前言:中文期刊网精心挑选了高分子复合材料发展前景范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
高分子复合材料发展前景范文1
关键词:功能高分子材料;研究现状;发展前景
一、功能高分子材料的概念及开发意义
功能高分子材料,是指具有一定传递或存储物质、信息及能量作用的高分子和高分子复合材料。这使得功能高分子材料不仅具有原来的力学性能,同时还兼具如光敏性、导电性、化学反应活性、生物相容性、选择分离性、能量转换性等一系列其他特定性能。按照其功能划分,功能高分子材料主要可分为4类:①物理功能:具体包括超导、导电、磁化等功能;②化学功能:具体包括光的聚合、降解、分解等;③生物功能:具体来说包括生理组织及血液的适应性等;④介于化学、物理之间的功能:主要是指高吸水、吸附等功能方面。
功能高分子材料由于具备特殊的功能,受到了各个领域的广泛重视,特别是其不可替代的诸多特性都为很多领域的技术进步提供了基础和前提,甚至已经因此而诞生出了一批先进的、符合社会发展潮流的新产品。因此,当前各国都加大了对功能高分子材料的人力物力财力投入,面对时间各国的竞争,我国也需要尽快加大对功能高分子材料的研发力度,从而摆脱我国国防、电子、医药和其他尖端领域严重依赖国外功能高分子材料市场的困境。
二、功能高分子材料的研究现状分析
目前针对功能高分子材料的研究和应用现状,主要集中于功能高分子材料的光功能、电功能、生物功能以及反应型功能应用这几个方面:
1.光功能高分子材料
目前的光功能功能高分子材料的研究和应用主要体现在光固化材料、光合作用材料、光显示用材料以及太阳能光板这几个方面,这些具体的应用能通过对光的吸收、储存、传输、以及转换功能,实现对光能的有效利用。例如,目前已经能够通过光功能高分子材料的运用实现光传导来帮助植物的光合作用。此外,运用光功能高分子材料实现手机的太阳能充电也已经成为现实。
2.电功能高分子材料
电功能高分子材料,除了具备良好的导电性能外,其电导率还能根据应用状况的不同,在半导体、金属态和绝缘体的范围进行变化。此外,由于电功能高分子材料一般密度较小、易于加工,同时具备良好的耐腐蚀性,在当前的工业领域中也被广泛的应用。
3.生物功能高分子材料
生物功能高分子材料在生物领域被广泛的应用。如常见的有,由生物功能高分子材料所制成的人体植入物(视网膜植入物、脑积水引流装置等)以及人体义肢等。
4.反应型功能高分子材料
这种高分子材料是一种具备很强化学活性的高分子材料,能够有效的促进化学反应。它是通过对构建高分子骨架,并将小分子反应活性物质通过离子键、共价键、配位键或物理吸附作用进行骨架填充,以实现高分子功能才能的强化化学合成与化学反应的效果。
三、功能高分子材料的发展前景及趋势分析
功能高分子材料具备很多优势特征,这些都使得其更加符合经济发展和社会发展的需求,这也使得功能高分子材料的研究工作在各国的竞争中日益白热化。而去随着投入的不断深化,和技术的不断完善。新型功能高分子材料必然在我们的尖端科学及日常生产生活中扮演越来越重要的角色。功能高分子材料的几种发展趋势。
1.复合高分子材料
目前,功能高分子材料正逐步由均质材料向着复合高分子材料的方向发展,同时其材料的功能也向着多功能材料的方面发展。复合高分子材料往往是在一种基体材料(如金属、陶瓷、树脂等)上,加入增强或增韧作用的高聚物,再通过将多相物复合成一体,就形成了新的复合高分子材料,这种高分子材料能够充分发挥各相的性能优势,因此具有广泛的发展应用前景。在今后的发展中,航天科技、医疗卫生、生活家居、甚至汽车制造等领域,都需要各种高性能的复合高分子材料。
2.环境友好型高分子材料
经济的粗放发展,给整个地球h境都带来了深重的灾难,而随着人们对环保问题的日益重视,各国对各种材料的生态可降解性要求也日益突出。因此,环境友好型高分子材料的开发和深入研究工作,也引起了各国的重视。当前,生物降解技术和环境友好型高分子材料技术大多掌握在发到国家,我国目前还处于追赶阶段。随着世贸组织对环保观念的更加重视,环境友好型高分子材料在产品中的应用优势也将日益显著,为了把握这一趋势,我国要积极开发研究出有自主知识产权的生物降解技术和环境友好高分子材料。
环境友好型高分子材料,通过易水解的高分子的作用在各种生物酶的作用下,能够加速材料的水解反应,帮助材料进行生物降解。这种高分子材料目前研究的重点方向在理化性能、生物相容性、降解速率的控制以及缓释性等方向。
3.隐身性能高分子材料
隐身性能高分子材料的研究应用主要在军事领域,其也是当前各国的尖端军事技术的研究方向之一。以往的隐身材料多采用超微粒子和细微粉,实践证实,通过吸收衰减层、激发变换层以及反射层等多层材料的微波吸收,能够取得一定的吸波效果,达到隐身的目的。但是,由于材料制备复杂,且雷达技术的日益发展,给隐身技术提出了更高的挑战。此后,隐身性能高分子材料必然是向着厚度更小、质量更轻、功能更多以及频带更宽的方向发展。
高分子复合材料发展前景范文2
关键词:纳米复合材料;工程材料;光学材料;磁性材料
中图分类号:TB33 文献标识码:A 文章编号:1009-2374(2014)06-0007-02进入21世纪,各领域对高性能材料的依赖程度越来越高,纳米材料是一种应用性能很高的工程材料,其应用范围非常广泛。2008年,美国举办了材料科学学会,会议指出:“纳米材料工程将成为21世纪工程材料的重要组成部分。”纳米复合材料是纳米工程材料的重要分支,目前,很多企业已纷纷将技术研发目标转向纳米复合材料,并逐渐加大研究力度,扩大技术应用范围。
1 纳米复合材料理论概述
通过对纳米复合材料进行系统分析可知,可以按照材料性质将其划分为三种类型。
1.1 单体复合材料
单体符合材料是不同种类、成分的纳米粒子经过工业处理复合而成的,这种纳米固体的物理结构非常稳定,且化学性质也很可靠。因为组成成分少,所以单体复合材料纳米粒子的复合最完全,其分子结构之间的基团链不会随温度、压力的变化而变化。
1.2 双体复合材料
双体复合材料可以通过工业处理将纳米粒子均匀的分散到二维薄膜材料中,粒子在弥散过程中会产生均匀或不均匀两种分布状态,这两种分布状态的复合结构都具有一定的稳定性。均匀和非均匀弥散状态的薄膜基体表现出的层状结构具有明显的差异性,纳米粒子分散混乱的材料的构成层级种类很多,分散有序、均匀的材料层级种类较少。
