数学建模算法与实现范例6篇

前言:中文期刊网精心挑选了数学建模算法与实现范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

数学建模算法与实现

数学建模算法与实现范文1

【关键词】数学建模;数学教育;数学改革

中图分类号:O1-0文献标识码A文章编号1006-0278(2013)06-196-01

一、引言

数学在本质上就是在不断的抽象、概括、模式化的过程中发展和丰富起来的,数学的学习只有深入到“模型”上,才是一种真正的学习。在利用数学方法分析和解决实际问题时,要求从实际错综复杂的关系中找出其内在的规律,再用数学的语言,数字、公式、图表、符号等刻画和描述出来,然后经过数学与计算机的处理即计算、迭代等得到定量的结果,供人们进行分析、预报、决策和控制,这种把实际问题进行合理的简化假设归结为数学问题并求解的过程就是建立数学模型,简称建模。而这种成功的方法和技术反映在培养专门人才的大学教学活动中,就是数学建模教学和竞赛。

二、数学建模的发展现状及发展趋势

建模在20世纪六七十年代进入西方国家的一些大学。近三十年建模在美国、英国、加拿大、日本、俄罗斯、德国等国家数学教育界成为一个热门的话题,并在国际数学教育大会上占有重要地位。

20世纪80年代初,建模课程引入到我国一些高校。我国第一本建模教材是1987年由姜启源等人编写的《数学模型》,当时仅几所学校的数学专业开设此课程。随后五六年,建模课程开设的学校增加到几十所学校,并且开始推向非数学专业。到目前为止开设建模课程的学校达到千余所。

1989年,在几位从事建模教育教师的组织和推动下,我国几所大学的学生开始参加美国的赛事。建模竞赛给传统的高等数学教育改革带来了新的思路和评价标准。建模课从仅仅为参赛队员培训,扩展为一门比较普及的选修课。同时,数学试验作为一门新的课程也应运而生。建模问题绝大部分来自一些具体的科研课题或实际工程问题,而不同于普通的数学习题或竞赛题。建模与数学试验教学的重点是高等与现代数学的深层应用和面向问题的设计,而不是经典理论的深入研讨和系统论证。

建模综合了运筹学,数学实验,计算方法,数值分析,数学分析等数学学科的多门课。此外建模还与计算机有着重要的联系。面对要解决的问题越来越趋于复杂化,数据越来越大越多的情况,如果靠人工的手算,这几乎是不可能的事情,所以需要借助计算机,比如MATLAB和C++语言,这就加强了数学与其他学科的联系与交融,为科学的综合性,全面性提供了可能。

建模的多元化方法成为建模发展的一个重要的方向。线性规划、多元规划、二次规划等规划类问题(可借助Lindo、Lingo软件实现);数据拟合、参数估计、插值等数据处理算法;图论算法(包括最短路、网络流、二分图等算法);蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性);动态规划、回溯搜索、分治算法、分支定界等计算机算法;网格算法和穷举法;一些连续离散化方法(数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的);数值分析算法(如果在比赛中采用高级语言进行编程的话,方程组求解、矩阵运算、函数积分等算法需要额外编写库函数进行调用);图象处理算法等等,这些将是数学建模的主要方法。

三、数学教学建议

为了更好的促进大学数学教学,必须改变传统的教学模式。

(一)教师要转变教学观念

数学源于生活,也应用于生活。数学教学是为了学生更好的学习专业课及解决实际问题,为此数学教师不仅要了解数学的发展历史及发展动态而且要学习新的建模理论,不断提高自己的建模意识,把数学知识应用到实际生活中。

(二)数学教师把建模意识贯穿于教学的始终

以数学建模为切入点,促进数学教学改革。引导学生用数学观点去观察、分析和表示事物之间的关系。从繁缛复杂的具体问题中抽象出熟悉的数学模型。

(三)加强数学教学与不同学科的交叉及融合

不仅理工类专业知识和数学有很大的联系,而且经济管理及金融专业不少专业课知识和数学也有密切联系,甚至文科类专业和数学也有不少联系。作为数学教师,在教学过程中,我们要针对学生所学的专业,找到数学与其专业之间的联系,巧妙的把数学和学生所学的专业联系起来。

(四)把数学实验纳入大学课堂

数学实验是信息现代化的产物,它是计算机技术介入数学教学与数学研究的必然结果。它以计算机为工具,运用matlab、mathematics、maple等数学软件加工各种数学信息,以实验的方法来验证数学理论及应用数学理论解决实际问题。数学实验教学是一种新的教学模型,也是培养学生创新能力的重要途径。

参考文献:

[1]姜启源,谢金星,叶俊.数学模型(第四版)[M].高等教育出版社, 2011.

