体的距离;(2)得出观察点到目标物体的运动参数;(3)甚至可以判断出目标物体的内部特性;(4)推断出目标物体的表面特征有时要求形成立体视觉。
三、亚像素检测技术
随着工业检测等应用对精度要求的不断提高,像素级精度已经不能满足实际检测的要求,因此需要更高精度的边缘提取算法,即亚像素算法。亚像素级精度的算法是在经典算法的基础上发展起来的,这些算法一般需要先用经典算法找出边缘像素的位置,然后使用周围像素的灰度值作为判断的补充信息,利用插值、拟合等方法,使边缘定位于更加精确的位置。现在的亚像素提取算法很多,如重心法、概率论法、解调测量法、多项式插值法、滤波重建法、矩法等。由于这些算法的精度、抗噪声能力和运算量各不相同,他们的应用场合也是各不相同的。
边缘是图像的基本特征,所谓边缘是指图像中灰度存在阶跃或尖顶状变化的像素的集合,边缘广泛存在于物体与物体、物体与背景之间。图像测量是通过处理被测物体图像中的边缘而获得物体的几何参数的过程,边缘的定位精度直接影响最终的测量结果。因此,图像边缘提取方法是检测的基础和关键之一。在视觉测量领域中,早期使用的都是像素级边缘检测方法,例如常用的梯度算子、Lapacian算子和门式算子等。以上的边缘检测方法的精度可以达到像素级精度,即可以判断出边缘位于某个像素内,但不能确定边缘在该像素内的更精确的位置。如果一个像素对应的实际长度较大,就会产生较大的误差,传统的整像素边缘检测方法就不再适用。
四、计算机视觉检测技术在机加工零件检测中的应用要素与过程
(一)曲阵CCD相机
面阵CCD是本项目图像采集系统中的主要设备之一,其主要功能是采集实验图像。该CCD相机主要由CCD感光芯片、驱动电路、信号处理路、电子接口电路和光学机械接口等构成。
(二)工业定焦镜头
在图像测量系统中,镜头的主要作用是将目标聚焦在图像传感器的光敏面上。镜头的质量直接影响到图像测量系统的整体性能,合理选择并安装光学镜头是图像测量系统设计的重要环节。
(三)数字图像采集卡
随着数字信号处理技术和嵌入式处理器技术在图像采集卡中的应用,使得图像采集卡向高速度、多功能和模块化方向不断发展。这类图像采集卡不仅具有高速图像采集功能,同时还具备部分图像处理功能,因此又可以称之为图像处理卡。
(四)标定板
为提高测量精度,需要进行摄像机标定。标定过程中,采用NANO公司的CBC75mm}.0型高精度标定板,外形尺寸为75mmx75mmx3.0mm,图形为棋盘格,其尺寸为2.0mmx2.0mm,精度为1级,即图形尺寸精度与图形位置精度为。
(五)背光源
背光方式只显示不透明物体的轮廓,所以这种方式用于被测物需要的信息可以从其轮廓得到的场合。因此,为精确提取轴的图像中的边缘特征,需采用背光源。为使图像边缘更锐利,光源颜色选择红色。
五、结语
随着计算机技术和光电技术的发展,已经出现了一种新的检测技术―基于计算机视觉的检测技术,利用CCD摄像机作为图像传感器,综合运用图像处理等技术进行非接触测量的方法,被广泛地应用于零件尺寸的精密测量中。本文以面阵CCD为传感器,研究了零件在线测量的方法,实现了零件尺寸的图像边缘亚像素定位测量,对面阵CCD在高精度测量方面的应用作了进一步的探索和研究,为面阵CCD在复杂零件尺寸高精度测量的实现打下了基础。
【参考文献】
计算机视觉的运用范文3
关键词:计算机视觉分析;微小尺寸;精密校正;阈值;图像分割
中图分类号:TP274.4
计算机视觉分析理论是基于精密模式识别和人工智能程序化校验技能进行综合整编的方法,利用光学信息对真实物理结构的实时反映,配合人机协调手段进行二维图像的呈现。在工件表面进行质量检测和图片制备要素分析的系统环节中,阐述物体在空间环境之间的关系样式,争取三维场景的科学搭建。集合要素内容包括边缘、线条和曲面的配备,建立以工业部件为中心的坐标体系,并适当运用不同符号表现模式实现必要三维结构和空间关系的调整,促进精密仪器细节检验工作质量的不断提高。