1.3 多体复合材料
多体复合材料可以通过工业处理将纳米粒子均匀的分散到三维固体中,纳米粒子会通过外力作用,深入固体组织结构,改变其分子集团的分布情况,进而影响三维固体的物理性能和化学性能。多体复合材料的应用前景非常好,是当今纳米材料科研工作者研究的重点
问题。
2 纳米复合材料发展趋势分析
2.1 纳米复合涂层材料
纳米复合涂层材料的化学性质稳定,并且柔韧性好、硬度高、耐腐蚀性强,在工程材料表面涂抹这种防护材料不仅可以防止工程材料的破损,还能增加工程材料的防护功能。随着现代工业技术的发展,复合涂层材料得到了显著发展,单一纳米结构逐渐转变为多层纳米结构。美国著名纳米工程材料研究专家普修斯于2012年成功研制出了复合涂层纳米材料,这类纳米材料的抗氧化性能非常好,可以在高温条件下保持不褪色、不热化。对其材料进行强度检测可发现,该材料的涂层硬度高达20.SGpa,是碳钢强度的35倍。具体工艺流程如下:首先,用激光蒸发法去除钢表面的纳米结构,将金刚石纳米粒子涂抹在钢表面;之后,重复上述工艺步骤,在钢表面上涂抹两层金刚石纳米粒子;最后,在高温条件下对钢表面材料进行挤压复合。经过多次挤压,纳米复合涂层材料就此形成,经过加工,钢材料的硬度提高了23.4倍。
2.2 高力学性能材料
高力学性能是突出材料的强度、硬度等物理性能,工程材料经过力学改性之后,其物理性质会发生翻天覆地的变化。对原始材料进行改性实验虽然在一定程度可以提高材料的某些力学性能,但这种性能的提升具有很强的局限性,并不能真实的体现出材料的力学极限。经过纳米复合材料改性,高力学性能材料得到了非常显著的研究成果。高力学性能材料发展趋势,主要表现在以下几个方面:
(1)高强度合金。采用晶化法可以大大提升纳米复合合金材料的力学性能,对金属进行纳米复合实验,可以将材料转变成复合型纳米金属,如将铝进行纳米复合实验,铝会转化为过度族金属,这种金属结构的延展性和强度非常高。
(2)陶瓷增韧。纳米粒径很小,所以纳米粒子很容易就可渗透到细小分子结构中,粘合关联性并不紧密的各分子基团。在陶瓷增韧领域纳米复合材料起到了很好的促进作用,在碳化硅粉末中加入粒径为10μm的碳化硅粗粉,在高温高压条件下进行合成,合成之后碳化硅的物理性质会发生很大的改变,煅烧后的陶瓷材料的柔韧性明显增强了,断裂韧性提高了34.23%。
2.3 高分子基纳米复合材料
高分子材料近几年在我国工业领域应用十分广泛,高分子材料的物理性能稳定且可塑性好,所以在装饰行业中的发展前景非常广阔。采用纳米复合方式结合高分子基是我国纳米工程材料正在研究探讨的重要课题,目前我国科研专家已初步完成了部分高分子基纳米复合材料的研制工作。具体表现在:将铁和铜粉末按照4:5的比例进行研磨,研磨均匀后用高粒子显微仪器提取铁铜合金粉体,通过显微镜观察可知这种粉体的晶体结构稳定,晶粒间的距离很短。这种粉体和环氧树脂基团进行复合实验可以研制出高强度的金刚石材料,并且其材料还具有很强的静电屏蔽性能。
2.4 磁性材料
磁性材料是我国工业材料中研究难度最大的课题之一,因为磁性材料的电磁环境不好判断,所以在应用时经常会遇到复合材料因磁性过大导致使用。随着纳米复合材料的研发和投入使用,磁性材料将进入全新的发展阶段。人们在颗粒膜中发现了巨磁阻效应,纳米粒子在空间流动会被周围磁场带入顺磁基体当中,空间中的铜、铁、镍等磁性粒子都会附着在纳米粒子上。经过金属粒子和纳米粒子的复合,颗粒膜材料不仅会拥有强大的电磁感应,还会具有较高的耐热性能。
2.5 光学材料
传统光学材料的综合应用能力很差,其材料的物理性能大多只能满足导电性和导热性,其硬度和稳定性都很差。纳米复合材料诞生之后,人们逐渐找到了纳米粒子的发光原理。不发光的工程材料当减小到纳米粒子大小时,其粒子周围会因光色折射产生一定的光。在可见光范围内这些粒子会不断产生新的光,虽然这些材料的纳米粒子发出的光并不明显,且稳定度也很差,但是科研专家可以从这方面入手,研究纳米复合材料的发光性能。将具有代表性的工程材料作为可发光体,并对其分子结构转化为纳米粒子大小的发光体系,探讨如何提高其发光强度、完善其结构发光性能。由此可见,纳米复合很可能为开拓新型发光材料提供了一个途径。纳米材料的光吸收和微波吸收的特性也是未来光吸收材料和微波吸收材料设计的一个重要依据。
3 结语
通过上文论述可知,利用纳米粒子超强的附着能力,可以将纳米工艺和传统材料有机的结合在一起,这种复合型纳米材料具有重要发展意义。当今社会纳米复合材料的研究价值最高,其不仅在材料研究领域占有重要地位,在企业的发展中也是不可或缺的重要组成。
参考文献
[1] 牟季美,张立德.纳米复合材料发展趋势[J].工
程塑料应用,2012,13(8):113-126.
[2] 太惠玲.导电聚合物纳米符合薄膜的制备及其氨敏
特性研究[J].电子科技大学学报(社会科学
版),2011,13(11):136-138.
[3] 吴人洁.下世纪复合材料发展趋势[J].工程塑料
应用,2012,12(12):114-127.
[4] 高焱敏,王萍,王少明.聚合物基纳米复合材料
的研究进展[J].材料科学与工艺,2012,14
(9):105-113.
[5] 姚胜红.碳纳米管/聚偏氟乙烯高介电纳米复合材
料的显微结构控制与介电性能的关联[J].北京化
工大学学报(社会科学版),2013,13(22):
113-125.
[6] 丁国芳,王建华,黄奕刚.插层复合法制备聚合物
纳米复合材料的研究进展[J].塑料科技,2012,
高分子复合材料发展前景范文3
Abstract: Function polymer materials are rapidly developing in recently years. But there are not any generalizations to the development of shape memory polymers. The defined, mechanism, characterization and the preparation of the most simulative shape memory polymer are briefly introduced in this paper. Then the developing prospects are also reviewed.
