高分子材料研究进展范例6篇

前言:中文期刊网精心挑选了高分子材料研究进展范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

高分子材料研究进展

高分子材料研究进展范文1

关键词:高分子材料;加工;形态控制

一、引言

高分子材料的性能与大分子的化学与链结构有着密切的关联,且材料形态也是重要影响因素之一。聚合物氛围结晶、取向等几种形态,多相聚合物择优扩相形态。聚合物制品形态的形成源自于加工中复杂的温度场与外力场作用。由此可见,关于加工过程中高分子材料形态控制具有重要的研究意义。

二、我国高分子材料加工中形态控制研究现状

高分子材料形态与物理力学性能之间的关联十分紧密,这也是高分子材料的重点研究课题。相较于其他材料,高分子材料具有非常复杂的形态,具体表现为高分子链的拓扑结构、共聚构型以及刚柔性非常复杂,在分子设计与结构调整中,可以对一些合成方法加以运用;其次,在高分子长链结构的影响下,其熔体的粘弹性非常突出;此外,高分子具有非常宽的弛豫时间,就是受到很小的应变作用,其产生的非线也会非常强烈。

对于聚合物的成型过程而言,在非等温场、不同强度的剪切与拉伸场的影响之下,就分子尺度而言,其大分子链会发生一系列化学反应;就纳米与亚微米尺度而言,大分子会有结晶与取向现象发生,如此一来就会有超分子结构的形成;而根据亚微米与微米尺度,多相聚合物会有不同相形态的形成,甚至会出现一些缺陷。而这些形态的影响因素非常广泛,例如加工中的外场强弱、作用频率、作用方式以及时间等。然而,现阶段关于这些问题的研究虽然有所深入,但相应的理论体系尚未成熟。此外,随着新聚合物的开发不断深入,在高分子材料加工中涌现出越来越多的成型加工方法,显然这使聚合物加工中的形态控制成为了一个长期的研究课题,对于高分子物理领域的发展无疑有着重要的影响。

在我国,关于新材料的研究起步以跟踪模仿为主,在知识产权与创新理论方面有所欠缺,并且基础研究与技术推广的通畅性也有待提升。其次,相关人员并不重视传统材料的升级与优化,很多高性能材料品种对进口的依赖性依然较强。再者,材料成型与加工设备也没有得到应有的关注,与一些发达国家相比,我国材料研究与整体发展依然存在诸多不足,显然这与国民经济与设备的发展需求不相适应。

聚合物的性能取决于形态,因此,在高分子材料领域中,聚合物形态与性能关系的研究一直以来都受到高度重视,然而在实践中,我们在二者之间的结合方面的研究上依然有所欠缺,具体可以从以下几个方面得到体现:

第一,在剪切速率与剪切应力非常低的情况下,聚合物共混物相形态的演化研究不断深入,然而在实践中,一些主要聚合物成型加工的剪切速率主要在10?~104s-1范围内,显而易见,相关研究成果对实际生产的指导作用依然有所欠缺。

第二,基于不同条件的不同特性聚合物,其共混物形态发展与演化研究依然是主要研究内容,而形态与性能关系的研究依然有所欠缺。

第三,在加工过程中,受到部分特殊外场的作用,聚合物凝聚态结构与相形态结构的研究有待深入。

截至今日,在聚合物及其复合物的成型加工中,就算成型设备与工艺条件属于常规,在外场作用下,人们依然没有彻底了解结构形态受到的影响,仅仅对一些粗略的定性关系有所认识,甚至有的推断还是错误的。以双螺杆挤出过程为例,人们仅对不同螺杆原件组合下外力场作用的不同会改变温度场,进而对产品产量、外观与内在性能产生影响这一规律有所了解。然而这一影响的具体方式却没有清楚的认识,业界研究人员也无法制定出定量的指导方案。在管材生产中,不管是落锤冲击不达标,还是纵向收缩产生波动,都没有搞清楚原因,也无法拿出改进方案,大部分情况下都是凭借经验进行处理。因此,现阶段很多成型设备与工艺控制的效果是否取得理想效果,我们依然难以准确判定。

一直以来,关于生产实践中的问题研究一直没有得到基础工作研究人员的关注。在成型设备与工艺技术的研究与开发中,相关规划也缺乏系统性。现阶段,我国塑料制品年产量超过了2200万吨,塑料机械工业取得了迅猛发展。然而在很多企业生产实践中,整个效率与质量依然有待提升,产生的能耗也没有得到有效控制。鉴于此,高分子材料成型加工将会成为未来高分子材料领域的研究重点,必须将侧重点放在高分子材料制品的研究上来,而不是过分的关注材料这一因素,只有如此,才能够提高高分子材料志制品质量。

三、高分子材料加工中形态控制的研究趋势

第一,基于常规的成型设备条件,聚合物及其复合物典型制品成型或型材生产在成型加工时,在设备与工艺条件改变的情况下,其形成的外场会有所差异,进而发生相应变化,例如塑化、结晶、赋型以及流动等,这些变化会改变制品形态、结构以及性能。

第二,极端的加工条件极端会改变聚合物及其复合物的形态结构变化规律,例如结晶结构、晶体大小等,在这类条件下,还需要尽可能对大尺寸高分子晶体的制备进行探究。

第三,在对新外场条件的分析、推断以及设定之下,通过对聚合物及其复合物结构形态与性能受到的影响研究,才能够围绕新的成型方法或具有特殊性能的高分子材料的制备进行探索,进而实现高分子材料性能的改善,并将节能性、经济性等方面的优势充分发挥出来。

四、结束语

总而言之,在未来工业领域的发展中,高分子材料的应用具有重要意义,而高分子材料加工中的形态控制则成为发展高分子技术的关键。作为相关研究人员,必须结合高分子材料加工中的形态控制研究与实践中存在的问题,采取相应的改进与优化对策,提高高分子加工整体水平,如此才能够从真正意义上推动我国高分子材料加工领域的进步。

参考文献:

[1]李忠明,马劲.加工过程中高分子材料形态控制的研究进展[J].中国科学基金,2004,18(3):154-157.

