前言:中文期刊网精心挑选了温室气体的主要来源范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
温室气体的主要来源范文1
关键词:农业;低碳农业;二氧化碳
哥本哈根世界气候大会全称《联合国气候变化框架公约》,被喻为“拯救人类的最后一次机会”; 的会议,让“低碳经济”;成了2009年的岁末热词。一时间,所谓碳税、碳汇、碳交易、碳足迹、低碳工业、低碳农业、低碳建筑、低碳城市、低碳生活蜂拥而至。低碳经济作为具有广泛社会性的前沿经济理念,其实并没有约定俗成的定义。一般来讲,低碳经济是指在可持续发展理念指导下,通过技术创新、制度创新、产业创新、新能源开发等手段,尽可能地减少煤炭、石油等高碳能源消耗,减少温室气体排放,达到经济社会发展与生态环境保护双赢的一种经济发展形态。所谓低碳,就意味着环保、节能减排,意味着生产、生活方式和价值观念的转变。
1低碳农业的概述 低碳农业首先是一种理念,是农业转变发展方式的一个发展方向。低碳理念的本质就是降能节约。低碳农业是一种现代农业发展模式,通过技术创新、制度创新、产业转型、新能源开发利用等多种手段,尽可能地减少能源消耗,减少碳排放,实现农业生产发展与生态环境保护双赢。低碳农业是一种比广义的生态农业概念更广泛的概念,是生态农业、绿色农业的进一步发展,不仅象生态农业那样提倡少用化肥农药、进行高效的农业生产,而在农业的能源消耗越来越多,种植、运输、加工等过程中,电力、石油和煤气等能源的使用都在增加的情况下,低碳农业还更注重整体农业能耗和碳排放的降低。
低碳农业也是生物多样性农业。农业的发展经历了刀耕火种农业阶段、传统农业阶段和工业化农业阶段。工业化农业过程对生物多样性构成威胁:农田开垦和连片种植引起自然植被减少,以及自然物种和天敌的减少;农药的使用破坏了物种多样性;化肥造成了环境污染,进而也引起生物多样性的减少;品种选育过程的遗传背景单一化及其大面积推广,造成了对其他品种的排斥,如果用碳经济的概念衡量,这种农业可以说是一种 “高碳农业”;。改变高碳农业的方法就是发展生物多样性农业。生物多样性农业由于可以避免使用农药、化肥等,某种意义上正属于低碳农业。 农业作为国民经济的基础产业,是一个重要的温室气体来源,同时又受到温室效应的严重影响。响应低碳经济的号召,确定农业温室气体的排放量并探寻减排办法已成为世界各国的当务之急。然而,低碳农业虽然前景广阔,但距离“低碳农业”;的标准还有很大差距。劳动力是发展低碳农业前期投人成本中的主要部分,尤其是知识型劳动力的投人;我国目前的农业生产特点决定了规模化低碳农业发展的困难。发展低碳农业,需要大面积采用生态农业的部分技术、需要相应的生产技术与之相匹配、需要政府和一些高校社会组织专业人员的指导和培训,特别是市场的衔接。
2农业与温室气体中二氧化碳的消长关系 人类的农业生产活动与全球气候变化相互联系又相互影响。农业生产在全球温室气体(包括二氧化碳,CH4, N20)循环中占有重要地位。土壤中的有机物质经微生物分解,以二氧化碳的形式释放人大气,CH;可在长期淹水的农田中经发酵作用产生,全球一半以上的N20来自土壤的硝化和反硝化过程。 2.1农业是温室气体中二氧化碳的重要来源 2.1.1土壤本身就是一个巨大的碳库。土壤圈是地球岩石圈、大气圈、水圈和生物圈交界的一个圈层,它不仅是人类赖以生存的自然资源和人类与生物生活栖息的基地,而且是生态系统中生物与环境间进行物质、能量交换的枢纽。土壤圈在全球气候变化尤其在全球碳循环中的重要作用可归纳为两方面:一是土壤圈是碳素的重要贮存库和转化器。其贮存形式为土壤有机质,它含有的有机碳量占整个生物圈总碳量的3/4。储存的大量有机碳是土壤质量和功能的核心,有利于作物的生长;但由于大量施用化肥,加速了农田土壤中有机碳的矿化,进而向大气中排放了大量的二氧化碳和CH4等温室气体,尤其是千百年来因种植水稻而形成的水稻土,每年排放的CH4占全球 CH;排放总量的10%一15%。二是土壤呼吸使大量的有机碳以二氧化碳形式释放到大气中。土壤呼吸作用释放的二氧化碳量是相当可观的。据估算,全球每年由土壤释放到大气中的碳量约为 (0.8一4.6) xlOlsg。因此,土壤呼吸的微量变化将导致大气中二氧化碳浓度的显著变化,从而影响由于二氧化碳浓度升高所伴随的全球变暖和其他气候因素的变化。
温室气体的主要来源范文2
关键词:竹集成材茶几 碳足迹 生命周期评价
中图分类号:TB472
文献标识码:A
文章编号:1003-0069(2015)10-0132-04
截至目前,全球范围内共有竹子1200余种,竹林总面积约1700万平方公里,主要分布于东亚及邻近区域也有少数分布在非洲、南美等国家。其中,中国境内有竹类植物35属,近400种,栽培利用历史悠久。无论是竹种资源的数量、竹林面积和蓄积,还是竹林产品的产量及其加工水平,中国皆居世界产竹国之首,有“世界竹子王国”之美誉。相比较于木材,竹子具有生长迅速快、可再生能力强、经济效益好等诸多优点,因此,作为低碳环保材料的新星,近年来越来越受到世人的关注。
随着世界范围内木材资源的萎缩,广大家具制造行业为了满足自身的发展和社会的需求纷纷寻找木材替代品,于是资源丰富、材质坚韧、使用轻便的竹材近些年已被广泛应用于家具制造业。在这种市场需求推动下,展开竹家具的低碳因素分析与研究,对竹家具的生产进行碳足迹核算,搞清竹家具的环保优势所在十分必要。
生命周期评价(LCA)是一个对产品从原材料的获取、加工生产、使用、再到废弃处理整个生命过程中环境负荷管理和评价的工具,是碳足迹计算过程中最为常用的一种方法。本文借助此工具,以竹集成材茶几的加工生产为例进行数据搜集及统计分析工作,找出主要的碳排放来源,将竹集成材家具加工过程中各环节的碳排放量数据化,更直观地展示竹集成材家具低碳环保优势所在,也为日后竹集成材家具的进一步低碳减排生产提供数据参考。
基于国际标准化组织的《ISO14067:产品碳足迹》和英国标准协会颁发的《PAS2050:产品与服务生命周期温室气体评估规范》这两项标准,生命周期评价的所有过程分为:研究目标与范围的定义、清单分析、碳足迹的计算以及对结果的解释四部分。
1研究目标与范围的定义
在对竹集成材茶几进行生命周期评估之前,首先要确定本研究的目标和范围。这包含以下两层意思。第一,进行生命周期评估的对象的确认。第二是对该研究对象生命周期评估结果所涉及到的范围的确认。
1.1 研究目标