关键词: 功能高分子材料;展望;形状记忆
Key words: functional polymer materials;outlook;shape memory polyer
中图分类号:TB324 文献标识码:A 文章编号:1006-4311(2012)31-0303-02
0 引言
随着社会的进步和科学技术的发展,一般的材料难以满足日益复杂的环境,因此需要具有自修复功能的智能材料——形状记忆材料。20世纪50年代以来,各国相继研究出在外加刺激的条件(如光、电、热、化学、机械等)经过形变可以回复到原始形状的具有形状记忆功能的材料,它可分为三大类,形状记忆合金、形状记忆陶瓷和形状记忆聚合物材料。高分子产业的迅速发展,推动了功能高分子材料得到了蓬勃发展。形状记忆聚合物材料的独特性,广泛应用于很多领域并发展潜力巨大,人们开始广泛关注[1]。
1 功能高分子材料研究概况
功能高分子材料是20世纪60年代的新兴学科,是渗透到电子、生物、能源等领域后开发涌现出的新材料。由于它的内容丰富、品种繁多、发展迅速,成为新技术革命不可或缺的关键材料,对社会的生活将产生巨大影响。
1.1 功能高分子材料的介绍 功能高分子材料是指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料,或具体地指在原有力学性能的基础上,还具有化学反应活性、光敏性、导电性、催化性、生物相容性、药理性、选择分离性、能量转换性、磁性等功能的高分子及其复合材料,通常也可简称为功能高分子,也可称为精细高分子或特种高分子[2]。
1.2 功能高分子材料分类 可分为两类:第一类:以原高分子材料为基础上进行改性或其他方法,使其成为具有人们所需要的且各项性能更好的高分子材料;第二类:是具有新型特殊功能的高分子材料[3]。
1.3 形状记忆功能高分子材料 自19世纪80年现热致形状记忆高分子材料[4],人们开始广泛关注作为功能材料的一个分支——形状记忆功能高分子材料。和其它功能材料相比的特点:首先,原料充足,形变量大,质量轻,易包装和运输,价格便宜,仅是金属形状记忆合金的1%;第二,制作工艺方简便;形状记忆回复温度范围宽,而且容易加工,易制成结构复杂的异型品,能耗低;第三,耐候性,介电性能和保温效果良好。
形状记忆聚合物(SMP)代表一项技术上的重要的类别刺激响应的材料,在于形状变动的反应。更确切地说,传统意义上的SMP是聚合物变形,随后能固定在一个临时的形状,这将保持稳定,除非它暴露在一个适当的外部刺激激活了聚合物恢复到它原来的(或永久的形状)。因此,相关的反应被称为聚合物内的形状记忆效应(SME)。虽然各种形式的外部刺激可以被用来作为恢复触发,最典型的一种是直接加热,通向温度增加[4]。
2 部分形状记忆高分子材料的制备方法
2.1 接枝聚乙烯共聚物 在形状记忆聚乙烯中,交联(辐射或化学)是必须的,但是交联程度过高会导致聚合物的加工性能不好,因此最好是将交联放在产品制造的最后一步:Feng Kui Li等采用尼龙接枝HDPE获得了形状记忆聚合物。他们采用马来酸酐和DC处理熔融HDPE在180℃反应5分钟,然后在230℃下和尼龙-6反应5分钟得到产物。SEM照片显示尼龙微粒小于0.3μm,在HDPE中分散良好,两者界面模糊,显示两者形成化学粘合;而尼龙和HDPE简单混合的SEM照片中两者界面明显试验同时表明,随着DCP含量和尼龙含量的提高,共聚物中形成了更多的共聚物具有和射线交联聚乙烯(XPE)SMP相似的形状记忆效应,形变大于95%,恢复速度好于射线交联的聚乙烯SMP,该聚合物在120℃左右形状恢复达到最大。对其机理研究表明,接枝在PE上的尼龙形成的物理交联对形状记忆效应有重要作用。值得注意的是该共混物是仅仅通过熔融混合得到的,工艺非常简单,而且采用的是通用聚合物,因此该方法值得推广[5]。
2.2 聚氨酯及其共混物 聚氨酯是含有部分结晶相的线性聚合物,该聚合物可以是热塑性的,也可是热固性的。聚氨酯类形状记忆材料,软段的结构组成和相对分子质量是影响其临界记忆温度的主要因素,硬段结构对记忆温度影响不大。
采用聚氨酯和其它聚合物共混,可以改善性能,得到所需要的产物。有报道采用聚己内酰胺(PCL)、热塑性聚氨酯(TPU)和苯氧基树脂制得的形状记忆材料。发现该产物随着组成的变化而玻璃化转化温度不同;同时发现PCL部分在混合物中结晶相消失,说明结晶过程被阻碍。改混合物具有形状记忆效应的原因在PCL/苯氧树脂作为了可逆相。该混合物的玻璃化温度可以通过TPU/苯氧基树脂的混合比例和种类决定,增加混合物中固定相和减少TPU链长度可以减少滞后效应。报道采用PVC和PU共混也能得到SMP。该混合物中存在PVC/PCL形成的无定形相,混合物的玻璃化的温度也随着PVC/PCL的组成变化而平稳的发生变化,固定相记忆着最初形状[6-8]。
3 国内外形状记忆高分子材料研究现状
3.1 国内研究现状 国内研究的形状记忆高分子材料多以聚氨酯和环氧树脂基为主,加入添加剂或固化剂进行改性,可以得到满足基本要求的SMPs,但是由于其自身缺点的约束,所以限制了其使用范围。最近几年来,形状记忆合金以利用聚合物为基体添加其他成分,突出各个优点进行对比,得到一些性能良好的形状记忆材料因此我们列举国内最新的SMPs研究。
魏堃等人将新型聚合物固化剂与环氧树脂(EP)进行机械共混,进行适度交联固化后,制出具有较低玻璃化转变温度(Tg)的无定型EP体系,得出结果显示适度交联固化的EP体系具有良好的形状记忆特性。
高淑春等人利用活化溅射方法制备TiO2薄膜,以Ni-Ti形状记忆合金生物材料为基体,附着在形状记忆和金材料的表面,其跟血液相容性比较好,因此具有较高的临床使用价值。
3.2 国外研究现状 对比国内,国外的SMPs发展比较早,例如:美国、日本、德国等由于具有先进的设备和理论基础,因此在各个方面相对国内都比较成熟,所以本人参考最近国外SMPs相关研究在此论述。
Y.C.Lu等人利用环氧基的形状记忆材料设计模拟服务环境所能反映出的预期性能要求即