[2]李又兵,申开智.形态控制技术获取自增强制件研究[J].高分子材料科学与工程,2007,23(1):24-27.

高分子材料研究进展范文2

关键词:导电高分子复合材料;导电性;应用

中图分类号:TQ 316 文献标识码:A 文章编号:1672-3791(2016)06(a)-0000-00

导电高分子材料就是在高分子材料的基础上,根据使用的要求,加入了相应的导电体,经过多重技术的处理之后,使其具有了较高的导电能力。而由于这种材料在制造的过程中,使用对材料的要求不高,使用的技术加工手段简单,使用的生产成本较低,导电性能较好等原因,受到了社会各界的广泛重视。因此,为了使导电高分子复合材料在当前阶段中更好的应用,在当前的科学研究中,加强对其进行研究成为了必然趋势。

1导电高分子复合材料的导电理论

1.1 统计渗滤模型

在高分子复合材料的导电理论中,首先就是统计渗滤模型,这一模型通常是几何模型为基础上建立的,就是将复合材料中基本物质使用一定技术将其抽象化,使其存在一定形状的分散体系,然后根据一定的机理要求,将其进行重新的排列,使其重新组合成一个整体,使高分子材料中的基本物质成为了连续相,而加入的导电体材料根据其功能的不同,有些成为了连续相,有些成为了分散相,这些有效的分散相以及连续相,就在导电高分子复合材料中构造出了导电通道。在这一模型的基础上,对导电高分子复合材料的电阻率与导电体进行深层次的分析,在两者之间建立相应的联系。最具有代表性的就是在建立统计渗滤模型时,根据不同的需求,将基本物质抽象为形状、大小不同的球型、规则的多面体等,同时将导电体抽象成连续性的珠串等[1]。这种模型有效的将高分子材料的导电理论进行了阐述,但是其也具有一定的缺点,就是其只能使用在较为简单的复合材料中,复合材料中只能有一种基本物质以及导电体材料,对于具有多种基本物质或者导电体材料的复合材料时,虽然也能建立相应的模型,但得到的理论与实际之间会存在较大的差异。

1.2 热力学模型

随着统计渗滤模型的使用,人们逐渐的发现其有一些缺点,例如在构建模型时,往往忽略了基本物质与导电体之间的作用关系,使得到的结果具有一定的偏差,不满足当前社会发展的需求,在这种情况下,就研究出了热力学模型来对导电高分子复合材料导电理论进行了阐述,使结果得到了很大的改进。这一理论是以热力学原理的基础上建立的,在这项理论中,认为构建导电通道的过程中,导电体处于临界状态的体积与模型中多余的自由能具有一定的联系,当模型中多余的自由能达到一定的程度后,就会在模型的内部自动的构建出导电通道。并且,高分子材料中基本物质的熔融粘度较大,更好的阻止了平衡相的分离;导电体粒子的直径较小,更好的帮助平衡相分离。使用这种模型来对导电高分子复合材料进行阐述与实际更加接近[2]。

2 导电高分子复合材料的特殊效应理论

导电高分子材料的性能往往不是一成不变的,在特定的环境中,其性能也会逐渐的在变化着。例如一些导电高分子复合材料在拉力或压力的作用下,就会出现一些特别的效应,例如压敏效应、拉敏效应等,可以根据这些特殊的效应来对地导电高分子复合材料进行阐述。

在压敏、拉敏效应理论中,可以利用通道理论对其进行阐述。在不同的高分子材料,所中具有的临界范围不同,在压敏的情况下,材料中的导电体相对就不是很多,使得导电体的分布不是很好,无法直接构造出导电通道,如果在这时向复合材料施压,压力不是很高时,没有达到材料的最大临界值,复合材料仍然具有高阻态;当所施加的压力过高时,超过了最大临界值,就会使复合材料发生一定的形变,使其内部构建出了导电通道,从而使其具有了导电性。在拉敏的情况下,材料含有大量的导电体,其内部具有一定的导电通道,这时在对其使用拉力时,当垃圾过大,超过最大临界值时,复合材料就会发生形变,致使其全本具有的导电通道遭受了损坏,从而使复合材料不在具有导电性[3]。

3 导电高分子复合材料的应用以及发展趋势

3.1 导电高分子复合材料的应用

导电高分子的原材料一般为聚合物或者具有导电效果较强的填充物,随着科学技术的不断发展,目前已经成功研制出了具有良好导电性的高分子复合材料,且随着高分子复合材料的广泛应用,也增加了抗静电、电磁波屏蔽等功能,使得导电高分子材料获得了巨大的技术突破,目前,根据导电高分子材料的性能不同,可以将其分为半导体材料、高导电体材料、热敏导体材料等,其材料成分不仅有金属材料,如铜、铝等,同时也含有碳系聚合物,大大增加了导电高分子复合材料的稳定性,同时降低了制作成本。另外,由于导电高分子复合材料的优点,使得基于传统的工作方式有了极大程度的改善,如在开关元件生产过程,传统的导电材料的在开关中虽然能够保证电流的有效传输,但是金属材质会产生无用功率,同时导体过热还会引发安全事故,因此,在开关元件的生产中应用高分子复合材料,能够有效的保护用电安全,同时,利用高分子复合材料的热效应,能够制作出热敏传感器,提高能源的利用率,另外,导电高分子复合材料也在航电器的制作、煤电系统、建筑施工中有着广泛的应用[4]。

3.2 导电高分子复合材料的研究进展

由于高分子复合材料具有非常良好的应用前景,因此,我国重视并鼓励高分子复合材料研究的创新和发展,但是高分子复合材料具有较强的不稳定性,其性能容易受到制作工艺、制作环境等外在因素的影响,近年来,先进的导电理论指出寻研制能与复合材料稳定结合的导点模型是未来高分子复合材料的研究发展方向。随着科学技术的不断发展,目前已经得出复合体系的构建是建立导线模型的前提要素,利用拓扑学方法能够有效的对复合材料的参数进行测量,同时能够有效的观测出不同添加剂对导电高分子复合材料的影响。由于高分子复合材料必须具有实用性,因此,导电高分子复合材料的研究上也偏向于增加其稳定性、轻便型、降低制作工艺与成本,同时使导电高分子复合材料能够适应不同的温度及湿度,扩大导电高分子复合材料的应用范围,尽管在理论研究上存在诸多的困难,但是在应用方面已经取得了巨大的突破[5]。