本文以浙江省安吉县某著名竹家具生产企业竹集成材茶几加工生产为例进行实际探索分析。该竹茶几规格800×340×460mm,重量5kg,结构组成如图1所示,主要生产材料有:毛竹、UV清漆、聚醋酸乙烯酯胶黏剂PVAc(白乳胶)、五金零件、PE包装膜等。
1.2研究范围
1.2.1确定研究系统边界
系统边界即产品系统所包含的单元过程。确定了系统边界,才能对每一单元过程进行具体研究,同时便于进行对比。要定义研究分析的边界,首先要将该研究产品的生命周期确定,明确产品的加工流程图。在PAS2050标准中,产品的生命周期有两种形式:
(1)B2C,即从商业到消费者模式,也称为“从摇篮到坟墓”,它涵盖了产品的整个生命周期过程:从原材料的获取、加工制造、分销零售、用户使用,以及最终的废弃处理和回收利用所有环节。
(2)B2B,即从商业到商业,也被称作“从摇篮到大门”模式,对它的碳足迹计算终止在产品被提供给下一个商户的起始点上。它的碳足迹计算包括从原材料的获得到产品的加工制造两个环节。本文根据调研企业实际情况确定研究系统边界为B2B模式,其中电力生产部分包括从原材料加工生产、竹集成材板的开料、钻孔及型面加工,直到定厚砂光等环节的现场生产,在此基础上又涵盖了五金件及最终产品包装过程。
1.2.2确定生产流程图
通过实地调研,竹集成茶几的加工碳足迹流程如图2所示。
2清单分析
清单分析是对产品生命周期分析基本数据的一种表述方式,也是对该阶段内输入与输出的量化分析。要进行竹集成材茶几生命周期清单分析,首先要明确它的加工生产流程,绘制生产流程图,确定在竹集成材茶几生命周期内能够对其产生影响的相关材料、活动与过程。其次,收集其碳足迹计算所必要的数据。数据包含两种形式,一种是初级数据,即在竹集成材茶几从无到有的过程中产生的相关活动数据,它由相应环节的操作者直接测量或供应清单分析得出,属于内部测量。另一种是次级数据,即对竹集成材茶几进行碳足迹计算过程中所使用到的常量、系数或平均值等,它通常通过国际标准、政府框架或协会报告等方式获得。
2.1现场数据清单
采用生命周期评价方法对碳足迹进行计算最为关键的一环即为清单分析。数据的采集和计算遵照《生命周期清单指导研究》、《全球生命周期数据库指导原则》进行。
本文以1m2竹集成材板的生产为功能单位,案例企业现场数据来源于现场收集、原料消耗总量换算、设备参数及生产相关记录等。具体数据清单如表1。
表2中,案例企业生产所用原材料一毛竹,产自浙江省安吉县刘家塘村,距案例企业8km。运输车辆为江淮某中型运输车,燃料为柴油。从该车型经销商网站获知该车综合燃烧消耗量为12.7L/100km。经换算,从原材料产地至案例企业公路运输耗油量为1.016L.烟尘主要为截锯、砂光时产生的锯末,本文将其折合成同等质量的废弃固体物(竹板下脚料),最终按焚烧处理方式进行碳足迹计算。
2.2碳排放系数
碳排放因子指消耗单位质量物质伴随的温室气体的生成量,是表征某种物质温室气体排放特征的重要参数。碳排放因子的来源可以通过查阅相关国际数据库、国家或地区的报告、行业分析报告等,本文所涉及全球变暖潜能值指的是在PAS2050标准给定的时间里,单位质量内的某种温室气体,辐射强度影响和同等质量下的二氧化碳气体辐射程度影响相关联的系数。竹集成材茶几生产涉及到的温室气体种类及其潜能值如表3。
3碳足迹的计算
根据前文确定的竹集成材茶几系统边界,结合实际调研过程所收集到的数据,本文将碳足迹计算分为两部分:间接碳排放和直接碳排放,并将碳足迹换算成温室气体排放单位,以可直接进行对比分析的二氧化碳排放当量的形式表示出来。具体计算方法如下:
(1)间接碳排放。间接碳排放是整个碳足迹计算的主体部分,它包括竹条加工过程的碳足迹计算、竹集成材板加工生产以及竹集成材茶几成品阶段的碳足迹计算。间接碳足迹的计算依据实际企业调研数据清单和IPCC2006提供的温室气体全球变暖潜能值(GWP),经由碳排放计算的特征化方程来计算GHGs排放量。
特征化方程为:
(2)直接碳排放。直接碳排放的数据来源由企业自测数据或燃料数据换算得出。该碳排放计算公式为:
在上述公式中,GHGi指的是温室气体的排放量,即碳足迹;i指温室气体(GHGs)的种类;Ci指第i种温室气体的活动数据;GWPi指第i种温室气体的全球变暖潜能值;E时旨第i种温室气体的碳排放系数。本文中的温室气体涉及二氧化碳(CO2)、甲烷(CH4)、氧化亚氮(N2O)。
基于以上计算方法,竹条加工生产阶段、竹集成材板加工生产阶段及竹茶几成品阶段的分别如表4、5、6所示。
4结果解释
结果解释是生命周期评价的最后一个阶段,是对清单分析及其产生的影响进行综合评估,确认计算得出的结果与前文确定的目标与范围是否相符合,便于得出论文结论,提出相关建议策略。根据前文对竹茶几各环节碳排放的计算,将所得碳排放数据汇总,根据标准化系数将其折合为一件成品的碳排放量,并计算出其在碳排放总量中所占百分比,结果如表7、8所示。
由表7和表8分析可以看出:
(1)在竹集成材茶几的加工生产过程中,排放的温室气体种类及其碳足迹所占比例分别为CO2―99.42%、CH4―0.0018%、N2O―9.37E-7%。
(2)在总排放中,二氧化碳的排放量最高,排放主要来源于竹条加工和竹集成材板生产阶段的间接排放,这其中贡献最大的是蒸汽的使用。
(3)在系统边界范围内,竹集成材茶几成品阶段的生产碳排放最少,上游竹条加工产生的碳排放最多。
(4)竹家具企业进行低碳生产时,应将关注重点放在上游阶段。对设计师而言,进行竹集成材家具设计时需要尽可能地减少在电力加工、结构和表面处理材料上的使用。
温室气体的主要来源范文3
不久前,中国清洁空气联盟联合清华大学、环保部环境规划院、环保部环境工程评估中心等科研机构的多位环境专家共同完成《中国空气质量管理评估报告(2015)简版》(简称报告),对2014年空气污染治理情况进行了评估。该报告以环境状况公报及其他公开数据为基础,从空气质量状况、污染物排放控制进展、空气污染治理难度等方面梳理了大陆地区除之外的30个省、自治区和直辖市2014年的表现,分析了各地区PM2.5、PM10、臭氧、氮氧化物、一氧化碳、二氧化硫等6种主要污染物,汞及其他温室气体的排放和污染情况,并揭示了这些污染物的主要来源。报告同时显示了一些新的空气污染特点。
颗粒物污染仍突出