1 计算机视觉检测技术的相关理论研究
1.1 技术原理分析
渗透性计算机辅助支持结构的视觉鉴定技术在被测实体中的图像显示支持功能基础形势上进行质量状况的把控,这其实就是根据既定的偏差标准实现规模物件的逐个排查。细致的检测工作在深度零件的诱导性特征和完整性配件的支持下,对整体完好效果的几何制备模型进行测量[1]。近阶段的视觉规范系统利用电耦合器件和摄像机进行主题元素的捕捉,并利用计算机内部程序的数字信号转化工具实现图像的并行处理。采用目标图像的特殊坐标记录,利用灰度分布图内的多种综合功能处理系统改善的要务。常规视觉下的检测过程相对比较繁琐,主要是将被检测物体放置于照明效果相对均匀的可控制背景环境中,联结CCD技术和图像卡实现被测部件和数字图像的共性要素融合,保证计算机自动化处理程序的录入。当然,这类研究系统是需要利用相关软体进行放大的,其主要必备功能就是进行图像的预处理、识别和有效分析,将整个过程内部的实际结果数值,包括被测部件的自身缺陷、尺寸等进行整理。
1.2 计算机视觉微小尺寸精密检测工业应用技术的现状
在科学设计信息内容和工业加工制备要领集成化对待的环节中,通常不会直接进行部件表面的接触,一般运用计算机程序下的扫描认知和图像即时呈现功能进行快速的比对检测,整体信号抗干扰能力较强,因此在现代工业生产技术领域内部广受好评。电子工业是在建立计算机视觉分析工艺之后表现最为活跃的行业类型,在此基础上衍生的印刷电板路和集成电路芯片就是利用标准模型的整改,实现规模工序的紧密排列。目前,时下流行的汽车生产、纺织、商品包装等也逐渐向这类手段靠拢,全面改善了现代化工业制备的应用效果。
2 应用视觉微小尺寸分析技术内部拓展机能的补充
灰度图像的主要分割方法包括灰度阈值校正、边缘检测制备等手段。
2.1 灰度阈值校正
这是区域分割方法中一种常见的手段,主要配合多个或单个阈值将图像自身的灰度级别划分为几个项目组,对相同像素的单位数据进行整编。根据实效范围进行分类,包括局部和全局阈值探究两种手段,全局规模下的阈值分析方法就是利用整幅图的灰度直方分布图进行内部最优阈值分割,包括单阈值和多阈值两种形式;同时还可以将初始分析的图像进行子元素的拆解,之后利用单个子图像的既定阈值范围进行最优化分割[2]。分割的基本原理公式为:
其中,合理阈值的选取是非常重要的,目前阈值确定的手段主要包括直方图双峰对照法和最大类间方差累积法等。这种利用灰度阈值实现精准质量的划分手段,计算执行工作相对比较简单,并且实际工作效率水平较高,即便是实际需要分割的物体与图像背景对比深度较强也可以收放自如,但唯一的缺点就是缺少对空间信息的掌控,涉及亮度不足的图像问题,这种阈值分割技术的施工质量往往不会太高。
2.2 边缘检测制备工序
图像内部元素的分割其实就是进行部件边界效益的提取,而边缘检测制备工序则是利用像元及邻域的整体状态进行物体边界相关结构的搭建。边缘检测分割制备技术具体包括并行和串行两种模式,并行手法是运用梯度信息的提取实现不同类别算子的整理;串行边界分割原理则是根据适当强度标准和相似走向的两个边缘端点位置实现连接,主要代表算法包括启发式智能搜索手段等。这种串行算法较并行边界积累统计原则来说具有更强的抗干扰能力,但实际的边缘检测同样不能完好地维持连续效果,需要利用其余技术内容进行边缘制备技巧的修复。
(1)原始图像 (2)Robert算子边缘检测 (3)Sobel算子边缘检测
(4)Prewitt算子边缘检测 (5)Kirsch算子边缘检测 (6)Gauss-Laplace算子检测
图1 微小双联齿轮边缘检测
3 视觉检测系统的创新性改进