①暴露在紫外线辐射下循环为125分钟;②在室温下沉浸油内;③浸泡在热水中49℃。一种新颖的高温压痕法评估适应条件的SMPs的形状和力学性能。结果表明对于有条件的比较一般环境条件SMPs的玻璃化转变温度降低与较高模和敏感应变速率。如果温度设定低环境条件影响的SMPs形状恢复能力。特别是紫外线暴露和浸入水中的SMPs回复率明显低与无条件的材料。当回复温度高于Tg,材料的回复能力相对保持不变。
R.Biju等人用双酚A(BADC)与缩水甘油醚或者双酚A(DGEBA)与苯酚螯合物(PTOH)通过一系列聚反应合成热固性聚合物表现出具有形状记忆性能。利用差示扫描量热分析、红外光谱及流变仪来表征其固化特征。以不同比例DGEBA/PTOH/BADC混合,研究了它们的弯曲、动态力学性能以及热性能;对于一个给定的成分,弯曲强度和热稳定性随着氰酸酯浓度增加而增加,而这些特性随着PTOH浓度的增加而降低,储存模量表现出相似的趋势。这个转变温度(Tt)随着整体氰酸酯含量的增加而增加。这些聚合物在形状记忆性能显示出良好的恢复形状,并且形状恢复时间减少。而显示恢复时间与形状恢复模量增加(Eg/Er)刚好相反。这个转变温度可调谐反应物组成及变形恢复速度随驱动的温度增加而增加。这些环氧基氰酸盐系统具有良好的热、力学和形状记忆特征很有希望用在智能电气领域。
4 展望
由于SMP有着丰富的后备资源,而且形状记忆的方式灵活,具有广阔应用和发展前景。因此本文认为,有很多重要因素影响将SMPs技术成功转化成生产应用,例如:标准化的不同方法描述为量化形状记忆材料的性能。应该进一步完善形状记忆原理,在分子结构理论和弹性形变理论基础之上,建立形状记忆的数学理论模型,为开发新材料奠定了理论基础;运用分子结构理论、实验设计原理和改性技术知识,提高形状记忆各项性能、丰富品种、满足不同的应用需要,增强应用和开发研究,拓宽应用领域,尽快转化为生产力。
形状记忆高分子与形状记忆合金相比具有感应温度低,且形状记忆高分子因其独特的优点而具有广泛的应用前景,但是我们也应该看到在开发应用上仍存有一些不足[22]:形变回复力小;只有单程形状记忆功能,没有双程性记忆和全程记忆等性能;优化制作设计与工艺,开发更多优秀的品种,在研究聚合物基的SMP中有许多重要工作需要我们一步步努力去做,在完善SMP过程中,同时要研究复合社会不同需求的产品。
参考文献:
[1]陈义镛.功能高分子[M].上海:上海科学技术出版社,1998:1-5.
[2]江波等.功能高分子材料的发展现状与展望[J].石油化工动态,1998,6(2):23-27.
[3]古川淳二.对21世纪功能高分子的期待[J].聚合物文摘,1994,(6):17.
[4]Tao xie. Recent advances in polymer shape memory[J].Polymer, 2011,(52):4985-5000.
[5]Han Mo Jeong Europen polymer ourn [M].2001,(37):2245~2252.
[6]饶舟等.形状记忆聚氨酯高分子材料的研究进展[J].聚氨酯,2011,110(7):1-7.
高分子复合材料发展前景范文4
随着纳米技术在医学领域中的深入研究,临床诊断技术及治疗水平也得以提高。本文就纳米技术、纳米技术在肿瘤治疗中的应用、用于肿瘤治疗的纳米粒子作一简要阐述,并提出相关建议和期望。
关键词:
纳米技术;肿瘤诊断;肿瘤治疗
目前,肿瘤已经严重地威胁着人类的健康,如何提高肿瘤诊断的准确性和治疗的靶向性一直都是临床研究的重点,纳米技术是指在纳米尺寸(1~100nm)内,研究电子、原子和分子的运动规律和特性的一种高新技术,该技术在医学领域有着广阔的应用和发展前景,本文就纳米技术在肿瘤的诊断和治疗中的应用做一简要阐述。
1纳米诊断技术在肿瘤中的应用
当前,临床上针对肿瘤的多种诊断手段都存在准确性和灵敏度低的问题,纳米技术的出现可大大改善这一局面。
1.1细胞分离技术
一直以来,从大量外周血中筛选出极少量的肿瘤细胞是一项难题,纳米细胞分离技术尤其是免疫磁性分离技术的出现有助于快速获取细胞标本,使其成为可能。目前,Wang等[1]发现基于该技术产生的循环肿瘤细胞(circulatingtumorcells,CTCs)检测表明,在乳腺癌等领域,肿瘤患者的预后与其外周血中的CTCs计数有着明显的相关性,甚至在化疗过程中,可以反映患者对当前化疗方案是否敏感,有一定的辅助治疗作用。
1.2纳米造影剂
将无机纳米粒子用作新型的生物造影材料,不仅可以提供较好的检测信号对比度和生物分布度,并有望将现有解剖学层面的造影技术推向分子水平从而提高诊断效率。Chen等[2]研究表明包裹金纳米棒-液态氟碳的纳米级造影剂,实现了体外超声/光声双模态增强显影。另有研究表明多功能纳米造影剂Fa-PEI-SPIO可高效负载MRI和荧光造影剂实现对肝癌细胞的高效率敏感显像,并同时实现目的基因的传输[3,4]。
1.3纳米传感器
纳米传感器可获取活细胞内多种电、化学反应的动态信息,用于监测肿瘤细胞中的异常情况,对认识肿瘤的发生及指导肿瘤的诊断与治疗都有着深远的意义。Wang等[5]已开发出一种含有嵌入金纳米颗粒的碳基传感器的装置Nano-nose,分析了呼吸气体成分,确定肺癌患者存在的气体成分。
2纳米技术在肿瘤治疗中的应用
化疗作为肿瘤治疗的重要手段,存在毒副作用大的问题,纳米技术的引入能够提高化疗的靶向性,为肿瘤的治疗提供了新的思路。
2.1纳米靶向载体系统在肿瘤治疗中的应用
纳米药物载体即溶解或分散有药物的各种纳米颗粒,如纳米囊、纳米球、纳米脂质体等。纳米靶向载体因其表面经过生物或理化修饰后具有靶向作用,可以作为良好的肿瘤药物与基因载体,具有比表面积大、无免疫原性、在血液中有较长的循环时间等特点,大大降低了药物对机体的毒副作用。Yao等[6]以PVP-β环糊精作为亲水嵌段,金刚烷—聚天冬氨酸为疏水嵌段构建了嵌段聚合物,其自组装形成的纳米粒尾静脉注1h后就能到达肿瘤部位,表现出明显的肿瘤靶向性。Gao等[7]将细菌膜包覆到30nm左右的金纳米粒表面(BM-AuNP)用于淋巴结靶向。