4 总结

综上所述,在现阶段的发展中,导电高分子复合材料占据重要的作用,有效的对其进行使用,可以更好地促进社会的发展。并且随着不断对其进行研究,相关的理论知识已经得到了一定的发展,处在了一个瓶颈阶段,很难在使其继续发展。因此,在当前阶段对导电高分子复合材料进行研究时,就要向着应用方面进行研究,使其在实际中起到更大的作用,有效的促进我国社会的发展。

参考文献

[1]陆昶,胡小宁,赫玉欣等.特殊形态结构导电高分子复合材料的电学性能[J].材料研究学报,2012,07(01):37.

[2]屈莹莹,赵帅国,代坤等.各向异性导电高分子复合材料的研究进展[J].塑料工业,2012,06(05):22.

[3]徐晓英,王世安,王辉.复合导电高分子材料微观网络结构及导电行为仿真分析[J].高电压技术,2012,10(09):2221.

高分子材料研究进展范文3

关键词:高分子材料;化工材料;发展现状

我国自上世纪80年代以来,开始致力于高分子化工材料的研发,并且将高分子化工材料用于多种领域,满足了节能减排、高性能高科技等现代社会发展的要求。除了本文主要介绍三种材料以外,我国在烯类单体聚合、a―烯烃的聚合、乙烯基单体的光聚合与光刻胶等方面也取得很大的研究成果,随着现代科技的发展以及社会发展的进一步需求,高分子化工材料将得到进一步的开发研究,并广泛的应用于农业、工业、医学、生物、能源等领域。高分子智能材料已经成为材料科学发展的一个重要研究领域,全世界各个国家科学家都在为此作不懈的努力。从人类历史发展来看,任何一种重要材料的发明和利用,都能够把人类改造自然,创造社会的能力提高到一个新的高度,并给社会生产力和人类生产生活带来巨大的影响,使人类的物质文明建设和精神文明建设共同向前推进一大步。所以可以肯定的说,未来将会有更多更好更实用的智能材料出现在我们的面前。

一、高分子材料概念描述

所谓高分子材料是指由许多重复单元共价连接而成的,分子量很大的一类分子所组成的相关聚合物,并且具有粘弹性。高分子材料正在向以下几方面发展:高功能化,高性能化,复合化,精细化和智能化。鉴于此,我国的高分子材料在进一步开发通用的基础上,应该重点发展高分子材料品种、提高技术水平、扩大生产以进一步满足市场需要。天然高分子是存在于动物、植物及生物体内的高分子物质,可分为天然纤维、天然树脂、天然橡胶、动物胶等。合成高分子材料主要是指塑料、合成橡胶和合成纤维三大合成材料,此外还包括胶黏剂、涂料以及各种功能性高分子材料。合成高分子材料具有天然高分子材料所没有的或较为优越的性能,较小的密度、较高的力学、耐磨性、耐腐蚀性、电绝缘性等。

二、高分子材料的应用分析

(一)聚烯烃材料

聚烯烃是高分子化工材料中用量最大的,也是应用范围最广的一种,主要在汽车、建筑、家电等领域得到广泛的应用。聚烯烃是烯烃的聚合物,是由乙烯、丙烯1-丁烯、1-戊烯、1-己烯、1-辛烯、4-甲基-1-戊烯等α-烯烃以及某些环烯烃单独聚合或共聚合而得到的一类热塑性树脂的总称,主要通过高压聚合或者低压聚合如溶液法、浆液法等方法生产合成,主要品种有聚乙烯以及以乙烯为基础的一些共聚物、聚丙烯以及以聚丙烯为基础的丙烯共聚物。具有容易加工、综合性能良好、原料丰富,价格低廉等优点。目前,各研究机构正在研究使用过渡金属做催化剂,进行各类烯烃的聚合。近年来,随着节能减排、低碳经济以及可持续发展思想的深入,聚烯烃的合金化、高性能化和多样化成为研究的方向和重点。

(二)高分子智能材料

高分子智能材料是通过有机和合成的方法,使无生命的有机材料变得具有生物功能的一种材料。其功能可随外界条件的变化而有意识地调节、修饰和修复。形状记忆高分子材料是指在一定条件下赋予高分子材料的起始装态,当外部条件发生改变时,它可以改变成相应地形状,并能固定其形态。当外部条件再次发生改变时,智能高分子材料以特定的规律和方式再一次发生变化并恢复至起始态。从而完成从起始记忆态到固定变形态再到恢复起始态的循环过程。自行调温调光的新型建筑材料,成分是由水和聚合物构成的。在低温时聚合物是成串排列的,为透明状,能够透过90%的光线。加热时,这种聚合物就以纤维的形式聚合在一起,成乳白色,能够阻挡90%的光线。并且这种可逆过程是在两三度温差范围内完成的。具有传感功能的高分子材料,这种与传感器结合起来的高分子材料,已成为智能材料的一个新特点。例如,装有压电陶瓷传感器的机器人,可以灵敏地感觉到轴承脱离时摩擦力突然变化的情况,并迅速作出握紧反应。

(三)稀土催化材料

稀土元素具有独特的化学性能和物理组成,以稀土元素为基础的稀土功能材料在信息、生物、新技术、新能源以及环境保护等现代科学技术和现代工业发展中起着十分重要的作用,稀土催化材料比传统的贵金属催化材料相比,具有资源丰度高、成本低、生产工艺水平高以及性能优越等方面的优势。稀土催化材料不仅能够提高生产效率,最重要的是能够节约资源和能源,进而减少环境污染。上世纪60年代,中科院长春应用化学研究所运用稀土化合物组成新型催化剂用于二烯烃的聚合以及橡胶的制备,打破了传统的Z-N催化剂,取得重大研究进展。目前稀土催化材料大量运用在能源环境领域中,如汽车尾气净化、工业废气以及人居环境净化等方面。