根据以上现状问题,创新式视觉整改校验系统利用照明光源、摄像机和图像采集卡等结构实现计算机输出结果质量的补充。其主要运行过程如下:利用被测部件在均匀照明背景的全面优化控制基础,实现物体结构的全面清晰呈现,使用摄像机对相关图像信号进行梳理并转化为电荷信号,配合相关的图像资源采集卡进行部件数字化图像的格式转化;计算机内部软体操作程序将得到的数字图像进行处理和识别,并将最终结果数据输出,实现现代工业技术整体质量规模控制的既定要求。
系统硬件在实现部件转化图像信息的环节中,连接检测机理下的连续软件规划和照明光源等相关设备进行图像适当分辨率的调整,维持图像较为清晰的对比效果。全面控制获取数字图像的时间,抵抗不良因素的干扰影响,维持内部成本经济规模的合理控制,促进科技应用和可持续发展经济战略双重价值标准的同步进展。其中,光源设备的选择必须落实到部件既定的几何形状条件下,利用相关性能参数进行实际工作要求的提供,包括光源位置、亮度、寿命特性等因素的堆积,常用的可见光源包括水银灯、荧光灯等,但这类光源使用寿命有限,因此现下多配用LED光源进行快捷反应、小功耗标准的补充,并且长期使用后的照明效果比较稳定[3]。而摄像机等结构主要还是校正参数的表达方式,进行图像合理分辨率的整改,促进图像采集数字化协调功能的发展,提高系统工作速度等。
4 结束语
计算机视觉检测系统在进行一定部件性能评比的活动中有着很高的贡献,不仅配合硬件的照明、参数制备要领制备功能,同时促进数字化图像对比的速度,使得工业生产环节中的部件检查工序得到大范围整改,满足可持续发展战略规模的视觉意义,促进现代智能化分析处理技术的全面覆盖。
参考文献:
[1]陆春梅.基于数字图像处理技术的接杆激光环焊焊缝视觉检测系统研究[D].上海交通大学,2008.
[2]罗敏.基于机器视觉的黑片缺陷检测图像边缘提取算法研究[D].沈阳理工大学,2010.
计算机视觉的运用范文4
关键词:数字图像处理;测距;聚焦;频域
中图分类号:TP391.41 文献标识码:A 文章编号:2095-1302(2012)09-0016-03
Images ranging method based on frequency domain analysis
ZHU Xue-yi
(School of Microelectronics and Solid-State Electronics, University of Electronic Science and Technology, Chengdu 610054, China)
Abstract: Using digital image processing theories and methods, the digital image pre-processing mode, the target graphic detection and the ranging model construction are studied and analyzed. Combined with a ranging scheme of single camera, a focusing ranging technique based on frequency domain analysis is given to process images captured by the monocular camera and calculate the distance from target detection image to the camera based on frequency domain image signals. The technique saves lots of complex hardware and reduces the demands of digital image processing, which has the advantages of high ranging precision and fast processing speed.