报告涉及的6种主要污染物的排放情况表明,PM2.5和PM10颗粒物污染超标情况最显著,其次为臭氧和氮氧化物。二氧化硫和一氧化碳的排放则全部达标。重点区域中,北京、天津、河北、山东、山西、上海、江苏、浙江、珠三角、重庆等10个省(市)/地区PM2.5年均浓度平均降幅达11.92%;74个重点城市中空气质量达标的城市数量从3个增加到8个;74个重点城市的PM2.5、PM10、二氧化硫、氮氧化物的年均浓度平均值相比2013年均有所降低,但PM2.5、PM10等主要污染物年均浓度的整体达标率仍然较低。
京津冀及周边地区的6种主要污染物浓度以及重污染警报的次数基本均为全国最高,治理压力相对较大。
PM2.5污染状况
2014年,重点区域的绝大多数省(市)PM2.5年均浓度相比2013年均有显著降低。在京津冀及周边地区,天津、河北、山东、山西降幅均超10%,其中,山西、山东的降幅均在16%以上,距2017年下降20%的控制目标的差距也最小,但北京的降幅只有4%。
2014年全国近地面PM2.5浓度卫星反演图显示,全国的PM2.5污染区域性特征十分明显,污染在以下几个区域特别集中:
京津冀及周边以及河南地区――尤其是其中的北京及其以南部分,形成了一个大面积的连续的PM2.5严重污染区域。河南PM2.5污染严重,部分地点的年均浓度接近150 微克/立方米。
湖北、湖南两省部分区域以及川渝部分区域的PM2.5浓度污染程度也较重,甚至超过长三角地区,形成了另外两个PM2.5重污染区域。长三角、珠三角区域的PM2.5 污染也较明显。
根据“国十条”的要求,京津冀、长三角、珠三角是PM2.5重点控制区域。川渝地区因为PM2.5污染较为严重,正受到越来越多的关注。因此,报告对这9个代表性省(市)/地区2013年、2014年PM2.5年均浓度以及2017年控制目标进行了对比分析,结果如图1所示。考虑到山西是京津冀周边地区的重要省份,所以,山西省的PM2.5年均浓度变化也被纳入到报告中。
从图1可以看出,上述9个省(市)/地区PM2.5年均浓度都有一定程度降低,京津冀地区的天津、河北、山东2014年PM2.5年均浓度较之2013年降幅均超10%,但北京的降幅很小。长三角地区中,上海的降幅最大,达16.1%,其距2017年控制目标的差距也最小;浙江和江苏的降幅在10%左右。珠三角地区PM2.5年均浓度相比京津冀地区和长三角地区都要小,是最接近国家标准的,其2014年的降幅约为10%。
PM10污染状况
对PM10数据的分析结果显示,海南、云南、广东、贵州、黑龙江和广西这6个省(区)达标。在未达标省(区)中,相比于2013 年,2014年有10 个省(市)的PM10浓度有所降低,降幅最大的是浙江、上海、河北、天津和山东等;但另有10个省(市)的PM10 浓度不降反升,它们包括陕西、内蒙古、辽宁、湖北、甘肃、北京、宁夏、新疆、河南、吉林,主要分布在我国中部、东北和西部地区,有些省(市)2014 年的PM10年均浓度距2017年控制目标的差距较大。
臭氧污染状况
有9个省(市)在2014年的《环境状况公报》中公布了臭氧的年均浓度,其中,只有北京超标,且超标率高达23.25%;河北、天津、江苏、浙江、上海、广东、重庆、辽宁等8个省(市)的臭氧浓度也接近超标,尤其是河北,与标准限值十分接近。根据2013年《环境状况公报》,北京、河北、天津、江苏、上海、重庆等6 个省(市)公布了臭氧的年均浓度数据。通过对比可发现,北京、天津、江苏2014年臭氧的年均浓度比2013年均有所上升。
臭氧属于二次污染物,大气中的氮氧化物和挥发性有机物经过紫外线照射,只要有足够的光照和温度,就会形成臭氧。在著名的洛杉矶光化学烟雾事件中,臭氧就是其中一种主要的二次污染物。鉴于洛杉矶光化学烟雾治理花了50年的漫长时间,不少业内专家认为,臭氧污染问题可能比PM2.5污染问题更难解决。
此外,全国有27个省(市)公布了2014年的二氧化硫年均浓度,均达到国家标准,这表明我国对二氧化硫的控制取得了较好的效果;但山东、河北的二氧化硫年均浓度与标准限值很接近。由于二氧化硫主要来自含硫煤的燃烧排放,所以,山东等北方地区采暖期二氧化硫的超标情况不容忽视。
全国有27个省(市)公布了氮氧化物年均浓度,大部分省(市)达到国家标准;但北京、天津、河北、山东和上海5个省(市)超标。其中,北京、天津、河北、山东4个省(市)位于京津冀及周边地区,且北京、天津超标情况最严重,超标率分别达42%和35%。上海位于长三角地区,超标率也达10%。
由于氮氧化物主要来源于机动车尾气、电厂、锅炉等,因此,超标地区可能需要对机动车排放进行更加严格的减排;同时,降低电厂、锅炉等的氮氧化物的排放。
重污染警报次数
为有效应对重污染天气、最大限度减轻重污染天气给居民带来的健康影响,2014年全国已有21个省(自治区、直辖市)、194个地级及以上城市公开了重污染天气应急预案。京津冀、长三角、珠三角等重点区域11个省(市)和非重点区域5个省的重污染天气应急预案完成备案。
根据2014年《环境状况公报》公布的数据,全国2014年共重污染天气预警信息170余次,其中,京津冀地区黄色及以上预警信息60余次。由于其他不少地区都没有统计和公布2014年的重污染警报次数,只有北京、重庆统计并公布了2014年重污染警报的次数,其中,北京了18 次,重庆了8 次。
减排效果怎么样
针对全国大气污染物排放控制的分析表明,2014年,二氧化硫、氮氧化物的减排效果显著,汞的排放控制也逐步得到关注。部分大气污染防治措施,如设定煤炭消费总量目标、淘汰黄标车等,在2014年不但有效降低了二氧化硫以及氮氧化物等污染物的排放量,还带来了显著的协同减排温室气体的效果。这些措施也支持我国煤炭消费总量在2015年来首次出现了负增长,推动了整体能源结构的清洁化进展。
2014年,我国二氧化硫和氮氧化物的排放量分别降低了3.4%和6.7%;绝大部分省(市)的排放相比2013年都有显著降低,新疆尤为突出;汞的排放控制也逐渐得到了重视。
汞是继温室气体之后全球关注的重要污染物之一,它是环境中毒性最强的重金属元素之一,具有持久性、长距离迁移性和生物富集性。
汞主要通过食物链进入人体,主要对人的大脑、神经系统造成损伤,特别会对儿童和孕妇造成损伤,其症状非常明显。婴幼儿的大脑还处在发育期,正需要大量吸收营养,即便是很低剂量的汞摄入,也会对婴幼儿的大脑发育造成严重影响。比如,学会说话和走路的时间延迟,注意力集中时间缩短,或造成学习障碍等。对于成年人而言,较大剂量的汞中毒,会导致生殖能力下降、血压紊乱、失忆、发抖、视野狭小、手指和脚趾麻木等。
目前,全球的汞排放有一半以上来自人为排放,另外一半是自然排放。联合国环境规划署公布的最新数据显示,2010年,全球人为排放到大气中的汞总量近2000吨,我国的排放量约占全球排放量的1/3。全球大气汞排放分布图显示,大气汞排放量最高的地区覆盖了我国从东北到华南的人口稠密区。