2.2纳米中药在肿瘤治疗中的应用
纳米中药是运用纳米技术制造的粒径小于100nm的中药有效成分、原药及其复方制剂。同传统中药相比,纳米中药对一些肿瘤细胞株和动物肿瘤甚至人体晚期癌肿均显示了良好的抑制效应。Huang等[8]成功制备了粒径为97.5nm的冬凌草三嵌段共聚物纳米胶束,并与冬凌草甲素进行了对比研究,结果表明冬凌草三嵌段共聚物纳米胶束对小鼠H22瘤体的抑制率明显高于传统的冬凌草甲素。
2.3磁控纳米载药系统在肿瘤治疗中的应用
多项研究表明磁控纳米载药系统在肿瘤的治疗中能够达到很好的靶向效果,具有很大的应用前景。
2.3.1磁控纳米载药系统
磁控纳米载药系统具有磁特性,在外加磁场的作用下,抗肿瘤药物能及时、定点、定向地聚集到病灶处,既能最大程度的浓集效应分子,又能使体内磁性微粒在治疗结束后得以彻底有效的清除,以减少其在体内慢性蓄积的毒性作用。Assa等[9]的研究表明,磁性纳米药物运载系统在肿瘤的治疗中具有极大的应用潜力。
2.3.2磁性纳米材料对肿瘤的热疗作用
磁热疗即应用直接或静脉注射的方法将产热材料定向汇聚于肿瘤部位,在交变磁场的作用下产生磁热效应,将肿瘤组织加热至42~48℃高温,以使肿瘤细胞死亡的新技术。Beik等[10]将磁性阳离子脂质体注射到MM46小鼠乳腺癌中,利用交变磁场使肿瘤表面温度达到45℃,经过几次重复磁热疗,所有小鼠的肿瘤均完全退化。该技术如可同时利用受体—配体特异性结合的特性,将磁粒子准确输送到肿瘤组织,将能达到靶向热疗的目的。
2.3.3磁性纳米微球对肿瘤血管的磁控栓塞作用
磁性纳米微球因具有体积微小、磁控导向等特点,能够在外加磁场的作用下进入并滞留在肿瘤组织的末梢血管床,部分或完全地阻断血管内的血流。惠旭辉等[11]用自制的聚甲基丙烯酸甲醋磁性微球对血管内栓塞进行了探讨实验表明,PMMA磁性微球具有磁响应能力强、磁控栓塞效果好,在高血流速情况下仍能实现靶位栓塞等优点。
2.4纳米控释系统在肿瘤治疗中的应用
纳米控释系统在肿瘤药物输送方面的优越性得益于其可缓释药物、减少给药剂量、提高药物的稳定性等特性。Zhang等[12]利用对酸性敏感的腙键将抗癌药物阿霉素共价键连在介孔二氧化硅的表面,同样可以实现pH敏感的抗癌药物阿霉素的释放,从而有效地抑制人宫颈癌细胞的增殖。
3用于肿瘤治疗的纳米粒子
为提高肿瘤的疗效,在传统材料的基础上开发出生物相容性及可降解性好、缓控释速度适中、靶向性强的纳米制剂成为研究的重中之重。
3.1可生物降解的天然高分子聚合物
3.1.1多糖类
3.1.1.1壳聚糖
壳聚糖是一类无毒且具有良好生物相容性、可塑性和成膜性的聚多糖,被用作靶向给药载体而降低药物的毒副作用。Abouelmagd等[13]将低相对分子质量(低于6500)的壳聚糖通过多巴胺聚合的方法连接到聚乳酸—羟基乙酸共聚物(PLGA)上,减少了巨噬细胞的吞噬,增加了酸性环境下细胞对药物的摄取。
3.1.1.2海藻酸钠
海藻酸钠具有无毒及可生物降解等优点。Guo等[14]制备了一种以甘草次酸为肝靶向因子的海藻酸钠pH响应型靶向纳米给药系统,研究表明,该纳米粒的生物利用度和半衰期及其对肿瘤细胞的抑制率均有显著提高。
3.1.1.3透明质酸
透明质酸(Hyaluronicacid,HA)又名玻尿酸,除具有良好的生物相容性、可降解性及非免疫原性等特点外还具有主动靶向到CD44受体的作用,因此可作为靶向因子用于修饰其它载体材料,促进其对肿瘤组织的靶向性[15]。
3.1.2蛋白类
3.1.2.1白蛋白
白蛋白受体(gp60、gp30、gp18等)广泛存在于肿瘤组织内新生血管内皮的细胞膜上,故白蛋白可作为构建药物载体的优良材料。Ru-go等[16]将454例乳腺癌患者随机分为白蛋白结合型紫杉醇(nab-PTX)组和紫杉醇注射剂(CrE-PTX)组,结果显示,nab-PTX组缓解率显著高于CrE-PTX组(33%vs.19%),并且nab-PTX治疗组无过敏反应出现,提示nab-PTX治疗乳腺癌的安全性和有效性优于CrE-PTX。
3.1.2.2酪蛋白
酪蛋白毒性较低且有较高的生物相容性,是理想的药物载体。有研究人员在合成的酪蛋白纳米粒子中负载了顺铂,通过近紫外活体成像技术观察到该粒子能够在肿瘤部位有效地富集,显示出了较好的肿瘤靶向作用[17]。
3.1.2.3脂蛋白
脂蛋白是一种大量存在于人体的天然脂质运输载体,作为载体材料能够延长药物在体内的循环时间。Ding等[18]将载脂蛋白apoA-I和穿膜肽(CPP)插入到脂质纳米粒表面构建了一个双功能的仿生HDL用于藤黄酸的递送,提高了对肿瘤组织的靶向性。然而由于脂蛋白均来源于血浆,既难以大规模生产,又在生物安全性方面也受到质疑,因此Simonsen等[19]开发出了新型的仿HDL纳米载体颗粒(HPPS)。
3.1.2.4乳铁蛋白
Zhang等[20]制备了藤黄酸—乳铁蛋白纳米粒,用于提高药物的口服吸收和抗肿瘤活性,同时降低药物的毒副作用。此外,利用乳铁蛋白受体存在于脑毛细血管内皮细胞上的依据,可对脑部肿瘤发挥治疗作用。
3.2可生物降解的合成高分子聚合物材料
聚乳酸(PLA)、聚乳酸聚乙醇酸共聚物(PLGA)、聚羟基乙酸(PGA)是乳聚酯类高分子材料,现已成为药剂学领域研究最多的载体材料之一。Kwak等[21]将紫衫醇负载在PEG-PLA纳米粒上,同时采用MT1-AF7p修饰纳米粒,实现了对胶质瘤细胞的靶向治疗作用。当前对共聚物的研究也较为常见,如聚乳酸/聚乙醇酸-聚乙二醇共聚物(PLA/PLGA-b-PEG)等[22]。
3.3不可生物降解的靶向纳米材料
3.3.1碳纳米管
碳纳米管是由层状结构的石墨片卷曲而成,因其独特的中空结构和纳米管径可作为递药载体。Sajid等[23]用生物大分子对碳纳米管进行了非共价修饰,除提高其对肿瘤的亲和力外还避免了网状内皮系统对它的迅速清除,降低对正常细胞的毒副作用。