Keywords: digital image processing; ranging; focusing; frequency domain
0 引 言
视觉是人类观察世界、认知世界的重要功能手段,人类感知外部世界主要通过视觉、触觉、听觉和嗅觉等感觉器官,其中80%的信息是由视觉获取的。计算机视觉就是人类利用计算机实现人的视觉功能,从而对客观世界三维场景进行感知、识别和理解。计算机视觉是一个相当新而且发展迅速的研究领域。
在对生物视觉系统的研究中,人们早就注意到,几乎所有具有视觉功能的生物都有两只眼睛。用两只眼睛同时观察物体,会有深度或远近的感觉,我们称之为视差。因此,在计算机视觉系统中,也常用两台或多台摄像机从两个或多个视点去观察同一场景,从而获得在不同视角下的一组图像,然后通过同一场景点在不同图像中的视差,推断出场景中目标物体的空间几何形状和位置,这种方法称为立体视觉。它是计算机视觉的一个重要分支,也是计算机视觉的核心研究内容之一。
视频和图像是对物质世界客观事物的形象而生动的描述,是最直接且具体的信息表达形式之一,是人类最重要的信息载体。随着科技的日益发展,人们需要一种更加先进快捷的工作方式,另外,人们对工作环境和工作条件也提出了更新、更高的要求,视频测距系统便在这种背景下应运而生。
视觉测距技术的发展对于距离测量有重要的意义。在基于数字图像处理技术的视觉测距系统中,使用单个CCD(Charge Couple Device)摄像机的系统称为单目摄像系统,而同时使用两台摄像机对同一景物进行摄像,并运用计算机分析两幅图像来确定物体的三维状况的系统称为双目摄像系统。双目摄像系统测量精度高,但计算速度较慢,成本较高。而单目摄像系统方法则比较简洁、快速,因此,本文对采用单目摄像系统检测目标物的测距方法进行研究。
1 测距技术在国内外的研究现状
目前,国内外对视觉测距技术的研究仍在不断的进行之中,还并没有形成国际统一的标准模式,各种数字图像处理技术和算法之间孰优孰劣仍在不断的探讨和比较中。当前,国内外的研究机构主要研究的测距技术包括超声波测距技术、微波雷达测距技术、激光雷达测距技术和视觉测距技术。
1.1 激光雷达测距
激光雷达测距具有测量时间短、量程长、精度高等特点,但激光雷达在恶劣天气环境下或逆光状态下的测距准确性降低,另外,其造价、耗能、对人眼安全等因素也对其进一步应用有一定影响。
1.2 超声波测距
超声波是指振动频率在20 kHz以上的机械波,具有声波传输的基本物理特性。超声波测距是根据超声波反射时间来计算与前方车辆之间的距离。超声波测距原理比较简单,成本低,但超声波的传输速度受天气影响较大,不同天气条件下的传输速度不同。
计算机视觉的运用范文5
1.神经网络的架构正变得越来越复杂。感知和翻译等大多数神经网络的架构正变得越来越复杂,远非此前简单的前馈神经网络或卷积神经网络(CNN)所能比。特别需要注意的是,神经网络正与不同的技术(如LSTMs、自定义目标函数等)相混合。
神经网络是多数深度学习项目的根基。深度学习基于人脑结构,一层层互相连接的人工模拟神经元模仿大脑的行为,处理视觉和语言等复杂问题。这些人工神经网络可以收集信息,也可以对其做出反应。它们能对事物的外形和声音做出解释,还可以自行学习与工作。
2.长短期记忆网络(LSTMs)。当你阅读本文时,你是在理解前面词语的基础上来理解每个词语的。你的思想具有连续性,你不会丢弃已知信息而从头开始思考。传统神经网络的一大缺陷便无法做到这一点,而递归神经网络能够解决这一问题。
RNN(循环神经网络)拥有循环结构,可以持续保存信息。过去几年里,RNN在语音识别和翻译等许多问题上取得了难以置信的成功,而成功的关键在于一种特殊的RNN――长短期记忆网络。
3.“注意力模型”。“注意力”是指神经网络在执行任务时知道把焦点放在何处。我们可以让神经网络在每一步都从更大的信息集中挑选信息作为输入。例如,当神经网络为一张图片生成标题时,它可以挑选图像的关键部分作为输入。