煤炭燃烧、有色金属冶炼、水泥生产和钢铁生产是我国汞排放最主要的几个来源。由于我国贫油富煤的能源结构,能源消费主要来自煤炭。煤炭中通常会含有微量的汞,经过燃烧,汞就会随煤烟排放到大气中。这部分汞约占我国汞排放全量的一半。
由于大气污染物与温室气体的产生具有很大的同源性,如煤炭、石油和天然气等化石燃料燃烧使用过程中会排放颗粒物、二氧化硫、氮氧化物等污染物和二氧化碳等温室气体;因此,大气污染物与温室气体减排采取的措施常常具有一致性。例如,煤炭消费总量控制措施中的诸如采用清洁能源替代煤炭、淘汰小锅炉等,既能减排二氧化硫、氮氧化物和颗粒物,又能减排二氧化碳等温室气体。
黄标车、老旧车的淘汰,既能减排氮氧化物、颗粒物等,又能减排二氧化碳等温室气体以及减少黑碳、臭氧等的排放和生成。挥发性有机物(VOCs)本身既是一种大气污染物,其中的甲烷也是一种短寿命气候污染物,且VOCs 还是短寿命气候污染物臭氧形成的重要前体物,因此,VOCs 的排放控制也具有协同效应。
治理难点有哪些
通过模型模拟和综合分析,报告指出,我国目前大气污染治理的困难主要体现在各地先天污染自净能力差异大、产业结构与能源结构调整压力大以及机动车全国范围内增速加快等几个方面。
所谓大气污染自净能力,是指在不考虑大气污染物排放的情况下,对一个地区大气扩散、稀释、清除等综合能力的度量,它反映一个地区天然的气象地理条件等形成的对大气污染物的自净能力。
模拟和综合分析显示,我国PM2.5污染较为严重的几个区域――京津冀及周边以及河南,湖北、湖南地区,川渝地区以及长三角地区,它们的大气污染自净能力均处于中等偏低水平。这可能也是上述地区空气污染相对较为严重的原因之一。
但大气污染自净能力与大气污染程度并不是绝对的正相关关系。报告显示,有部分大气污染自净能力差的地区,PM2.5污染并不严重。这说明,一个地区的大气污染程度不只与其天然的自净能力有关,更受到污染排放及区域传输等的影响。
此外,产业结构调整、机动车的污染控制也非常重要。比如,上海单位面积煤炭消耗量远高于全国平均水平,且上海、江苏、浙江的单位面积煤炭消耗量分列全国的第1、3、8位,三地聚集形成一个高耗煤地区,对大气质量形成很大挑战。在扩散条件不利时,很可能使得该区域的大气状况面临非常大的压力。
温室气体的主要来源范文4
关键词 碳汇农业;碳汇功能;碳减排;对策研究
中图分类号 X22文献标识码 A文章编号 1002-2104(2010)12-0046-06doi:10.3969/j.issn.1002-2104.2010.12.010
目前国内研究低碳经济,主要侧重于城市与工业领域,对农村、农业领域的碳排放、农业碳 汇功能等相对关注较少。事实上,农业既是全球重要的温室气体排放源,同时又是一个巨大 的碳汇系统。2007年政府间气候变化专业委员会第4次评估报告表明,农业是全球温室气体的第二大重要来源,排放量介于电热生产和尾气之间。 据联合国粮食与农业组织的统计,农业用地释放出的温室气体,超过全球人为 温室气体排放总量的30%,相当于每年产生150亿t的CO2;农业生态系统可以抵消掉80%的 因农业导致的全球温室气体排放量,工业化肥的生产每年耗费地球1%的石油能源,而禁止化 肥的使用能降低30%的农业碳排放[1]。有学者估计,农业源排放的CO2、CH4与 N2O 量分别占总的人为温室气体排放量的21%-25% 、57%和65%-80%[2]。土地利 用变化是目前大气中温室气体含量增加的第二大来源,其作用仅次于化石燃料的燃烧[ 3],每年由土地利用变化引起的温室气体排放量为1 160亿t碳当量,约占人类活动总排 放 量的20%[4]。可见,农业本身就是重要的温室气体释放源,尤其是CH4和N2O。
不过,尽管农业系统是地球上人为温室气体的主要来源之一,但是,另一方面其又具有强大 的碳汇功能,温室气体的减排潜力巨大。由于农业是生物质生产的基础产业,整个农用地生 态系统是一个巨大的碳库,是大气中CO2的重要调节者之一。农作物通过光合作用固定大 量的CO2,生物量中含碳可达到43%-58%[5];而耕地土壤本身是一个巨大的碳库 ,储存着大量有机碳,并具有从大气中吸收并储存CO2的天然固碳功能,使用得当,能有 效地减缓碳释放。同时,农业在生产过程还发挥着诸多改善生态环境的作用。如,调节区域 小气候,净化空气,减少有害气体,增加相对湿度;净化水质,降解有机和无机污染物;保 持生物多样性等。有关学者研究指出,目前我国在农业领域单按农产品质量计算,每年可吸 收CO2约为7.77亿t;若按农作物面积计算,年净吸收CO2的质量则约为22.8亿t[5 ],因为不仅农产品本身吸收了CO2,而且农作物秸秆生长期间也吸收了CO2。不过, 与森林、草地等自然生态系统相比,农田生态系统受人类活动的影响显著,不同的农作物生 产方式,对碳吸收与排放之间的动态平衡影响甚大,进而难以明确各类作物不同生长阶段是 碳源还是碳汇,以及两者之间演变过程的影响因素。如秸杆是否还田,或供人、畜食用分解 ,经过多长时间再重新以CO2形式返回到大气中。因此,农田生态系统对大气CO2浓度的 净贡献最终取决于其土壤碳库的变化。近年来的研究表明,合理的农业生产措施可以提高农 田土壤碳储量,使之转变为碳汇。董红敏指出,通过改善反刍动物营养可降低单位 肉牛甲烷排放15%-30%;推广稻田间歇灌溉可减少单位面积稻田甲烷排放30%;一个户用沼气 池每年可减少温室气体排放2.0-4.1tCO2当量;推行缓释肥、长效肥料可减少单位面积农 田氧化亚氮50%-70%[6]。以中国为例,目前拥有近15 390万hm2的耕地,约占全 球 耕地的10%,平均容重1.2t/m3,若将土壤有机质含量提高1%的话,相当于土壤从空气中净 吸收了306亿tCO2。即使我们利用30年的时间来完成这个增长过程,每年也约有10亿t的CO 2被固定在土壤中[7]。据全国多目标区域地球化学调查结果显示,我国平均土壤 有机碳储量为15 339t/km2,土壤平均碳密度为48.8t/ hm2,低于美国的50.3t/ hm2 、 欧盟的70.8t/ hm2。在不考虑不同农业技术措施对农田土壤固碳协同或拮抗作用的条件下 ,粗略估计我国仅秸秆还田、合理施肥和保护性耕作三项措施的全面推广和应用,农田土壤 的固碳速率就可达到1.82亿t碳 /年,从2005年到2050年大约可以固定碳 81.9亿t[8] 。因此,在发展低碳经济方面,农业领域潜力巨大。