[2]刘锋.数学建模[M].南京大学出版社,2006.

[3]李大潜.中国大学生数学建模竞赛[M].高等教育出版社,1998.

[4]王仲春.数学思维与方法论[M].高等教育出版社,1989.

数学建模算法与实现范文2

1. 评定参赛队的成绩好坏、高低,获奖级别,

数模答卷,是唯一依据。

2. 答卷是竞赛活动的成绩结晶的书面形式。

3. 写好答卷的训练,是科技写作的一种基本训练。

二、答卷的基本内容,需要重视的问题

1. 评阅原则:假设的合理性,

建模的创造性,

结果的合理性,

表述的清晰程度。

2. 答卷的文章结构

a. 摘要

b. 问题的叙述,问题的分析,背景的分析等,略

c. 模型的假设,符号说明(表)

d. 模型的建立(问题分析,公式推导,基本模型,最终或简化模型 等)

3. 模型的求解

计算方法设计或选择;算法设计或选择, 算法思想依据,步骤及实现,计算框图;所采用的软件名称;

引用或建立必要的命题和定理;

求解方案及流程

4.结果表示、分析与检验,误差分析,模型检验……

5.模型评价,特点,优缺点,改进方法,推广…….

6.

7.附录

计算框图

详细图表

8. 要重视的问题

摘要,包括:

a. 模型的数学归类(在数学上属于什么类型)

b. 建模的思想(思路)

c . 算法思想(求解思路)

d. 建模特点(模型优点,建模思想或方法,算法特点,结果检验,灵敏度分析,模型检验…….)

e. 主要结果(数值结果,结论)(回答题目所问的全部“问题”)

表述:准确、简明、条理清晰、合乎语法、字体工整漂亮;打印最好,但要求符合文章格式。务必认真校对。

1.问题重述。略

2.模型假设

跟据全国组委会确定的评阅原则,基本假设的合理性很重要。

(1)根据题目中条件作出假设

(2)根据题目中要求作出假设

关键性假设不能缺;假设要切合题意

3.模型的建立

A. 基本模型:

a. 首先要有数学模型:数学公式、方案等

b.基本模型,要求 完整,正确,简明

B. 简化模型

a. 要明确说明:简化思想,依据

b. 简化后模型,尽可能完整给出

C. 模型要实用,有效,以解决问题有效为原则。

面临的、要解决的是实际问题,不追求数学上:高(级)、深(刻)、难(度大)。

A. 能用初等方法解决的、就不用高级方法,

B. 能用简单方法解决的,就不用复杂方法,

C. 能用被更多人看懂、理解的方法,就不用只能少数人看懂、理解的方法。

D. 鼓励创新,但要切实,不要离题搞标新立异数模创新可出现在

建模中,模型本身,简化的好方法、好策略等,

模型求解中

结果表示、分析、检验,模型检验

推广部分

F. 在问题分析推导过程中,需要注意的问题:

u 分析:中肯、确切

u 术语:专业、内行;;

u 原理、依据:正确、明确,

u 表述:简明,关键步骤要列出

u 忌:外行话,专业术语不明确,表述混乱,冗长。

4.模型求解

(1) 需要建立数学命题时:

命题叙述要符合命题的表述规范,尽可能论证严密。

(2) 需要说明计算方法或算法的原理、思想、依据、步骤。

若采用现有软件,说明采用此软件的理由,软件名称

(3) 计算过程,中间结果可要可不要的,不要列出。

(4) 设法算出合理的数值结果。

5.结果分析、检验;模型检验及模型修正;结果表示

(1) 最终数值结果的正确性或合理性是第一位的 ;

(2) 对数值结果或模拟结果进行必要的检验。

结果不正确、不合理、或误差大时,分析原因, 对算法、计算方法、或模型进行修正、改进;

(3) 题目中要求回答的问题,数值结果,结论,须一一列出;

(4) 列数据问题:考虑是否需要列出多组数据,或额外数据对数据进行比较、分析,为各种方案的提出提供依据;