(四)生物医用材料

生物医学材料指的是一类具有特殊性能、特种功能,用于人工器官、外科修复、理疗康复、诊断、治疗疾患,而对人体组织不会产生不良影响的材料。高分子合成的生物医用材料通过分子设计和聚合,能够获得具有良好物理性能和生物相容性的生物材料,其中高分子软材料常用做为人体软组织如血管、食道和指关节等的替代品。合成的高分子硬材料可以用作人工硬脑膜、笼架球形的人工心脏瓣膜的球形阀等;液态的合成材料如室温硫化硅橡胶可以用作注入式组织修补材料。

三、结束语

新型高分子材料对人们的日常生活和工作产生越来越大的影响,本文从几个方面介绍新型智能高分子材料。主要包括高分子材料的含义,发展现状和高分子材料的应用等几方面内容。作为一种与国民经济、高科技技术和现代化生活密切相关重要的材料已经在各个领域中发挥了巨大的作用,人类已经进入了高分子时代。

参考文献:

高分子材料研究进展范文4

关键词:高分子材料;功能;研究现状;发展前景

前言

在我们的日常生活中,材料随处可见,材料的发展水平直接影响我们的生活质量。高分子材料在我们日常生活的应用中拥有很多的优势,与现代化生产非常吻合,同时它也产生了很高的经济效益等,因此它在工业上发展的十分迅速。在过去,20世纪60年展起来的功能高分子材料是属于那时的一个新兴领域,这个新兴领域同时渗透到能源和电子以及生物三大领等。而如今,21世纪的科技不断创新,也有了新型有机功能高分子材料,它们在人们的生产和生活中扮演着一个越来越重要的角色。

1 功能高分子材料的定义

功能高分子材料是指同时兼顾有两种性能的复合高分子材料,性能一:传统高分子材料的所体现出来的性能,性能二:某些特殊功能的基团所体现出来的性能。一般说来,具有传递信息、转化能量和贮存物质作用的高分子及其复合材料为功能高分子材料,或者还可以理解为具有能量转换的特性、催化特性、化学反应活性、磁性、光敏特性、药理性、导电特性、生物相容性、选择分离性等功能的高分子及其复合材料,同时还具有原有力学性能的基础。

2 功能高分子材料的工程实际应用

目前,在工程上应用较广泛而且具有重要应用价值的一些功能高分子材料主要分为以下几种:光功能高分子、液晶高分子、电功能高分子、吸附分离功能高分子、反应型功能高分子、医用功能高分子、环境降解功能高分子、高分子功能膜材料等。下文中具体从这几方面阐述:

(1)光功能高分子材料。指在光的作用下能够产生物理变化,如光导电、光致变色或者化学变化,如光交联、光分解的高分子材料,或者在物理或化学作用下表现出光特性的高分子材料。光功能高分子材料主要应用在电子工业和太阳能的开发利用等方面。

(2)液晶高分子材料。液晶高分子是一种新型的功能高分子材料,它是分子水平的微观复合,由纤维与树脂基体在宏观上的复合衍生而来,也可以理解为在柔性高分子基体中以接近分子水平的分散程度分散增强剂(刚性高分子链或微纤维)的复合材料。强度高、模量大是液晶高分子材料的主要特点,它在复合材料、纤维和液晶显示技术等方面的应用非常广泛。

(3)电功能高分子材料。电功能高分子材料主要表现为在特定条件下表现出各种电学性质,如热电、压电、铁电、光电、介电和导电等性质。根据其功能划分,主要包括导电高分子材料、电绝缘性高分子材料、高分子介电材料、高分子驻极体、高分子光导材料、高分子电活性材料等。同时根据其组成情况可以分成结构型电功能材料和复合电功能材料两类。电功能高分子材料在电子器件、敏感器件、静电复印和特殊用途电池生产方面有广泛应用。

(4)吸附分离高分子材料。吸附分离功能高分子按吸附机理分为化学吸附剂、物理吸附剂、亲和吸附剂,按树脂形态分为无定形、球形、纤维状,按孔结构分为微孔、中孔、大孔、特大孔、均孔等,吸附分离功能高分子主要包括离子交换树脂和吸附树脂。

(5)反应型功能高分子材料。反应功能高分子是有化学活性、能够参与或促进化学反应进行的一种高分子材料。它是将小分子反应活性物质通过共价键、离子键、配位键或物理吸附作用结合于高分子骨架,主要用于化学合成和化学反应。

(6)医用功能高分子材料。在生物体产生生理系统疾病时,一些特殊的功能高分子材料有对疾病的诊断、治疗、修复或替换生物体组织或器官,增进或恢复其功能的作用,此类特殊的功能高分子材料称为医用功能高分子材料。一般来说,医用功能高分子材料多用于对生物体进行疾病的诊断和疾病的治疗以及修复或替换生物体组织或器官和合成或再生损伤组织或器官,具有延长病人生命、提高病人生存质量等作用,在医疗方面被广泛应用。

(7)环境降解高分子材料。高分子材料在发生降解反应的条件有许多,如机械力的作用下发生的降解称为机械降解,此外在化学试剂的作用下可发生化学降解,在氧的作用下可发生氧化降解,在热的作用下可发生热降解,在光的作用下可发生光降解,在生物的作用下可发生生物降解等。具有此类功能的高分子称为环境降解高分子材料。

(8)高分子功能膜材料。高分子功能膜是一种具有选择性透过能力的膜型材料,同时也是具有特殊功能的高分子材料,一般称为分离膜或功能膜。使用功能膜分离物质具有以下突出的优点:具有较好的选择性透过性,透过产物和原产物位于膜的两侧,便于产物的收集;分离时不发生相变,同时也不耗费相变能。从功能的角度,高分子分离膜具有识别物质和分离物质的功能,此外,它还有转化物质和转化能量的其它功能。利用其在不同条件下显出的特殊性质,已经在许多领域获得应用。