1 中国发展碳汇农业刻不容缓
我国是世界上农业温室气体的排放大国,根据《中华人民共和国气候变化初始国家信息通报 》,目前中国农业活动产生的甲烷和氧化亚氮分别占全国甲烷和氧化亚氮排放量的50.15%和 92.47%,农业源温室气体排放占全国温室气体排放总量的17%[9]。国家气象局局长 郑国光撰文指出:如果不采取积极应对气候变化的有效措施,以我国现有的生产水 平和保障条件,到21世纪后半期,我国主要农作物,如小麦、水稻和玉米的年产量下降幅度 可高达37%;气候变化和极端气象灾害导致我国粮食产量的自然波动,将从过去的10%增加到 20%,极端不利年景甚至达到30%以上。因此,发展碳汇农业的现实目标之一就是使农业生态 系统主要由碳源转化为碳汇,以减缓温室气体的排放。当前我国的农业发展属于严重依赖化 肥、农药等化工型农业生产资料的高碳型发展模式,因此发展碳汇农业刻不容缓。在低碳经 济潮流下,我国农业发展主要面临以下四个方面的问题:
一是农业发展过度依赖化肥、农药等高碳型生产资料。现代农业生产主要是建立在化石能源 的基础之上,化肥、农药等是现代农业发展的支柱,其对提高农地单位面积产量起到至关重 要的作用。但是,化肥、农药、除草剂、杀虫剂、农膜等化工型生产资料,其高能耗、高污 染等特性不仅影响土壤的有机构成、农产品的农药残留和食品安全,而且生产这些原料的过 程必须消耗大量的化石能源,导致CO2等温室气体的大量排放,环境污染也随之而来,并 呈日益严重之势。例如,化肥施入土壤,有相当一部分以有机或无机氮形态的硝酸盐进入土 壤,在土壤反硝化微生物作用下,会使难溶态、吸附态和水溶态的氮化合物还原成亚硝酸盐 ,同时转化生成N2O 和NOX进入大气,成为温室气体和大气污染的重要来源[10] ;据统计,目前我国以煤为原料的尿素企业占62%,每生产1t尿素消耗约1.2t煤和1 200度电 ,用煤炭气化每生产1t合成氨需消耗原煤1.4t;单位耕地面积化肥平均施用量为434.3 kg/hm2, 是化肥施用安全上限的1.93倍,但利用率仅为40%;农药平均施用量为13.4 kg/hm2,其中高毒农药占70%,有60%-70%残留在土壤中;全国每年农业生产需要50万t农膜,残膜 率高达40%[11]。目前我国农业活动甲烷排放量为1 719.6×104t,占全国甲烷排 放 总量的50.15%,其中动物饲养过程中的甲烷排放为1 104.9×104t,稻田甲烷排放量为61 4.7 ×104 t[12]。
二是耕地土壤有机碳含量严重偏低。我国农地耕作长期以来习惯于只用地而不注重养地,因 此,农田土壤经过数千年的耕作,有机碳严重偏低。耕地土壤的退化一方面造成耕地固碳能 力的严重下降,另一方面使得耕地土壤本身固定的碳向环境净释放。与欧洲同类型土壤相比 ,中国土壤的有机碳含量尚不及欧洲的一半。从目前中国耕地有机质含量来看,水田土壤大 多在1%-3%,而旱地土壤小于1%的就占31.2%[13] 。由于秸秆没有合适的出路,农 民大量焚烧秸秆,结果将农作物固定下来的碳又返回到了大气中。以东北地区为例,中国科 学院和黑龙江省有关科研机构的研究数据表明,东北地区坡耕地黑土层厚度已从60-70年前 的80-100 cm减少到了现在的20-30 cm,土壤有机质含量由12%下降到了1%-2%,85%的黑 土地处于养分亏缺状态。黑龙江省黑土层流失厚度每年达到0.6-1 cm;吉林省30 cm以下 的薄层黑土面积已占黑土总面积的42%[14]。
三是工业化的高碳农业对生物多样性和农产品安全已经构成严重威胁。已有的实践证明,工 业化的高碳农业带来的农田无度开垦和连片种植,导致自然植被、自然物种和天敌大量减少 ;农药的使用破坏了物种的多样性,造成了土地的毒化和农产品的不安全性;大量化肥的使 用,造成大面积的农业面源污染及生态的破坏,进而造成生物多样性的减少和农产品品质的 下降;品种选育过程的遗传背景单一化及其大面积推广,导致对其他品种的排斥;高密度的 种养殖以及各种激素和催化剂、添加剂的广泛施用,诱发了农产品不安全事件的发生等。这 都说明了工业化的现代农业不仅是一种“高碳农业",而且是一种对生物多样性和农产品安 全构成威胁,进而对人类的生存发展构成危害的“高危农业"。
四是农业生产方式落后,管理水平偏低。我国目前农业生产、管理效率不高,资源要素浪费 严重。在推广立体种植模式,节水、节能等技术发展方面还相当落后;农业废弃物的处理、 农业机械化的水平等都不高,这不仅造成资源的严重浪费,能源的紧张,而且加重了农业碳 减排的压力。因此,关于农业生产资料的改革、生物质废料的合理处理与利用,农业生产的 直接能源消耗等问题,已成为低碳经济时代我国农业发展急需解决的问题。
2 发展碳汇农业的主要路径
在低碳经济时代,我们必须尽快转变现有的农业发展方式,逐步减少对高碳农业的依赖,鼓 励发展碳汇农业,以保持农业的可持续发展。发展碳汇农业的基本路径选择主要包括以下四 个方面:
第一,大力发展资源节约型循环农业,减少对高碳型生产资料的依赖。循环农业是以对农业 生产废弃物进行资源化利用、生物质能的多级利用和营养元素的循环利用,减少对农药、化 肥等化工型生产资料依赖为特征的一种农业经济发展模式。其通过建立“农业资源―农业产 品―农业废物再利用”的循环机制,按照减量化、再利用、资源化的原则,大力推进节能、 节水、节地、节材,加强作物秸秆、粪便等资源的综合利用,充分利用农业的剩余能量,减 少农业生产中废弃物的排放,完善再生资源回收利用体系,实现农业生产的低资源消耗、低 废弃物排放、高物质能量利用。发展资源节约型循环农业是减少农业的碳排放,增强农业碳 汇功能的有效途径。以农业废弃物秸秆与粪便为例,通过沼气池转化或直接还田,施用粪肥 ,不但可以减少化肥的使用量,提高土地生产力,而且可以增加土壤有机质,从而增强土壤 的固碳能力,减少温室气体的释放。据估算,农作物秸秆碳汇每年至少有15.03亿t[5 ],完全可以满足返田固碳的需要,提高农业生态系统的碳汇能力,实现农业途径的温室 气体减排。