3.3.2纳米石墨烯及其衍生物
近几年在生物医学领域的应用研究方面石墨烯及其衍生物——氧化石墨烯(grapheneoxide,GO)发展迅速。GO含有大量的羧基、羟基和环氧基团,这些含氧活性基团的引入不仅使其拥有较好的稳定性和水溶性,而且可使其更易于被修饰而具有了功能化作用,其中,作为药物载体就是其重要的功能之一。Chen等[24]报道了一种新颖的药物靶向递送系统,即通过原位还原法将银纳米粒负载于GO上,再载药,制得的递药系统可通过表面增强拉曼散射(SERS)—荧光结合光谱检测,观察到其中药物的胞内释放行为,故能用于癌细胞内的药物输送和成像。
3.3.3金纳米粒
金纳米粒(goldnanoparticles,GNPs)是一种新型的载体材料,鉴于其表面单层被修饰后可与多种药物结合的特点而受到了广泛的关注。Favi等[25]通过巯基聚乙二醇与紫杉醇共价连接之后再与金纳米粒子偶联,制备了PTX-PEG-GNP共聚物,该共聚物不仅提高了药物的稳定性,也增加了药物在肿瘤细胞内的聚集和肿瘤杀伤效果。
3.3.4介孔二氧化硅
介孔二氧化硅因其不同的孔径可以直接包埋药物,还可与其他载体材料合用,连接适当的靶向因子制成靶向纳米载体以发挥快速杀伤这些肿瘤细胞的作用。Wang等[26]首先制备了Fe3O4@SiO2核—壳纳米粒,并进一步合成Fe3O4@MgSiO3磁性介孔纳米复合材料,并将之用于在体靶向研究和抗肿瘤体外体内研究,结果显示,人肝母细胞瘤耐药细胞Hep-G2/MDR细胞对复合材料多柔比星摄取较游离多柔比星溶液有5倍的增幅。
3.3.5磁性纳米靶向载体材料
磁小体作为载体材料,其膜上存在大量的活基团,可通过氨基、羧基、巯基以及分子架桥的方式偶联药物。Deng等[27]将抗肿瘤药物阿糖胞苷成功负载于磁小体表面,所得的纳米粒径在(72.7±6.0)nm,其不仅具有长循环作用,还能改善阿糖胞苷的释药行为,解决了药物的突释现象。
4存在的问题及展望
综上所述,纳米技术在肿瘤的治疗方面展现出了巨大的潜力,纳米颗粒的发展为现代医学进步带来了许多可能性。但是,本研究认为关于纳米技术的研究尚存在一些问题:①研究内容多聚焦在体外研究;②趋向于评价急性毒性和死亡率,评价慢性毒副作用及致病率的研究很少[28]。此外,对于纳米技术应用于肿瘤的治疗,本研究有以下设想:①采取多学科联合攻关,将更多效果更好的纳米中药应用于肿瘤的治疗。②有针对性地将不同类型的高分子材料组合起来,取长补短,使所得的复合材料具有更多功能将会是研究靶向给药制剂的重点。③纳米粒子在肿瘤个体化治疗上应具有广阔的发展前景。
参考文献:
[1]惠旭辉,高立达,何能前.聚甲基丙烯酸甲醋磁性微球血管内栓塞实验研究[J].四川医学,2001,22(10):928-929.
高分子复合材料发展前景范文5
关键词:高分子材料抗静电研究
静电广泛地存在于自然界和日常生活之中,如人们每时每刻呼吸的空气每厘米就含有100500个带电粒子;自然界的雷电;干燥季节里人身上化纤衣物由于摩擦起电而粘附在身体上,这一切都是比较常见的静电现象。实际上,静电在生物工程中有着重要的应用。
一、高分子抗静电的方法概述
高聚物表面聚集的电荷量取决于高聚物本身对电荷泄放的性质,其主要泄放方式为表面传导、本体传导以及向周围的空气中辐射,三者中以表面传导为主要途径。因为表面电导率一般大于体积电导率,所以高聚物表面的静电主要受组成它的高聚物表面电导所支配。因此,通过提高高聚物表面电导率或体积电导率使高聚物材料迅速放电可防止静电的积聚。抗静电剂是一类添加在树脂或涂布于高分子材料表面以防止或消除静电产生的化学添加剂,添加抗静电剂是提高高分子材料表面电导率的有效方法,而提高高聚物体积电导率可采用添加导电填料、添加抗静电剂或与其它导电分子共混技术等。
(一)添加导电填料
这类方法通常是将各种无机导电填料掺入高分子材料基体中,目前此方法中所使用的无机导电填料主要是碳系填料、金属类填料等。
(二)与结构型导电高分子材料共混
导电高分子材料中的高分子(或聚合物)是由许多小的重复出现的结构单元组成,当在材料两端加上一定的电压,材料中就有电流通过,即具有导体的性质,凡同时具备上述两项性质的材料称为导电高分子材料。与金属导体不同,它属于分子导电物质。根本上讲,此类导电高分子材料本身就可以作为抗静电材料,但由于这类高分子一般分子刚性大、不溶不熔、成型困难、易氧化和稳定性差,无法直接单独应用,一般作导电填料与其它高分子基体进行共混,制成抗静电复合型材料,这类抗静电高分子复合材料具有较好的相容性,效果更好更持久。
(三)添加抗静电剂法
1.有机小分子抗静电剂。有机小分子抗静电剂是一类具有表面活性剂特征结构的有机物质,其结构通式为RYx,其中R为亲油基团,x为亲水基团,Y为连接基。分子中非极性部分的亲油基和极性部分的亲水基之间应具有适当的平衡与高分子材料要有一定的相容性,C12以上的烷基是典型的亲油基团,羟基、羧基、磺酸基和醚键是典型的亲水基团,此类有机小分子抗静电剂可分为阳离子型、阴离子型、非离子型和两性离子型4大类:阳离子型抗静电剂;阴离子型抗静电剂;非离子型抗静电剂;两性型抗静电剂。
导电机理无论是外涂型还是内加型,高分子材料用抗静电剂的作用机理主要有以下4种:(1)抗静电剂的亲水基增加制品表面的吸湿性,吸收空气中的水分子,形成“海一岛”型水性的导电膜。(2)离子型抗静电剂增加制品表面的离子浓度,从而增加导电性。(3)介电常数大的抗静电剂可增加摩擦体间隙的介电性。(4)增加制品的表面平滑性,降低其表面的摩擦系数。概括起来一是降低制品的表面电阻,增加导电性和加快静电电荷的漏泄;二是减少摩擦电荷的产生。
2.永久性抗静电剂。永久性抗静电剂是一类相对分子质量大的亲水性高聚物,它们与基体树脂有较好的相容性,因而效果稳定、持久、性能较好。它们在基体高分子中的分散程度和分散状态对基体树脂抗静电性能有显著影响。亲水性聚合物在特殊相溶剂存在下,经较低的剪切力拉伸作用后,在基体高分子表面呈微细的筋状,即层状分散结构,而中心部分呈球状分布,这种“蕊壳”结构中的亲水性聚合物的层状分散状态能有效地降低共混物表面电阻,并且具有永久性抗静电性能。