3 功能高分子材料的发展前景

人类赖以生存和发展的物质基础离不开材料,材料的发展关系到社会发展和国民经济以及国家的安全,同时也是体现国家综合实力的重要标志。高新技术和现代工业发展的基石离不开高分子材料,国民经济基础产业以及国家安全不可或缺的重要保证同样也离不开高分子材料。而功能高分子材料由于其优越性,使得其在材料行业中发展迅速。

未来材料科学与工程技术领域研究的重要发展方向离不开功能高分子材料,材料、信息和能源理所当然的被评为新科技革命时代的三大根基,信息和能源发展离不开材料领域中功能高分子材料作为它们物质基础所起到的重要作用,新型功能高分子材料的研究与发展主要取决于现代学科交叉程度高这一特点。在传统的三大合成材料以外,陆陆续续又出现了具有光、电、磁等特殊功能的高分子材料以及功能高分子膜,同时也出现了生物高分子材料,隐身高分子材料等许多具有特殊功能的高分子材料,与此同时功能高分子材料的发展速度依然保持着加快的状态,显然它们对新技术革命影响非常之大。这些新型的功能高分子材料在我们的尖端科学技术领域和工农业生产以及日常生活中扮演着越来越重要的角色,21世纪人类社会生活必将与功能高分子材料密切相关。

4 结束语

功能高分子材料是一门研究高分子材料变化规律以及实际应用技术的一门学科,在高分子材料科学领域中的发展速度是最快的,同时也是与其它科学领域交叉最为密切的一个研究领域。它是以高分子物理、高分子化学等相关学科为基础,同时与物理学和生物学以及医学密切联系的一门学科。因此学习这门学科能让我们很好的将高分子学科的知识综合运用起来,进而使我们对高分子学科有更深刻的认识,让我们受益匪浅。

参考文献

[1]张青,陈昌伦,吴狄.功能高分子材料发展与应用[J].广东化工,2015,42(06):119-120.

[2]武帅,鲁云华.功能高分子材料发展现状及展望[J].化工设计通讯,2016,42(04):82.

[3]赖承钺,郑宽,赫丽萍.高分子材料生物降解性能的分析研究进展[J].化学研究与应用,2010,03(01):1-7.

高分子材料研究进展范文5

关键词:热致型形状记忆;高分子材料;制备技术;智能材料 文献标识码:A

中图分类号:TB324 文章编号:1009-2374(2015)11-0009-02 DOI:10.13535/ki.11-4406/n.2015.11.005

具备形状记忆功能的材料是新型感应型材料,是属于智能材料的范畴,因其能够感应环境变化并能对变化作出相应的响应,并且可据以调整位置、形状、应变等力学参数,可在特定条件下恢复到原先设定的状态。相当于具备一定的固定原始状态的材料经过特定形变并固定成为另外一种形状后,通过处理有条件可以恢复到原始状态的材料。热致型记忆高分子材料制备方法简便,控制形变的方法较易,应用范围非常广泛,因而成为目前研究与开发领域较活跃的形状记忆高分子。本文对热致型形状记忆高分子材料的形状记忆原理、制备方法和其中的几种重要类型进行综述和评论。

1 热致型形状记忆原理

热致型形状记忆高分子的形状记忆与其玻璃化转变温度有关。在高分子材料的内部存在着不完全相容或完全不相容的两相或多相,一般称作固定相(记忆初始状态)和可逆相(可随温度变化发生固化或软化)。

当外界温度在分子的玻璃化转变温度以下时,分子的可逆相和固定相都处在冻结的状态,即其分子链被冻结,整个材料分子均处在玻璃态;对应地,当外界温度在玻璃化转变温度以上时,分子链段发生运动,材料分子处于高弹状态,此时加以外力,材料分子可发生形变。温度下降过程中,材料分子会逐渐冷却,若保持外力一直存在,材料的形状可维持不变,冷却完成后,材料分子链段冻结,相当于可逆相处在冻结的状态,在高温时被赋予的形状可保持。

温度再次达到玻璃化温度以上时,材料分子的链段会解冻并逐渐恢复运动,同时在固定相的作用下,高分子材料的形状可以恢复到初始形状。由此可知,组成可逆相的分子结构对记忆温度有影响,组成固定相的分子结构影响形变的恢复。

2 热致型形状记忆高分子材料的制备技术

2.1 交联

聚合物改性的一种常用方法是交联。交联目的是使聚合物的线形分子之间相互结合,从而使线形分子联结成为网状的结构,若加热升温至Tg及以上时进行伸长处理,其交联网状结构将伸展,与此同时结构的内部会产生回复力,温度降至Tg以下时,分子链冷却成为结晶态或玻璃态,从而使变形固定,回复力在分子结构内部冻结,当再次升温,分子可恢复到原始形状。其基本方法是通过外界的反应条件(如温度)提供能量,使得分子产生自由基,进而发生自由基结合反应,使聚合物交联。此种交联方法的优点是可以使聚合物性能改善,且在分子内部不存在其他化学物质的污染。但因辐射的能量过高,聚合物虽然会发生交联反应,但也有部分聚合物发生降解反应,对聚合物有一定损伤,影响聚合物的性能,产量相应的也会降低。除了辐射交联,也可以使用化学交联的方法。例如,丙烯酸与丙烯酸十八醇酯可发生交联反应,以亚甲基双丙烯酰胺为交联剂,可以合成具备形状记忆功能的高分子材料。