第二,积极推广有机农业,增强农业碳汇功能。有机农业在减缓和适应气候变化方面具有极 大的潜力。发展有机农业,就是遵循生态环境系统的运行规律,通过生物措施保持土壤肥力 ,尽可能减少外部投入,利用自然的调控机制,以有机物质自我循环为基础,保护自然资源 ,保持可持续稳定的生产过程的农业。其禁止施用化学合成的农药、化肥、生长调节剂、饲 料添加剂以及人工合成的植物保护制剂;利用天然植物性农药和杀虫生物制菌剂以及耕作法 、物理法和生物法等病虫害防治手段;建立作物轮作体系,利用秸秆还田、施用绿肥和动物 粪肥等措施进行土壤培肥、保持养分循环等。有机农业能够优化可再生资源及农业生态系统 中养分和能流的循环,同时避免耕地或干泥炭地中氧化亚氮和沼气的排放。相同的生产区, 有机体系的排放量远远低于化工体系的排放量。据最近的调查结果显示,采用有机系统耕作 ,因不使用耕地机械而能够避免的碳排放量大约为879kg/hm2/年[15]。因此,推 广有机农业不仅可以提高农产品的质量,保障农产品的安全性,减少环境的污染,有利于生 态环境的恢复,生物多样性的保护,而且能从根本上解决农业生产过程中大量消耗化石燃料 的问题,减少温室气体的排放,增强土壤的固碳能力,并由此带来巨大的农业碳汇效益。
第三,发展休闲观光农业,减少农作物的碳排放量。农业不仅具有食品保障功能,而且具有 原料供给、生态保护、观光休闲等多种功能。发展休闲、观光旅游农业,一方面可以为市民 提供自然生态的休闲环境,满足人们不断增长的亲近自然、回归田园的游憩需求,另一方面 ,可以促进农村生态环境的改善,提高农作物的减碳、固碳能力。
第四,改变传统的耕作方法,提高土壤的固碳水平。对农田生态系统而言,耕作是破坏土壤 有机碳稳定性、加速土壤有机碳分解的重要原因。因此,合理耕作、部分实行减免耕作能增 加土壤有机碳稳定性,进而提高生态系统的碳贮量。大量资料表明,免耕与少耕管理与传统 耕作措施相比能明显提高土壤有机质的含量。通过免耕、少耕,减少土壤中不稳定碳的流失 ,降低风雨对土壤的侵蚀,减少土壤有机质的流失,增加土壤碳汇。研究表明,坡地在开垦 后5a内,因耕作和水侵蚀导致土壤有机碳以2.15 mg C/(hm2•a)[16]的速度损 失,而我国有18%的耕地为坡耕地或易受侵蚀[17],所以保护性耕作具有很大的固 碳潜力。例如,在北美地区,经过多年的保护性耕作使该地区农田土壤有机质含量明显增加 ,10a以上可使农田耕层有机碳含量增加7%-10%[18]。因此,我国在农业生产中 应改变广泛使用需要耗费大量化石燃料的农业机械的耕作方法,通过保护性耕作和机械化的 免耕覆盖模式等耕作方法,增强土壤有机质,加强土壤的固碳作用。
3 中国发展碳汇农业的主要政策建议
碳汇农业属于新兴产业,因此急需政府进行相关的制度创新与政策引导、支持。这不 仅需要市场机制和制度安排充分发挥作用,而且需要政府积极进行引导、宣传和推广,并在 政策上给予大力扶持与保障。即,建立起完善配套的法律法规体系、政策支持体系、技术创 新体系和激励约束机制等;通过强制性制度创新,实行有利于节能减排、资源节约、改善生 态、保护环境的财税政策,实现农业的低碳排放。具体而言,可重点实行以下六项政策措施 :
3.1 建立健全资源、环境有偿使用制度,开征环境税,构建发展碳汇 农业的 长效机制
明确资源和环境的公共产权,建立完善资源、环境有偿使用制度,构建反映市场供求关 系、稀缺程度、损害成本的资源、能源、环境价格形成机制,形成统一、开放、有序的初始 产权配置机制和二级市场交易体系;对化肥、农药开征环境税,引导农户改变过度依赖化肥 、农药等化工型生产资料的农业生产方式,有效推进碳汇农业发展。例如,明确征收的化肥 、农药环境税必须全部反哺到碳汇农业,或者以“碳补贴”的方式返还给农民,提高农民发 展碳汇农业的积极性;在农业节水方面,明确地方政府拥有本辖区内水资源的调控、分配、 管理和监督权:用水户按分配的指标和相应价格拥有用水权;节约和剩余的水量在一定范围 内可以参与交易、转让,建立节奖超罚机制等。
3.2 构建有利于发展碳汇农业的保障体系与激励机制
应大力推进制度创新,发挥政策和财政资金的导向推动作用,制定相关的扶持发展碳汇农业 的各类政策措施,增加对发展碳汇农业的公共投入,如,税费减免、财政扶持、技术支持、 土地使用等,通过诱致性制度变迁,把农业生态环境纳入政府公共管理范畴;建立有利于碳 汇农业发展的政策和法律体系;在农业建设项目审批、投资等环节,优先考虑碳汇农业项目 ;建立碳汇农业促进组织,加强农业基础设施建设和农业环境管理,为碳汇农业提供一个良 好的发展环境;要重视碳汇农业关键技术的研发、示范和推广工作,运用公共财政积极推进 农村沼气及生活废弃物无害化处理的物业化管理;依法强制实施清洁生产审核,对增施有机 肥、资源节约、农村清洁能源和可再生能源、农业废弃物资源化利用和无害化集中处理等工 程和生产方式实施低碳补偿政策,激发发展碳汇农业的内在动因和持续动力;建立相关的保 障体系,避免土壤的固碳过程逆转,并建立一套奖惩制度,对土地固碳效果显著的优秀土地 管理者给予奖励;引导农村金融机构对发展碳汇农业的农户和龙头企业给予贷款支持;完善 有机农产品标识制度,鼓励公众购买碳汇农业方式生产的农产品;引导农民转变思想观念, 实行农业生产的碳核算制度。
3.3 引导与鼓励低碳科技革新,构建推动碳汇农业发展的技术创新体系 碳汇农业的发展既是一场农业生产的低碳与环保革命,也是一场新技术的革命,因为发展碳汇农业的关键是依靠农业科技在低碳领域的突破。因此,政府应当积极引导、鼓励与扶持各方面的科技力量和攻克农业方面节能节水等低碳的关键性技术,在农业清洁化生产的技术链接、绿色生产技术和农业资源多级转化、高效利用与废弃物再生技术、低碳农业技术标准规范、农村生态小城镇建设技术等层面开展技术创新、集成研究并形成突破,逐步建立起相对完善的推动碳汇农业发展的技术创新体系;同时,逐年加大对农业和农村节能低碳重点项目、重大工程的投入力度,依靠科技、组织实施好农村沼气、秸秆气化、节水农业、保护性耕作、有机农业投入品、副产物综合利用、天然林保护与退耕还林、生物质能源开发等重点项目的开发建设,重点在全国创建一批碳汇农业示范园区,推广碳汇农业,由此推动碳汇农业的快速普及与发展。
3.4 设立农业碳基金,推进碳排放权交易