4.神经图灵机依然有趣,但还无法胜任实际工作。当你翻译一句话时,并不会逐词进行,而会从句子的整体结构出发。机器难以做到这一点,这一挑战就被称为“强耦合输出整体估计”。
神经图灵机就是研究者们在硅片中重现人类大脑短期记忆的尝试。它的背后是一种特殊类型的神经网络,它们可以适应与外部存储器共同工作,这使得神经网络可以存储记忆,还能在此后检索记忆并执行一些有逻辑性的任务。
5.深度学习让计算机视觉和自然语言处理不再是孤岛。卷积神经网络最早出现在计算机视觉中,但现在许多自然语言处理(NLP)系统也会使用。LSTMs与递归神经网络深度学习最早出现在NLP中,但现在也被纳入计算机视觉神经网络。
此外,计算机视觉与NLP的交汇仍然拥有无限前景。
6.符号微分式越来越重要。随着神经网络架构及其目标函数变得日益复杂,手动推导出“反向传播”的梯度也变得更加困难而且容易出错。谷歌的TensorFlow等最新的工具包已经可以超负荷试验符号微分式,能够自动计算出正确的微分,以确保训练时误差梯度可被反向传播。
7.神经网络模型压缩的惊人成果。多个团队以不同方法大幅压缩了训练一个良好模型所需的素材体量,这些方法包括二值化、固定浮点数、迭代修剪和精细调优步骤等。
这些技术潜在的应用前景广阔,可能将会适应在移动设备上进行复杂模型的训练。例如,不需要延迟就可以得到语音识别结果。此外,如果运算所需要的空间和时间极大降低,我们就可以极高帧率(如30 FPS)查询一个模型,这样,在移动设备上也可以运用复杂神经网络模型,近乎实时地完成计算机视觉任务。
8.深度学习和强化学习继续交汇。在“端对端”机器人等领域出现了令人激动的进展,现在机器人已经可以一起运用深度和强化学习,从而将原始感官数据直接转化为实际动作驱动。我们正在超越“分类”等简单工作,尝试将“计划”与“行动”纳入方程。
计算机视觉的运用范文6
关键词:图像测量;图像处理位移;变形测量有限元分析
引言
近年来,图像测量成为测量领域新兴的性能较高的测量技术,主要应用在图像匹配、机器视觉、模式识别和图像的检测中。将光学、计算机技术、电子技术、几何测量和信号与信息处理技术许多现代技术集合在一起,根据图像处理技术,组成综合性的测量系统。把测量对象当成信息和检测的中间介质,并对其图像进行精确的测量,这个过程称之为图像的测量。其在进行定位和识别上非常有效。
1 国内外图像测量的研究情况
随着国内外计算机行业的迅猛发展,精密光机电以及图像处理技术等高科技技术也发展起来了。这些高科技技术被应用于精密测量学中,形成的学科为图像测量技术。这个技术是传递和检测信息的手段,就是被测对象的图像,在图像中寻找有用信号来获取待测数据。
该技术发展很快,在国内外均已应用广泛,例如航空遥感测量、几何量的尺寸测量、医学图像观测辅助诊断、复杂精密零件的外观检测和尺寸测量以及光波形成的衍射图等很多方面。图像测量技术日益崛起,不但因为计算机技术的完美应用和数字图像处理技术的不断完善,而且还得益于应用范围的不断扩大。进一步刺激着这一技术领域成长为价格低微处理器支持的并行的处理技术;应用于低成本、大容量储存阵列的新储存技术;应用于图像数字化的低成本的图像卡和高分辨率、低成本的彩色显示系统等等。
2 图像测量系统的组成
被测试的目标影像信息是通过图像传感器来记录的,这一技术包括了采样过程,使用计算机对其进行数字处理,使最终得到的数据符合计算机视觉检验的机理,进而实现人类对计算机视觉研究的规划和目的。测量视觉传感器的框架结构如图1所示,该系统是利用图像传感器进行图像的表面采集工作,利用采集卡收集图像发出的发出的视频信号并且把视频信号转换为数字信号利用接口电路传入计算机,完成图像处理并且算出计算结果。将最终的数据显示在计算机的屏幕上。通常,传统的视觉系统主要是关于图像处理以及采集,I/O和通信部分及传入传出和执行的机构等。其中采集图像的原理和目的是将已经测量好的可视化图像转化为可视的数据,即计算机能够处理的数据。计算机视觉系统突出强调准确度和速度,所以采集图像应该准确、按时地提供清晰的图像。