(5) 结果表示:要集中,一目了然,直观,便于比较分析

数值结果表示:精心设计表格;可能的话,用图形图表形式

求解方案,用图示更好

(6) 必要时对问题解答,作定性或规律性的讨论。最后结论要明确。

6.模型评价

优点突出,缺点不回避。改变原题要求,重新建模可在此做。推广或改进方向时,不要玩弄新数学术语。

7.参考文献

8.附录

详细的结果,详细的数据表格,可在此列出。但不要错,错的宁可不列。主要结果数据,应在正文中列出,不怕重复。 检查答卷的主要三点,把三关:

n 模型的正确性、合理性、创新性

n 结果的正确性、合理性

n 文字表述清晰,分析精辟,摘要精彩

三、对分工执笔的同学的要求

四.关于写答卷前的思考和工作规划

答卷需要回答哪几个问题――建模需要解决哪几个问题

问题以怎样的方式回答――结果以怎样的形式表示

每个问题要列出哪些关键数据――建模要计算哪些关键数据

每个量,列出一组还是多组数――要计算一组还是多组数……

五.答卷要求的原理

u 准确――科学性

u 条理――逻辑性

u 简洁――数学美

u 创新――研究、应用目标之一,人才培养需要

u 实用――建模。实际问题要求。

建模理念:

1. 应用意识:要解决实际问题,结果、结论要符合实际;模型、方法、结果要易于理解,便于实际应用;站在应用者的立场上想问题,处理问题。

数学建模算法与实现范文3

关键词:TRIZ理论;发明原理;创新思维;数学建模

TRIZ理论是新型的创新理论,是引领科技发展的航标。数学建模是应用数学的理论知识解决生活中实际问题,当然需要创新,将TRIZ理论知识的创新思想应用到数学建模中必将起到积极的作用,那么如何应用TRIZ理论知识辅助数学建模的比赛与学习,探讨如下:

1 TRIZ理论与数学建模思想的统一性

1.1 思维方法的统一性

TRIZ理论的思维方法之最终理想解的定义是,尽管在产品进化的某个阶段,不同产品进化的方向各异,但如果将所有产品作为一个整体,低成本、高功能、高可靠性、无污染等是产品的理想状态。产品处于理想状态的解称为理想化的最终结果。数学建模解决问题的最终结果也是努力追求低成本、高功能、高可靠性、无污染等。也是希望能量消耗的极限趋向于零,实现有用功能数量趋向于无穷大。由以上可见,由于数学建模与TRIZ理论在最终理想解确定的方向完全一致。

1.2 解题思路统一性

无论是数学建模还是TRIZ理论解决问题时基本沿着固定的步骤进行求解。数学建模一般情况下也是按照固定的步骤求解,途径模型分析,模型假设,模型求解模型检验等。二者在解决问题的思路上都是打破传统的思维方式,从而开辟一条更加理想的创新道路,得到更加科学合理的方案。

2 应用TRIZ理论知识辅助数学建模的比赛与学习

TRIZ理论为解决问题提供了有效的方法,搭建了问题的解决与方法的平台。我们知道方法得当会使解决问题带来意想不到的方便。在数学建模的比赛与学习中,曾出现的生活中的数学问题,如果有TRIZ辅助其寻找解决的方法,那就会使解决问题的时间缩短,达到事半功倍的效果。

2.1 应用TRIZ理论的发明原理解决数学建模问题

例 2008年全国数学建模比赛C题5.12汶川大地震使震区地面交通和通讯系统严重瘫痪。救灾指挥部紧急派出多支小分队,到各个指定区域执行搜索任务,以确定需要救助的人员的准确位置。本题就是一个简单的搜索问题:有一个平地矩形目标区域,大小为11200米×7200米,需要进行全境搜索。且出发点在区域中心;搜索完成后需要进行集结,集结点(结束点)在左侧短边中点;每个人搜索时的可探测半径为20米,搜索时平均行进速度为0.6米/秒;不需搜索而只是行进时,平均速度为1.2米/秒。每个人带有GPS定位仪、步话机,步话机通讯半径为1000米。搜索队伍若干人为一组,有一个组长,组长还拥有卫星电话。每个人搜索到目标,需要用步话机及时向组长报告,组长用卫星电话向指挥部报告搜索的最新结果。在问题的分析过程我们就可以应用TRIZ的发明原理解决问题,在40个发明原理中进行科学的筛选。解决此问题我认为,恶化静止物体的长度,改善时间的浪费,查询矛盾矩阵表,选择第十四个发明原理,即曲面化原则,它就很适用。按照曲面化原则中“从直线部分过渡到曲线部分”的提示,考虑按圆形路径搜救,在节省时间的同时还不会存在盲区,这为问题的解决开辟了良好的思路。沿着这样的思路应用数学知识很快就会设立正确模型。20个人在同心圆的路径上搜救,如图1所示。当路线与搜救矩形的长边相切后,路线变为矩形内部的圆弧,如图2。