在低碳经济形势下,我国要抓住机遇,设立农业碳基金,拓展农业资本市场,解决发展碳汇 农业所需的部分资金;并以清洁发展机制为核心,推进碳排放权交易,先期主要面对国内能 源大企业销售,逐步进入国际碳交易市场。粮农组织的经济学家莱斯利•利珀认为,通过此 种低碳融资措施,发展中国家低碳农业的规模可能会每年增加300亿美元[19]。而 且,进行农业碳交易,可额外增加农民的碳汇收入,有利于激励农户从“碳源”农业生产方 式转变到“碳汇”农业生产方式。目前,中国已成为发达国家开展CDM项目的主要国家,全 球最大的CDM市场减排量的最大供给者。因此,应该抓住机会促进发达国家的相关技术转让 ,同时增强自主创新能力,研发低碳农业技术和低碳农产品,开发利用生物质能源,整合市 场现有的碳汇农业技术,加以培训、示范和推广应用,以期在国际碳汇交易的竞争中抢占制 高点。同时,在国内积极探索创建“企业―碳交易机构―农村专业合作组织―农户”的农业碳汇交易机制,形成企业、农村专业合作组织、农民与碳交易机构等相关体的利益共享机制和专业合作组织订单机制,其内在的运作机制主要包括三个层面:一是在企业与碳交易机构之间,主要是加入碳交易机构的企业自愿并从法律上联合承诺,通过购买补偿项目的碳减排指标,完成其定量的温室气体排放目标。即,企业通过农业碳汇等项目去弥补未完砀减排目标或超额排放;二是碳交易机构与农村专业合作组织之间,主要是专业合作组织负责将农民组织起来,帮助有意愿实施碳汇农业技术的农民签订合同或者订单,并将其减排的温室气体指标集合在碳交易机构出售;三是农村专合组织与农户之间,主要指专业合作组织通过订单机制与愿意提供碳汇的农民签署合同,然后将集中销售碳减排量的利润按签订的合同返回给农民[20]。
3.5 鼓励各类资本下乡,推动碳汇农业的发展
要改变农村生产方式,积极发展碳汇农业,除了政府财政支持以外,更需要金融机构资金及 “市场资本”的积极介入,在政府财政投资、金融机构与市场资本的合力作用下,共同参与 和推动新兴碳汇农业的发展。因此,应以全新视角设计各类资本支持碳汇农业的框架体系。 一是为支持碳汇农业经济发展的金融机构及各类资本提供税费优惠、利息补贴和风险担保上 的政策支持;二是制定完善农业保险法、碳汇农业促进法等相关法律,建立健全农业保障体 系,推行政策性与商业性保险同时运营的联合保障机制,提高保障系数,降低信贷支持风险 。三是建立银行、担保与保险联合支持机制,实现低风险、高收益的多方共赢。保险公司为 高投入、周期长和高收益的碳汇农业提供政策性或商业性风险保障;政府主导组建碳汇农业 专项担保公司,建立公益性担保基金,为碳汇农业提供融资担保;银行机构则依据信用评估 和风险评估情况提高信贷额度,延长资金使用期限,降低资金使用价格,促进联合机制有效 发挥。
3.6 改变传统农业的组织形态,大力推进各种形式的农业专业合作
推进农业专业合作以解决农业经营规模过小与发展碳汇农业的矛盾。目前我国主要实行 的是以家庭承包为基础的小规模的农户和农场模式,这种农业生产形态给规模化碳汇农业的 发展带来困难。例如,一个农户或一个农场实行碳汇农业的模式,而周围的耕地仍是工业化 农业,那么这个生态模式的土壤、空气和水源等就难以避免会受到影响和污染。因此,需要 在传统农业的组织形态上进行改变,大力推进各种形式的农业专业合作,例如以村组为单位 开展土地合作,选择合适的项目发展碳汇农业;扩大现有农业专业合作社的合作规模和合作 内容,引导不同专业合作社围绕发展碳汇农业进行经营合作;引导小规模的生态农户与农场 ,通过成立生态合作社扩大规模等等。
3.7 征收进口农产品“碳关税”,补贴国内碳汇农产品
在西方发达国家,对农业普遍实施高补贴政策,这事实上包含了对农业的“碳补贴”。此 外,发达国家碳减排成本普遍较高,据调查,欧美国家的碳减排成本平均在50美元/t以上 [21],折合人民币成本大约为340元/t。按照1 kg粮食吸收1.47 kgCO2标准计算, 欧美发达 国家粮食碳补贴标准大约为499.80元/t[5]。这可作为我国进口西方发达国家农产 品的“ 碳关税”标准。同时,把征收的资金用于补贴国内的有机农产品、绿色农产品等碳汇农产品 ,以提高农户发展碳汇农业的积极性,增加农民的收益。
参考文献(References)
[1] 百度百科.低碳农业[EB/OL]. .[Xia Qingli. Research on Agricultural Carbon Sinks in China[EB/OL]. htt p://省略/p-56175329.html.]
[6]彭新宇.建议加强低碳农业有关问题的研究[EB/OL]. .[Lin Tingting.Key
Cutin Point to Transition to Lowcarbon Agriculture: Organic Agriculture [EB /OL]. .]
[16]Wijty J J,FMLI S,et a1.Influence of Cultivation and Fertilization on To tal Organic Carbon and Carbon Fractionsin Soils from the Loess Plateau of China [J].Soil&Tdlage Research,20O4,(77):59-68.
[17]黄文秀.农业自然资源[M].北京:科学出版社,2001.[Huang Wenxiu. Agricult ure and Natural Resources[M].Beijing: Science Press,2001.]
[18]Yang X M,B D Kay.Rotation and Tillage Effects on Soil Carbon Sequestrati on in a Typical Hapludalf in Southern Ontario[J].S0il&Tillage Research,2001 ,(59):107-114.
[19]吴一平,刘向华.发展低碳经济建设我国现代农业[EB/OL]. .[Wu Yiping,Liu Xianghua.
Development of Lowcarbon Economy to Build Modern Agriculture in China[EB/OL ]. . ]
[20]李晓燕发展低碳农业四川如何突破两大瓶颈[N]四川日报,2010-10-13[Li Xiaoyan.How to Break two Bottlenecks of Lowcarbon Agricultural Delevopment in Sichuan[N].Sichuan Daily,2010-10-13.]
[21]张卫华. 中国第一个CDM项目前生今世[J]. 经济,2007,(7):22-25.[Zhang W eihua. The Past and Present of the First CDM Project in China[J]. Economic Jou rnal, 2007,(7):22-25.]