二、我国高分子材料抗静电技术的发展状况
我国许多科研机构和生产企业已陆续开发出一些品种,以非离子表面活性剂为主,目前常用的品种有,大连轻工研究院开发的硬化棉籽单甘醇、ABPS(烷基苯氧基丙烷磺酸钠)、DPE(烷基二苯醚磺酸钾);上海助剂厂开发目前多家企业生产的抗静电剂SN(十八烷基羟乙基二甲胺硝酸盐),另外该厂生产的抗静电剂PM(硫酸二甲酯与乙醇胺的络合物)、抗静电剂P(磷酸酯与乙醇胺的缩合物);北京化工研究院开发的ASA一10(三组份或二组份硬脂酸单甘酯复合物)、ASA一150(阳离子与非离子表面活性剂复合物),近年来又开发出ASH系列、ASP系列和AB系列产品,其中ASA系列抗静电剂由多元醇脂肪酸酯、聚氧乙烯化合物等非离子表面活性剂;ASB系列产品则为有机硼表面活性剂(主要是硼酸双多元醇脂与环氧乙烷加成物的脂肪酸酯)与其他非离子表面活性剂复合而成;ASH和ASP系列主要是阳离子与非离子表面活性复合而成,杭州化工研究所开发的HZ一1(羟乙基脂肪胺与一些配合剂复合物)、CH(烷基醇酰胺);天津合成材料工业研究所开发的IC一消静电剂(咪唑一氯化钙络合物);上海合成洗涤剂三厂开发生产的SH系列塑料抗静电剂,已经形成系列产品,在使用效果和性能上处于国内领先地位,部分品种可以替代进口,如SH一102(季铵盐型两性表面活性剂)、SH一103、104、105等(均为季铵盐型阳离子表面活性剂),SH抗静电剂属于结构较新的带多羟基阳离子表面活性剂;济南化工研究所JH一非离子型抗静电剂。(聚氧乙烯烷基胺复合物)等;
河南大学开发的KF系列等,如KF一100(非离子多羟基长碳链型抗静电剂)、KF-101(醚结构、多羟基阳离子永久型抗静电剂),另外还有聚氧乙烯醚类抗静电剂,聚乙烯、聚丙烯和聚氯乙烯专用抗静电剂202、203、204等;抗静电剂TM系列产品也是目前国内常用的,主要用于合成纤维领域。
从抗静电剂发展来看,高分子型的永久抗静电剂是最为看好的产品,尤其是在精密的电子电气领域,目前国内多家科研机构利用聚合物合金化技术开发出高分子量永久型抗静电剂方面已取得明显进展。
三、结语
我国合成材料抗静电剂行业发展前景较好,针对目前国内研究、生产、应用与需求现状,对我国合成材料抗静电剂工业发展提出以下建议。
(一)加大新品种开发力度
近年来国外开发的高性能伯醇多聚氧化乙醚类非离子型表面活性剂;用于聚碳酸酯的脂肪酸单缩水甘油酯;用于磁带工业的添加了聚氯化乙烯醚醇的磷酸衍生物;适应于聚烯烃、聚氯乙烯、聚氨酯等多种合成材料的多元醇脂肪酸酯和三聚氰胺加成物等,总之国内科研院所应根据我国合成材料制品要求,开发出多种高性能、环保无毒的抗静电品种,并不断强化应用技术研究,以满足国内需求。
(二)加快复
合抗静电剂和母粒的研究与生产
今后要加快多种结构抗静电剂及其他塑料助剂的复配,向适应范围广、效率高、系列化、多功能、复合型等方向发展。另外合成材料多功能母粒作为助剂已经成为今后合成树脂加工改性的重要原材料,如着色、阻燃、抗菌、成核等母粒在国内开发方兴未艾,国内要加快抗静电母粒的开发与研究,促进我国抗静电剂工业发展。
参考文献:
[1]高绪珊、童俨,导电纤维及抗静电纤维[M].北京:纺织工业出版社,1991.148154.
高分子复合材料发展前景范文6
材料是工业的“粮食”。新材料与信息技术、生命科学并称为21世纪的三大关键技术,是高技术的先导和基础,未来发展潜力无限。在振兴老工业基地过程中,我们要抓住机遇,发挥优势,集中力量做大做强新材料产业,着力推动全省产业结构调整,引领龙江走新型工业化道路,实现经济社会科学发展。
发展新材料产业是面向新世纪竞争发展的重要支撑
新材料产业具有广阔的发展前景。新材料的发展起步于国防和战争需要、核能的利用和航空航天技术的发展需求。进入21世纪以后,卫生保健、环保、能源、经济持续增长以及信息处理和应用成为新材料发展的最根本动力,极大地促进了新材料的发展。据统计,到2006年全球新材料产值超过了5 000亿美元,是增长最快的产业之一。尤其是半导体专用新材料、磁性材料、激光晶体、锂离子电池、生物医用材料、纳米材料、环境工程材料等,都在以远高于传统产业的速度发展。近年来我国新材料市场快速膨胀。据有关机构预测,包括磁性材料、生物医用材料、信息功能陶瓷材料、超导材料、纳米材料、半导体材料、有机发光材料等,市场规模在2010年将达到823亿元,在2012年将达到1 300亿元。其中,光电新材料、电池新材料将“唱主角”,在新材料产业结构中的比例呈上升趋势。
新材料产业已经成为新一轮竞争发展的制高点。美国、日本、欧洲是世界新材料生产的主要国家。它们高度重视新材料产业的发展,制定了相关产业和科技发展计划,如美国的21世纪国家纳米纲要、光电子计划、光伏计划、下一代照明光源计划、先进汽车材料计划,日本的纳米材料计划、21世纪之光计划,德国的21世纪新材料计划,欧盟的纳米计划等。发展的重点是信息材料、生物医用材料、新能源材料、航空航天材料、生态环境材料、纳米材料、超导材料等。近年来,由于新材料在全球科技竞争中的地位日益重要,美国、日本等发达国家,以及印度、巴西等发展中国家纷纷加大了对新材料开发和研究的资金投入,使这一领域的竞争更加激烈。长期以来,我国也非常重视新材料产业的创新与发展,取得了令人瞩目的进展,在一些重点领域形成了自己的特色和优势。目前我国在长江三角洲、珠江三角洲、环渤海等区域,依托市场优势建立了一批新材料产业基地,如江阴新材料产业带、宁波新材料成果转化及产业化基地等。西部大开发和振兴东北老工业基地战略实施以后,东北和西部也涌现了一批依托资源优势和产业优势的特色材料产业基地,如营口的镁质材料、蒙西的稀土材料等。随着产业和市场的不断成熟,国内新材料基地内逐渐形成了相互协作的产业集群,不仅提高了新材料产业的创新能力,并辐射和带动了周边区域与相关产业的发展。