安排好每名搜救队员的具体行走路线后,首先计算完整圆内最先走完的人用时,确定弧的走法,计算出最后一个走完弧并回到集合点的人一共用的时间,就是搜索完整个区域的时间。所以,有了TRIZ理论做基础为问题的解决提供了良好的思路,使参赛者不走弯路直接可以找到解决问题的方法,达到事倍功半的效果,为大学生数学建模比赛试题的完成赢得了时间。

2.2 应用TRIZ的思维方法解决数学建模问题

例周游先生退休后想到各地旅游。计划走遍全国的省会城市、直辖市、香港、澳门、台北。请你为他按下面要求制定出行方案:(1)按地理位置(经纬度)设计最短路旅行方案;(2)如果2010年5月1日周先生从哈尔滨市出发,每个城市停留3天,可选择航空、铁路(快车卧铺或动车),设计最经济的旅行互联网上订票方案;(3)要综合考虑省钱、省时又方便,设定你的评价准则,修订你的方案;(4)对你的算法作复杂性、可行性及误差分析;(5)关于旅行商问题提出对你自己所采用的算法的理解及评价。在解决问题时,我们可以采用TRIZ理论的最终理想解的解题步骤进行思考,最终理想解为研究问题指明了方向,我们可以按照以下步骤进行科学的分析:(1)最终目的是花最少的钱,在最短的时间内到达最多的城市;(2)理想解是省时、经济、方便;(3)达到理想解的障碍是路线的选择;(4)出现这种障碍的结果浪费时间和金钱;(5)不出现这种障碍的条件是合理的选择路线和方法,创造这些条件存在的可用资源是列车时刻表。在解决问题时利用改进了的分级处理方法,利用“列车时刻表”实际依次查出任一城市与其它城市之间的最经济旅行费用数据,并列出数据表,以据阵的形式用到算法中,由于数据的准确性较高,即结果的可靠性也较高.又因为本模型的问题比较全面,结合实际情况对问题进行求解,所以建立的模型能与实际紧密相连,使得模型具有很好的通用性和推广性,将矩阵利用局部作用算法,通过C++编辑,得出结论通过数据表列出矩阵。由此可见,TRIZ理论知识对数学建模的比赛和学习所起的重要作用,尤其是比赛,在相对较短的时间内确立最终结果的理想方向和方法,为比赛赢得了宝贵的时间,是赢得比赛的关键。

总之,TRIZ理论知识的创新思想与方法对数学建模的学习与比赛起到指引方向、辅助思考的作用,为理想解的探究起到积极的影响,有待于我们进一步研究。

参考文献

[1]姜启源,谢金星,叶俊.数学模型[M].北京:高等教育出版社(第三版),2003,8.

数学建模算法与实现范文4

关量词:数学建模;方法;研究;教学;兴趣

2l世纪是一个充满竞争地时代,竞争的关键是人才培养的竞争。因此.我国教育面临重大的机遇和严峻的挑战。传统高工专的数学教学在强调理论系统性的同时存在知识旧,内容单调和理论脱离实际的缺陷。迫切需要加以改革。飞速发展的现代科技与生产具有系统思维。实践能力和创造精神的高科技人才,掌握信息技术和善于解决实际问题是他们必备的素质。近几十年来。数学迅速向自然科学和社会科学的各个领域渗透,在工程技术、经济建设及金融管理等各个方面发挥着越来越重要的作用;数学与计算机技术相结合。形成了-种普遍的、可以实现的关键技术⋯ 一数学技术,并已成为当代高新技术的一个重要组成部分。而用数学解决各类问题和实施数学技术.数学实验均起这关键的作用。因此,为新世纪培养高质量、高层次人才,就不能不重视培养数学实验这一必备技能和素质,对理工、经济、管理学科,甚至一些人文、社会学科的大学生,都应该提出这方面的要求。我们深深感到必须对传统内容进行重新审视、加以扬弃、保留主要的基本内容、基本方法。开设数学建模选修课程,正式把数学建模纳入到课程常规教学中。使学生对数学知识与应用有整体的了解.从教学内容上扩大了学生的知识范围与应用能力。目的是让学生在初学数学阶段就接触一些实际问题.树赢理论练习实际的思想和具有初步的分析,解决实际问题的能力。