Main Paths and Policy Proposals for the Development ofCarbonsinkingAgriculture in China
XIE Shujuan1,2,3 KUANG Yaoqiu1,2 HUANG Ningsheng 1,2
(1. Guangzhou Institute of Geochemistry,Chinese Academy of Sciences,G u angzhou Guangdong 510640,China; 2. Graduate University of Chinese Academy of S ciences,Beijing 100049,China;
3. Guangdong Academy of Social Sciences,Guangzhou Guangdong 510610,China)
温室气体的主要来源范文5
随着环境、气候问题的日益突出,温室气体的排放成为全球关注的热点问题,世界各国逐渐开始重视降低产业温室气体的排放。温室气体是指对大气产生温室效应的气体(包括:CO2、N2O、CH4、HFCs、PFCs和SF6)或单指占成分最高的CO2气体。旅游产业虽然作为资源低消耗的绿色产业,但是仍然有着高能耗和污染环境现象的出现。2005年世界旅游组织对旅游产业的碳排放进行测定,发现旅游业的碳排放占全世界总排量的4.9%,并预计其2025年的总排量会提高150%。2009年12月国务院出台的《关于加快发展旅游业的意见》,要求旅游业节能减排,减少温室气体排放,倡导低碳旅游方式。因此,将旅游线路中所排放的温室气体进行量化分析,对于探寻节能减排的低碳旅游线路是至关重要的。旅游交通是旅游业发展的基础,是旅游碳排放的主要的来源,约占70%。由此可见,旅游交通的减排责任重大,是旅游业中重要减排的潜力、关键环节。随着人们收入的增长,生活质量需求的提高,家庭自驾游的旅游形式得到迅速的发展,其主要表现为城市周边的周末自驾游。然而对于自驾游的旅游线路的能源消耗及二氧化碳排放的评估却是空白。
一、文献回顾
有关于旅游业碳排放的研究开始于2003年,Susanne通过研究发现,旅游者的旅游行为对旅游业的能源消耗的具有很显著的影响,旅游者选择不同的交通方式进行旅游,其过程碳排放有着重大的影响巨大的区别。旅游交通是发展旅游业的基础,更是旅游业总排放量的主要来源。因此,旅游交通的碳排放受到国内外许多学者重视。主要研究集中在对旅游交通碳排放的认知、旅游交通排放测算、重要性、减排策略研究等。
对于交通的碳排放,Lin(2010)对台湾5个国家公园的旅游交通碳排放进行了研究,发现交通方式的选择、出行距离、交通工具承载量等对旅游交通的碳排放量都要有密切的关系。肖潇(2012)对3个不同的旅游交通模式进行对比研究,得到平均距离会影响景区碳排放结构均衡度的不同。Rutty M(2006)认为路面交通是旅游业碳排放的最大贡献方,约占32%。(2007)通过对云南香格里拉旅游路线产品的生态足迹测算,发现一个旅游者在香格里拉八日游产生的生态足迹是当地居民日常生活的32倍。鉴英苗,罗艳菊等(2012)对海南环东线旅游线路进行碳排放测算。虽然旅游线路上实现低碳旅游的目标得到许多学者的认可和研究。然而,研究内容较为宽泛,范围较广。因此,对于某种旅游形式的旅游线路的碳排放发测算时十分有必要的。
二、研究方法
旅游交通碳排放的研究的核心和关键就在于其测算方法。现有的旅游交通碳排放的测算方法主要包括“自上而下”和“自下而上”两种方法。两种方法各有优点和局限性,并且不同的方法测算同一研究对象的结果会有所不同。学术界对于哪种方法更科学、合理和准确,目前并没有统一的定论。本文根据研究内容,选用“自下而上”法。“自下而上”法是指从研究对象的基本单元着手,对研究对象的各个样本数据(如:行驶里程、承载人数,能源消费等)进行统计,然后乘以相应的碳排放系数从而得到估算碳排放总量。
(一)碳排放计算模型
本文在前人成果的基础上根据获取数据难易程度,确定了计算自驾游客碳排放。由于现有汽车的种类较多,自驾游客选择的汽车排量也有所不同,因此自驾游汽车旅游线路碳排放的计算可用以下公式:
SDTEn=Dn* P * ECi *CG(1)
上式中SDTE代表第n条旅游线路自驾游汽车碳排放总量,n代表不同的旅游线路,Dn 代表第你条旅游线路的实际距离,P代表自驾游汽车承载人数,ECi代表不同类型汽车单位公里耗油量, i代表不同排量的汽车,CG代表单位汽车油消耗的碳排放。
CG=NCN * DCG(2)
上式中NCN为汽油的平均发热量,DCG汽油的潜在排放因子。
论文参照了2006年IPCC国家温室气体清单指南中汽油的潜在排放因子和我国能源统计年鉴公布的车用汽油热值,将两者相乘,得到单位汽车油耗碳排量为 2.26 kgCO2 /L。
三、文昌自驾游线路碳排放与设计
(一)文昌经典自驾游旅游线路碳排放测算
本文通过旅行社业界人士,参考网络游记,得到5条经典的文昌一日游旅游路线。研究现有线路自驾游的碳排放,分析现有文昌旅游线路的低碳效果。
考虑到以文昌作为自驾游目的地的游客绝大多数来源于海口市的上班族,因此本文所研究的文昌一日游旅游线路的出发点和终止点均为海口。同时对于游客在景区所使用的景区交通工具(例如观览车等)消耗能量产生的CO2不计在内。依据中国人口家庭结构与居民私家车拥有情况,笔者选取出游人数为3人,自驾游汽车排量分别为1.0L、1.3L、1.6L和2.0L。
根据上面(1)、(2)碳排放计算公式,文昌市现有旅游线路自驾游碳排放的计算结果如表2。
由表2 可以看出,L3旅游线路在1.0L、1.3L、1.6L和2.0L的汽车排量中碳排放最高,分别为是99.666 kg、139.5324 kg、199.332 kg和239.1984 kg。最低为L5旅游线路分别为72.885 kg、102.039 kg、145.77 kg和174.924 kg,人均排放量分别为24.295kg 2、34.013 kg、48.59 kg和58.308kg。依据《中国能源报告(2008):碳排放研究》我国每人日均二氧化碳排放量为13.36kg,L5旅游线路的碳排放量分别是中国人日均排放量的1.82、2.55、3.64、4.36倍。游客仅仅在自驾车上的消耗量已经远远超过全国的人均排放水平。
(二)低碳自驾游线路优化
在原有的旅游路线上,基于低碳的目标,并结合旅游线路产品的多样性、时间预算和旅游者满意度等因素,本文设计文昌自驾一日游旅游线路为: 椰子大观园八门湾红树林文昌清澜港东郊椰林百莱玛度假村文昌骑楼老街。通过上式计算的该条路线的4种汽车排量中碳排放分别为:61.698 kg CO2、86.3772 kg CO2、123.396 kg CO2和148.0752 kg CO2。对比以上5条经典路线,都实现了最低碳排放的目标。
四、结论与讨论
本文以文昌一日自驾游线路为研究对象,建构自驾游旅游线路碳排放模型,将汽车能源消耗的量转换成二氧化碳的碳排放量。该模型是基于自驾游的特点构建的,可以更有效的测量自驾游过程中产生的二氧化碳排放量。笔者以低碳为目标设计的一条文昌一日自驾旅游线路,对比5条经典旅游线路确实实现了减少二氧化碳的目标,对政府部门和旅行社等企业起到指导作用。
温室气体的主要来源范文6
据统计,近100年来,整个地球的年平均气温上升了0.7~1℃,而大城市的平均气温上升了2~3℃。研究人员把气温不低于25℃的夜晚称为“热夜”。50年前,东京的“热夜”每年平均不到5个,而近几年来,东京的年均“热夜”数达38个。加强城市绿化能在一定程度上缓解“热岛效应”。据日本环境厅测算,如将东京市中心绿地面积从现在的6%提高到10%,东京市中心的气温就可降低0.3℃,其他相连地区的气温也能降低0.04℃。
造成热污染的原因首先是地表被无机化,越来越多的地表被建筑物、混凝土和柏油所覆盖,绿地和水域的面积减少,使蒸发作用减弱,大气得不到冷却。随着街道路面柏油和水泥覆盖面积的扩大,雨水大部分从下水道排走,地面水分蒸发的散热作用日益丧失。
城市的建筑也是热污染的重要来源。现在大城市的人口越来越多,而地皮是相当有限的,所以城市的土地越来越贵,这就导致城市的建筑越来越高,越来越密集。这些高大而密集的建筑物不仅影响了空气流通,阻碍了热扩散,而且每座大楼都是一个“性能良好”的大型蓄热器,它们白天吸收阳光,夜晚放热,造成夜间市区气温居高不下。