2.2 共聚

分子结构中存在着两种或多种不完全相容或完全不相容的部分,使得分子结构中不完全相容的相分离,通常情况下玻璃化温度低的相叫做软段,玻璃化温度高的相叫做硬段。共聚反应可以通过调节软段的结构组成、分子量、软段的比例来调节形状记忆材料的回复应力、软化温度等,进而改变聚合物的形状记忆功能。具体方法是用两种玻璃化温度不同的材料进行聚合反应,生成具有交联嵌段结构的共聚物。据报道,PEO-PET的共聚物包含两部分,作为硬段部分的PET具有较高的玻璃化温度,主要是形成物理交联,从而保证共聚物可以具备较高的硬挺度;PEO是聚合物的软段部分,其玻璃化温度较低,是提供弹性的部分;在此种聚合物中,如果增加PET的含量,物理交联便会提高;相应地,如果增加PEO的长度,分子链更易运动,共聚物能表现出良好的形状记忆功能。

2.3 分子自组装

分子自组装(self-assembly)是指在无外力参与的情况下,分子借助其内部能量发生自发的聚集、联接并形成规则结构的现象。例如,分子的结晶现象就是一种典型的自组装现象。彭宇行等人第一次利用了聚丙烯酸-co-甲基丙烯酸甲酯分子与溴化十六烷基二甲基乙铵分子间的静电引力制得了具备超分子结构的且有形状记忆功能的高分子材料。这也是首次将超分子自组装引入到智能记忆材料的领域。其制备不仅可依赖分子间的静电引力,氢键、范德华力等也可作为其反应内力。

3 几种重要的热致型形状记忆聚合物

3.1 聚降冰片烯

聚降冰片烯树脂是世界上第一种具有形状记忆功能的高聚物,其成品具备形状记忆功能,即其形状变化很大,但经加热,可立即恢复至原来形状。聚降冰片烯通常由乙烯与环戊二烯发生缩合反应得到,其分子量一般在300万以上,玻璃化转变温度(Tg)约为35℃,可逆相是玻璃态,固定相是分子链的联结点,具备超分子的结构。在聚降冰片烯分子的内部不存在极性结构与分子间相互联接的交联结构,故可以通过真空成型或注射等方法加工成型,但是因为分子量过高,所以在加工时较

困难。

3.2 形状记忆聚氨酯

聚氨酯全称为聚氨基甲酸酯,是一种含部分结晶的线型聚合物,其制备是先由二异氰酸酯与低聚物多元醇反应生成聚氨酯预聚体,再用多元醇、氨基酸、羧酸等可进行扩链反应或交联反应生成具备联接嵌段结构的聚氨酯聚合物。聚氨酯聚合物以其柔性链段(多元醇部分)作为可逆相,刚性链段(二异氰酸酯和扩链剂)作为物理的交联点,作为其固定相。也可通过合成是选择的原料及原料的比例来调节Tg,即可得到响应温度不同的具有形状记忆功能的聚氨酯。

3.3 生物降解形状记忆材料

具备形状记忆功能的生物可降解材料可用于术后处理,其最终分解产物是小分子,能随新陈代谢排出体外。可生物降解的热致型形状记忆材料基本上是两种或两种以上的聚合物通过嵌段或交联的方式得到的。主要有下面两类:

3.3.1 聚乳酸类。用紫外光照射使其交联的方法可得到生物可降解形状记忆材料,如聚乳酸和聚乙二、聚乙醇酸、聚氧乙烷等聚合。混聚是为了能达到材料的玻璃化转变温度可调的目的、降解速度可调等。

3.3.2 聚亚氨酯类。聚亚氨酯存在硬度比较低的缺点,纳米级的纤维素可以作为其增强相与聚亚氨酯复配。在组成的复合物中,聚亚氨酯分子链是软段,其熔点随着纳米纤维素含量的增加而增加。

4 结语

热致型形状记忆高分子材料有许多明显的优点,如形变量较大、加工制成成品的性能良好、能量消耗低等,所以它在许多领域具备很高的应用价值和广泛的应用前景,经济效益极佳,社会效应显著,故成为当前形状记忆高分子材料的研究热点。

参考文献

[1] 詹茂盛,方义,王瑛.形状记忆功能高分子材料的研究形状[J].合成橡胶工业,2000,23(1).

高分子材料研究进展范文6

【摘要】 本文将当前国内外主要止血材料进行了分类,简要概括这些材料性能及特点,并介绍了一些国内外常用的战创伤止血敷料,分析当前止血敷料的研究现状,并展望未来止血敷料的发展,为使用者了解应用止血敷料提供参考。

【关键词】 创伤;战伤;止血;敷料

Abstract: In the following article,the major haemostatic materials both at home and abroad are clearly classified,and the functions and features of these materials are briefly summarized.Moreover,it presents the introductions of some common haemostatic dressings for war injury,the analysis of the latest research results and the prospect of haemostatic dressing.This article provides reference to those who need to know about the application of the haemostatic dressing.

Key words:trauma;war injury;haemostasis;dressing

失血是战伤伤员死亡最重要的原因之一,一般分为体内出血和体外出血,体内出血大部分是因为脏器破裂,体外出血基本是由于动静脉损伤。如果能及时有效地止血,对挽救伤员生命,稳定伤情,为后续治疗创造条件十分重要[1]。而敷料作为止血材料,是指盖在伤口上、有保护作用的覆盖物,可以协助控制出血,防止感染并吸收分泌物,止血敷料对于及时止血有着重要的意义。本文就当前常用的止血敷料作简要综述。

1 止血材料的分类

1.1 传统棉制品材料 一种简单的脱脂棉、纱布,经过灭菌后使用,加压止血,其历史最长,用量最大[2],价格低廉,使用方便,但只对创面起物理保护作用,没有凝血因子,且容易黏连创面。

1.2 生物医用高分子材料 所谓高分子一般是指由许多重复单元共价连接而成、分子量很大的一类大分子,相关材料也称为聚合物,往往具有黏弹性。医用高分子材料属于一种特殊的功能高分子材料,通常用于对生物体进行诊断、治疗以及替换或修复、合成或再生损伤组织和器官,它分为天然生物材料和合成高分子材料。