改革教学手段.充分发挥计算机的作用。我们在数学建模教学及培训过程中,注意培养学生熟练使用软件包和进行数据处理及计算的编程能力。将一些数学软件“Mathematica”、“Matlab”等作为常备软件.结合各自选修课内容传授给学生。这极大的增强了学生面向信息时代应具有的现代科技的计算机应用能力。与此同时。我们还将计算机包纳入技术数学教学过程中,即将传统教学中花费大世精力的人工积分、微分、微分方程初等解法、级数判定与求和等运算用数学软件包来完成。改革“教师讲、学生听(记笔记)、做习题,改习题,考试”的方式.在教学中适当插入讨论课.教学效果会更好。使学生充分了解这门课程的意义及学习方法.教师主要扮演一个质疑的角色(当然答疑,讲解仍然是需要的)。这样做首先是学生要独立学习一些材料.可增强学生的独立学习能力,其次,通过自学和报告.学生能很具体地了解这项题目的具体要求是什么.特别是作为最后成果——论文——应怎么写。

以学生为丰展开讨论.学生大多通过自学.对题目巾将会涉及到的数学、非数学知识有一个大概的了解.为了在讨论课上报告.也要求学生自己独立查阅有关文献.也培养了能力。教师在讨论课上要竭力提倡学生讨论、争辩、勇于提出自己想法的风气。这实质上是培养学生互相交流、互相学习、互相妥协的能力,这些能力的培养对今后的工作是极为重要的。

数学建模是讲授了《高等数学》、《线性代数》与《概率论》等相应课程后开设的独立实验课程,既是理论教学的深化和补充.也是科学研究的导引和支持.充分利用计算机和软件.具有较强的实践性。数学建模的目的足使学生掌握数学的基本思想和方法。利用归纳的方法和实验的手段学习数学和研究数学。数学建模 把数学看成是先验的逻辑体系,而把它视为实验科学,从实际问题出发,借助计算机和软件,通过白己设计和动予,体验数学发现的欢乐和挫折,提出自己的猜测并找出支持论据,从实验中学习、探索和发现数学规律.数学建模教学有以下几个明显的教学效果

一、数学建模促进相美课程的学习

计算方法足计算机课程重要的组成部分。数值分析与计算方法通常使用C语言等描述算法,复杂的算法描述甚为哕嗦,采用数学软件(Matlab,Mathematica,Maple,MathCAD等)的命令描述算法。既简单又能易于上机实验。求特征根与特征向量、样条与插值、方程和 程组求解等,数学软件中使用参数调用标准的函数或过程就可实现问题求解。用于直接计算或验证用算法语言编写的计算方法结果的正确性.颇有裨益。概率统计、规划优化、线性代数、微积分、平面几何与立体几何等科目。数学建模提供了问题求解的极住手段.对这些课程的辅助学习帮助极大。

二、数学建横促进科学问题的探索

自然科学中的许多前沿研究问题不少最终可以归结为某些数学问题。数学建模将这些应用问题的静态特性和静态特性用数据和图形的方式多方面描述,有助于问题的解决。比如离子通道实验反映给药后钾离子浓度的变化过程,用随机微分方程来描述,利用数学吏验模拟和仿真,辅助前沿课题的研究。经济均衡模型的分析和仿真.描述了市场经济的“看不见的手”的强大魔力。我们在课程穿插r诸如此类的我们的研究课题中的应用实例.可知学生已经去感受前沿问题的研究

三、数学建横培彝数学课件创作人才

远程数学教学系统需要制作火 的数学课件.制作数学课件存在的主要困难是:如何获得大量的数学对象(数学符号、数学公式,数学表格、数学图形)。数学建模的特点是利用数学软件(Matlab.Mathematica,SAS等),完成复杂的数值计算和符号运算。并分析大量精确的数学图形擞学表格,得到实验结论。数学软件的HTML、TeX、图形输出格式,可以直接用于数学课件的创作。我们在讲授用于数值计算和符号运算、制作图表的数学软件的同时,讲授了呵方便得到高质萤的数学符号和公式的数学排版系统(LaTeX、ams'~X等),由于不少学生已经熟悉网页制作软件(Flash.Firework、Dreamweaver等)和图形处理软件。学生提交的电子版的数学实验报告.梢加润色,顷刻成为高水平的数学课件样本。