3 图像处理
数字图像处理的目的是提高图像的质量,利用大规模的成型数字计算机,对转化来的数字信号进行进一步处理,以满足人们的感官要求,得到的图像更加清晰准确。20世纪60年代开始,计算机行业就猛然崛起,被应用于各个行业中,同时图像处理技术也跟着迅速发展起来。但是现在的问题是虽然图像处理技术发展很快,但是运算处理的速度还不是很快,相比光学法,该技术是按照顺序进行处理的,因此速度不如光学方法的快。图像处理技术将来会以崭新的方式出现,伴随着计算机技术的飞速发展。
3.1 构成图像数字化系统
图2所示的就是一个基本的图像数字化设备系统的构成元素。其中每一个模块都划分成特定的部分,分别是通信、采集、处理和分析、显示、存储。通讯可采用综合业务网(ISDN)、普通的电话网((PSTN)和计算机的局域网((LAN)等。采集可选用配备视象管的视频摄像机和扫描仪、电荷式耦合器件(CCD)照相机等。图像分析和处理主要涉及到的就是运算,采用的工具主要是计算机,当有特殊需要时还必须借助专门的硬件设备。图像的显示可选用电视显示器(TV)。随机读取各种打印机和阴极射线管(CRT)等。图像可以存储在硬盘,U盘或者磁带中。
3.2 采样
采样就是将图像在空间上离散化。用空间上的灰度值来代表图像,把这些个点称为采样点。因为图像所表示的是二维分布的信息,因此在进行采样操作时,需要先将二维信息转化为一维信息,之后对一维信息进行采样。具体做法如下所示,首先沿着垂直的方向,按照一定的空隙,从上向下以水平的角度来对图像进行直线扫描,分出各水平线上灰度值一样的一维扫描。然后对一维扫描线信号按一定间隙进行采样,就可以得到离散信号。
采集运动的图像,需要在时间轴上进行操作,再顺着垂直的方向进行采样,最终顺着水平方向采样。对一幅图像进行采样,如果横向(即每行)像素是M个,纵向(即每列)像素是N个,那么图像大小为M×N个像素。
3.3 图像的预处理
当计算机接收到图像的时候,因为输入转换器件的差别和旁边环境的影响等,就会失真和发出各种各样的噪声在图像上。只有把噪声消除,校正失真,把图像转变成标准形状,才能够平稳地进行特征提取等的处理。这部分工作被称之为图像的预处理过程,图像的预处理技术主要包括图像大小的正规化,图像位置的标准化。比如,图像色度要保障灰度平衡。计算灰度平衡的方法是图像的点运算。图像的复原是对图像失真的校正,将模糊不清的部分删掉,使得到的图像恢复原来的面貌。图像的几何校正是根据具体的要求将图像放大或缩小,旋转或转移等。图像的增强效果是运用技术使图像变成计算机可以识别的清晰的图像。图像增强技术是一类基本的图像处理方法,其目的是运用技术对图像进行加工,以便得到的图像视觉效果更加“有用”更“好”。所谓“好”与“有用”的意义也不一样,而且所采用的实际的增强技术手段也大不一样。从根本上来讲,人就是评价图像好与坏的评价者,因此不存在图像增强的通用标准。
具体的说就是将图像增强,其目的是将图像中有兴趣的特征有选择地突出,使不需要的特征衰减,却不考虑图像降质的原因,因此修改后的图像不需要去与原图像相似。比如消除各种噪声,强调目标物的轮廓,将黑白图像转换为伪彩色的图像等。
3.4 数学形态学的处理
数学形态学是一个利用模式识别和图像处理领域的新手段,提取和度量图像中的对应形状应用具有一定形状的结构元素来使对图像识别和分析的目的达到就是数学形态学的基本思想。集合论是用来表示二值形态学的名称,运用集合论可以有效的用统一的方法解决图像处理中遇到的问题和困难,使结构单元可以随意组合或者分解,发挥到数学形态学上面的运算当中。这样应用形态学来转化问题,就达到了对图像处理分析的目的。从这点看,数学形态学占一些明显地优势在对比其它频域或空域分析方法和图像处理上面。
4 结束语
文章对图像测量技术进行了简单的介绍,并分析其原理及使用的方法。对图像测量技术在实际中的应用进行了分析探讨,以便于测量技术在今后应用的范围更加广泛、便捷及精准。
参考文献