把新材料产业培育成支柱产业对我省产业结构调整优化具有重要作用。我省是一个资源大省,是能源、原材料基地,煤、木、油等资源型产业占了全省工业很大比重。由于长期的开发利用,林木、石油以及煤炭等资源都在衰减,化石资源的不可再生性,决定了我们必须抓住时机,抓紧进行产业结构的调整和优化升级。而新材料如铝镁合金材料、复合材料、硅基材料、新能源材料、高分子材料、新型建筑材料等呈现加快发展趋势,在我省工业结构中的位置将越来越重要。因此,我们必须认清形势,在较短的时间内,摆脱对自然资源的过度依赖,依托科技教育和人力资源,努力在市场前景好、附加值高、可持续性强的新材料等产业上做文章,不断降低采掘等传统产业的比重,促进全省更快地走上新型工业化道路,走上科学发展的道路。今年总书记和副总理来黑龙江,都把摆脱对资源的过度依赖、加快产业结构调整,实现可持续发展作为重大问题提出来。我们必须从全省发展大局出发,从落实科学发展观的高度出发,深刻认识形势,抓紧工作落实,大力发展高新技术产业特别是新材料产业,全力推进产业结构调整和优化升级,促进全省经济社会走上科学发展轨道。
我省在发展新材料产业上具有一定的比较优势
一是具有丰富的资源优势。我省矿产储量丰厚,可开发利用的物产众多。在已查明的131种矿产资源中,探明储量的75种,居全国首位的有石油、石墨、矽线石、颜料黄黏土、长石、铸石用玄武岩、岩棉用玄武岩、火山灰、玻璃用大理岩和水泥用大理岩10种,全省64种主要矿产资源保有储量的潜在总价值为1.4万亿元。
二是具有一定的产业基础优势。截止2008年,我省拥有规模以上新材料企业257户,完成主营业务收入约172亿元,占规模以上工业的2.2%,主要产品有铝镁合金材料、合金钢材料、石墨制品、硅基材料、新型能源材料、高分子材料、农药及中间体、油田化学品、新型建筑材料、复合材料等。有一批有实力、研发和市场拓展能力较强的企业,有些产品达到国内先进水平,部分技术及产品居国内领先地位。
三是具有较强的科技研发优势。我省拥有国内一流的大专院校和科研院所。哈尔滨工业大学与材料科研密切相关的学院有3个,现有4个国家级重点实验室。哈尔滨工程大学材料科学与化学工程学院建有4个研究创新平台。哈尔滨理工大学材料科学与工程学院设有高分子材料系、金属材料系、材料成型及控制工程系、无机非金属材料系、材料分析测试中心以及近20个研究所、研究室。还有哈尔滨玻璃钢研究院、哈尔滨焊接研究所、省石油化学研究院、大庆化工研究中心等一批研究机构。同时,我省新材料企业中,还有一批国家级企业技术中心和省级企业技术中心,为新材料企业的健康、快速发展提供了可靠的技术支持。
四是具有增长的市场需求优势。我省装备、石化、能源、食品等四大支柱产业进一步发展壮大,航空航天、电子信息、生物、新能源技术与装备、环保装备等新兴产业发展迅速,冶金、建材、森工、轻纺等传统产业改造提升步伐加快,这些产业的发展壮大,都需要新材料的支撑。同时,随着我国工业化的发展,产业规模扩大、结构升级将继续推进,也为新材料的发展创造了广阔的省外市场空间。
下大气力将我省新材料产业做大做强
一是明确新材料产业发展的战略。要用5~10年的时间,把我省建设成为产业结构高级化、产业发展聚集化、产业服务现代化、产业水平国际化的具有我省特色的国内一流新材料产业基地。在发展目标上,今后5年年均增长速度达到30%以上,到2015年新材料主营业务收入达到1 000亿元。在此基础上,下一个5年全省新材料产业整体实力要进一步提升,自主创新能力明显提高,产业结构进一步优化。目前,全省要重点建设新型镁合金材料、钛合金材料、新型合金钢、新型高强高效焊接材料、人工晶体、聚烯烃及改性材料等“六个优势特色产业链”,建设高档石墨制品、大直径硅单晶及新型半导体材料、新型陶瓷材料、有机高分子材料、复合材料、特种铜合金材料、新型建筑材料等“七个优势特色产业群”。
二是制定和全面落实好扶持政策。抓紧制定出台《黑龙江省加快新材料产业发展指导意见》,明确提出我省新材料产业发展的目标、方向和重点,指导我省新材料产业发展。同时,制定扶持新材料产业发展的政策和措施,包括财税政策,金融政策、土地政策、环保政策、政府采购政策、人才政策等各个方面。对进入新材料领域的投资、企业或者人才,给予显著的优惠,鼓励资源向新材料产业集聚。政府要切实转变职能,转变工作作风,改进服务经济发展的手段和方法。
三是要构建富有活力的创新发展体系。尽快建立既适应市场经济规律和科技发展规律,又具有我省特色的科技创新体系。从根本上解决科研成果转化率不高、科研成果外流、企业不肯承担中试风险、科研单位没有实力进行中试等一系列问题。尤其要探索“股份制”和“捆绑式项目开发”等利益联结机制,使科研单位和企业之间实现风险共担、利益共享、同心创业、加快发展的良好机制。
四是建立多元化投融资体系。加大财政的资金支持,安排研究开发的长期专项计划,为新材料科技和产业的发展提供长期保证。采取切实可行的措施引导和鼓励企业加大科技投入费用,利用政策降低企业投资风险,提升企业的创新能力。充分利用政府资金吸引更多的社会资金和民间资本介入,建立新材料产业投资的创新机制。要完善投融资政策,支持民间资本建立产业基金模式的风险投资机制。金融机构对市场发展前景好、技术含量高、企业信誉好、处于扩张期的新材料企业,要在提高授信额度、扩大流动资金放贷规模、简化放贷手续等方面给予支持。鼓励金融机构开展知识产权质押及股权质押融资,建立风险分担机制。黑龙江辰能担保公司等各级信用担保机构对新材料企业,要主动优先提供贷款担保服务。
五是促进军民科技与产业的资源整合。筛选一批科技含量高、市场潜力大、经济效益显著的民项目,在省科技创新专项和新型工业化专项资金中拿出一定额度,专门支持军民结合科技创新和产业化发展。强化沟通协调,积极与相关单位沟通协调,共同做好资金、项目、产品研发、发展外部环境等方面工作,协调解决军民结合产业基地发展中的一些重大问题。建立军民科技管理协调机制和军民两用重大科技项目联合攻关机制,形成军民两大研发体系协同配合与资源共享的创新平台。