1.2.1 天然生物材料 从自然界现有的动、植物体中提取的天然活性高分子,如甲壳类、昆虫类动物体中提取甲壳质壳聚糖纤维,从海藻植物中提取的海藻酸盐,蚕丝经再生制得的丝素纤维与丝素膜等,这些纤维有很高的生物功能和生物适应性,在保护伤口、加速创面愈合方面有强大优势,无毒、无刺激性,有良好的血液、组织相容性[3]。其中海藻钙敷料是由柔软的海藻与酸钙纤维制成,顺应性好,与血液和伤口分泌物中的钠盐接触时,即转化为一种凝胶物质,对控制渗血非常有效[4]。

1.2.2 合成高分子材料 通过选用不同成分聚合物和添加剂,改变表面活性状态等方法,进一步改善其抗血栓性和耐久性,从而获得高度可靠和适当有机反应的生物合成高分子材料,包括聚酰胺、聚氧树脂、聚乙烯、硅橡胶、硅凝胶等。其中凝胶材料有3层结构,内层类似高分子材料,中层为塑料薄膜,外裹一层胶合材料,含有止血因子,对渗血有良好控制作用[4],局部刺激和疼痛相对较小。

1.3 人工纤维蛋白敷料 是一种人工合成的纤维蛋白敷料,纤维蛋白是一种高度不溶的蛋白质多聚体,是像细针一样的晶状物,而纤维蛋白原是发现最早的一种凝血因子,在肝脏中合成后进入血浆,以溶解形式存在,每100ml人血浆中含量约0.3g。纤维蛋白原转变为纤维蛋白是整个凝血过程最基本的变化,它经历三个环节:纤维蛋白原的水解;纤维蛋白单体的聚集;血凝块形成。纤维蛋白止血敷料是比较简单、实用的止血方法[5],人工纤维蛋白含有凝血因子,能够更好地起到止血的作用,避免从人体血浆中提取纤维蛋白原。

1.4 矿物质敷料 是一种从天然矿物或人工合成物质中提取的分子筛物质,如沸石、石墨、无机生物活性玻璃材料等[6],它具有优良的吸附性和引流性,无毒、无害、无过敏反应,能迅速止血,中和渗出液并有抗炎、抑菌、抗菌的作用,诱导上皮再生。

1.5 液体类敷料 液体敷料可采用喷涂、刷涂或其他方法薄薄地将其涂覆在皮肤上作为保护层或药物载体,包括α氰基丙烯酸酯类、聚甲基丙烯酸烷氧基酯类、纳米壳聚糖颗粒喷雾敷料等[6],具有防水、透气、成膜稳定、不易污染等特点,使用时不受伤口面积、部位、形状限制。

1.6 金属类敷料 金属类敷料主要有银敷料、锌敷料和铝敷料。其做法有:金属与纤维混织;用含有金属离子的溶液处理纤维;真空蒸镀法,在敷料表面镀一层金属膜;把金属混合在黏合剂中。金属材料与伤口湿润环境接触时,可不断释放金属离子,形成一种有利于伤口愈合的生理环境,不黏创面。

2 国外几种常用的止血敷料

2.1 Liquid FS止血敷料 即液态纤维蛋白密封剂,它是一种包含氢氧化物的干冻生物制剂[7],使用时需要解冻,时间大约1分钟,它不能控制大面积的静脉出血和高压力的动脉出血,因为大量的出血将稀释冲掉药品。

2.2 DFSD止血敷料 即固态纤维蛋白密封敷料,是为了弥补液态纤维蛋白密封剂的不足而设计的,更加柔软且具有弹性,能贴附在任何形状的伤口上,使其在2~3分钟内形成纤维蛋白凝块,达到止血目的[8],在减少失血量、提高存活率方面比液态更具优越性。

2.3 QuikClot敷料 是一种从沸石或沸石类似的天然或人工硅酸盐中提取的分子筛物质[9],是一种强力吸收剂,可选择性吸收多种气体和液体,也可吸收血液中的水分。其止血机制非常简单,它就像一块超级海绵,能短时间内吸收伤口流出血液中的水分,不吸收红细胞、血小板和其他凝血因子,使凝血因子浓缩并立即发挥止血作用,吸收同时还释放一定热量,使伤口感觉微麻,不仅镇痛而且还加强止血效果。在伊拉克战场得到广泛运用。美专家认为:QuikClot敷料的出现彻底改变了130多年来外伤止血效果不佳的局面。

2.4 HemCon止血敷料 它的主要成分是壳多糖(chitosan),此种绷带设计供军队战斗使用,甚至在极其恶劣的天气和地形亦可使用。它可使伤口形成结实的有黏附性血块,而后转运伤员,此绷带制成适宜大小,以塑料膜为被衬层,撕去容易,数分钟内可止住大出血。直至目前为止,HemCon已发运了超过13000条绷带,在伊拉克和阿富汗被特种部队首先使用。

2.5 Silverlon抗微生物敷料 是在尼龙纤维上利用合浸方式,使银颗粒附着在纤维表面,是一种金属类敷料。它的抗菌谱广,能有效抑制对抗生素有抗药性的耐甲氧西林金黄色葡萄球菌(MRSA)和顽固细菌,低过敏性,能减小疼痛和瘢痕,价格便宜。

2.6 Costasis喷雾剂 是一种内含牛结缔组织胶原蛋白和凝血酶的敷料[10],内含4个重要的血液凝血因子:胶原、凝血酶、患者自身的血小板和纤维蛋白原,喷于创面后形成一层胶膜,不仅可以促进凝血,还能被组织吸收,且不需包扎[11]。

2.7 Biohemostat止血敷料 是一种控制高压出血的敷料[12],成本低廉、柔软、有良好的弹性和亲水性,预期能取代止血带治疗枪弹伤和穿刺伤。Biohemostat贴附在伤口表面,其专有聚合物可在180秒内吸收超过它自身重量1000倍的分泌物,由于敷料的快速膨胀扩张,在出血部位造成反压力,迅速止血。

3 国内几种常用的止血敷料

3.1 聚乙烯海绵[2] 含有一种具有生物相溶性、吸水、吸油性的聚乙烯醇(PVA),不含纤维,黏着力强、耐水、弹性好、有广泛的吸收性,是一种好的密封材料。但容易黏连创面,引起二次损伤[13]。

3.2 泡沫塑料绷带[2] 在聚氯乙烯、聚苯乙烯和酚醛树脂等合成树脂中,加入一种“发泡剂”并加热塑制。它具有超强吸水能力,压缩后吸水可膨胀,且不存在纤维脱落的缺点。硬泡沫塑料绷带代替不舒服的石膏绷带,非常方便。

3.3 真空镀铝聚酯薄膜[2] 是以聚酯薄膜为原料,经真空镀铝精制而成。在创面封上一层薄膜,能降低感染,促进伤口痊愈,能较快止血。同时,对于皮肤的烧伤、创伤具有很好的疗效。

3.4 几丁质敷料 是一种以纯天然生物甲壳质为原料,制成的几丁质天然生物功能敷料,本品具有良好的生物相容性、无毒、无刺激、无致敏,具有促进炎症消退、止血、镇痛、引流、加速伤口愈合和抑制瘢痕生长的作用。广泛用于所有外科手术的术后处理运用、产科的断脐、急诊包扎、结扎手术等。

3.5 超细纤维止血敷料 是一种生物可吸收性止血敷料,该敷料以明胶为主,采用特殊纺丝工艺纺制的混合料纤维。该敷料很柔软,具有一定的强度及伸长性,对人体组织无毒、无刺激,不造成和其它组织黏连,具有促进皮肤伤口愈合,缩短伤愈合时间的作用,试验证明,其止血和吸收效果优于壳聚糖纤维敷料、明胶海绵、止血纱布等。

3.6 “血盾”速效止血粉 是军事医学科学院与深圳鸿华药业公司共同研制的新一代紧急外伤止血产品。速效止血粉的特点是直接作用伤口时具有选择性的吸收血液中的水分子,而不吸收血液中其他成分,导致血小板和血凝因子的浓缩,同时吸水后产生的热量增强了血小板的凝聚速度和凝聚能力,从而达到快速止血。速效止血粉产品实现了30秒钟内止住动、静脉流血的功效。

4 几种内出血止血敷料

4.1 FS foams 即纤维蛋白密封泡沫,它含有人工纤维蛋白原(1.9mg/ml)、人工凝血酶(36IU/ml)、氯化钙,在盐水中重新组成,经化学反应转变成泡沫[14],直接喷在出血表面,可以控制腹部钝性或穿透性损伤,在关闭结肠造口术中证明是一种有效的辅助密封剂。

4.2 Floseal 是一种结合明胶颗粒和特殊凝血酶的特别设计[7],是一个高黏度的凝胶止血剂,可用于局部或挤压受伤引起的大面积弥漫性出血,软硬组织都可以,在2分钟内控制出血,直接作用于伤口表面,但不能注入血管。

4.3 Hemadex 是一种新型内出血控制剂,运用了微孔聚合物颗粒技术[15],加快血液的分子筛脱水和自然凝血过程,可达到伤口出血部位立即止血的效果。

5 止血敷料的展望

当前,世界上局部战争不断,自然灾害、恐怖袭击等仍然威胁人类,流血在所难免,所以止血敷料的发展具有重要意义。传统敷料虽有一定的吸湿和保护作用,但愈合过程中易黏连伤口,造成二次损伤,并且透气性能较差,止血能力不足等。随着时间的推移,无纺布、止血粉等的出现,一些新的敷料在透气性能上、免伤口黏连、止血时间上已经取得了很大的进步。未来敷料的发展将着重在于:加强内出血止血敷料的发展;止痛、促进创伤修复方面;储存方面,要求能适应各种恶劣环境,如海水、低温、高温[2];中药敷料的发展,如云南白药,其成分中的三七和白芨[16]具有良好的止血凉血功能;还有智能敷料的发展,日本研制的一种含离子型活性药物的敷料,它可以通过渗出液的多少对活性药物中的离子交换程度进行制约,自动控制药物的释放速度。随着社会环境的变化,人们对敷料的要求越来越高,我们要把平时创伤救治敷料与战时急救敷料相互结合,为人类生命安全作好保障。

参考文献

[1]肖南.战伤救治中止血带的应用[J].人民军医,2005,48(1):54-55.

[2]倪云志.敷料在现代战争中应用的研究进展[J].解放军医学杂志,2004,29(4):366-368.

[3]关静,武继民,张西正,等.新型战创伤急救敷料的制备研究[J].医疗卫生装备,2007,28(9):1-3.

[4]黄少波,杨小敏,李秀红.不同止血材料在鼻内镜手术后填塞应用的疗效观察[J].海南医学,2004,15(12):93-94.

[5]王丽丽.纤维蛋白止血敷料在弹道伤中的应用[J].创伤外科杂志,1999,1(4):204.

[6]赵成如,史文红,金刚.医用敷料[J].中国医疗器械信息,2007,13(7):15-21.

[7]Pursifull NF,Morris MS,Harris RA,et al.Damage control management of experimental grade 5 renal injuries:futher evaluation of floseal gelatin matrix[J].J Trauma,2006,(2):346-349.

[8]陈菁.院前止血制剂的最新研究进展[J].创伤外科杂志,2005,7(1):10.

[9]张岫竹.新一代止血剂[J].创伤外科杂志,2006,8(2):13.

[10]王正国.战伤研究进展[J].解放军医学杂志,2004,29(6):465-467.

[11]汉瑞娟,王志红,桂莉.战伤急救器材的研究现状[J].中国误诊学杂志,2007,7(4):689-691.

[12]Wedmore I,Mcmanus JG,Pusater AE,et al.A special report on the chitosanbased hemostatic pressing: experience in current combat operations[J].J Trauma,2006,60(3):655-658.

[13]武继民,李荣,王岩.胶原海绵作为止血和创面敷料的临床实验[J].生物医学工程与临床,2003,7(3):152-154.

[14] Rossaint R,Cerny V.Key issues in advanced bleeding care in trauma[J].Shock,2006,26(4):322-331.