四、数学建模得到大量实用软件

在日常生活和工作中,需要不少设汁数学的实用软件,包括绘图、统计、解题等软件。当前。应用统计人员涉及的诸如正态分布表之类的常用表格不少于十余张,每次都要手工查袭,编制电子版本的统计表.如果配以图形和统计特征描述.实用价值则更高。数学建模涉及多个数学分支.与实际应用联系密切,在授课是将这些应用背景需要的小程序告诉学生,学生非常乐于编写,而且表现出较高的专业水半。绘图、积分、微分、统计、方程和方程组求解等高级计算器的功能.在学生的数学实验业余作品——实用小软件中实现.可谓利人利己.小软件大功劳。当师生在共同欣赏这些作品时,喜悦的心情油然而生。教学实践表明,要成功地讲授好数学建模.发挥数学建模的教学效应,以下的教学方式行之有效、事半功倍。

一、详细介绍社会经济生活和现代科技的实际例子作为数学建模

的背景,让学生白行设计实验方案,独立或合作完成实验,这是课堂成功的关键。经济,社会、生活、信息、生物、化学、医药等应用模型,学生表现出极大的兴趣。学生束源千不同的学科,与所在专业相结合.可谓“它山之石.可以击玉”,具有难以置信的强大威力。

二、使用多媒体技术的电子课章。数和形结合的交互式电子课件.

既可用于报告和演示,又可用于实验和应用。数列和级数、迭代和逼近、加密和解密,这些代数过程神奇而实用,正是计算机的拿手好戏,制作的交互式电子课件,实际功用一箭双雕 交互式电子课件使得数学对象的点、线、面、体生动形象地表现:角度视图、投影图、动态图等难以口头或书面表述以及表达枯燥乏味的图形,采用计算机的图形技术和模拟仿真技术,以多媒体形式表现.表达效果叹为观止.上课的高质量无可非议。

三、配合介绍相关的技术与问题解决方案。除拓宽学生的视野外,可让学生掌握更多的本领。数学建横开设时.可能不会想到,学习数学实验后可以胜任数学课件的制作;可能也不会想到。学习数学建模后可以独立完成高质量的数学文章排版。其实,在讲授数学软件工具时。十分钟的题外话和现场演示,足以实现上述效果。

四、引导学生的思考和实验。可能有知识创新的产品和成果。数学建模时.我们既强调独立完成.叉鼓励共同讨论。青年大学生的热情和刨造力蓄势待发,教师无意中道出的一个应用举例,抛出小小的一个主意,学生集思广益。实验再实验,一个实用型成果或许由此诞生。互联网环境使用的积分器、图形器、解题机、查表器等等,并不是重大发明.但非常实用。

五、与最新的计算机技术,特别是软件技术相结合。是数学建模能向纵深方向发展的有力保证。学生对JAVA技术与网络编程用于数学实验,以及数学实验的Internet/Intranet网络化处理方式,都有强烈的好奇心和探索欲望。适当的点拨和辅导,学生乐于动脑和动手。实践能力骤然增强.此时的数学建横已跃上一台阶

总之,数学建横内容具有实用价值.数学建模课程授课可以生动有趣.数学建模可能有知识刨新的产品和成果。特别是促进相关数学课程的教学。应该在学生学习了相关课程后或者学习相关课程中开设数学建模,至少应该在现有教学内容教中安排一定的数学实验。

参考文献

[1]r石孙、张祖贵.数学与教育.湖南教育出版社,1989.

数学建模算法与实现范文5

关键词:数学建模竞赛;学生;数学能力;培养

中图分类号:G642 文献标识码:A 文章编号:1003-2851(2012)-06-0049-01

数学建模是应用数学去解决各类实际问题,把实际问题转化为数学问题的一种方法和过程。它是数学在各个领域广泛应用的媒介,是数学科学技术转化的主要途径。数学建模已经在大学教育中逐步开展,国内外越来越多的大学正在进行数学建模课程的教学并参加开放性的数学建模竞赛,将数学建模教学和竞赛作为高等院校的教学改革和培养高层次人才的一个重要方面。

一、数学建模竞赛促进大学生能力培养的重要内容

(一)有利于学生实践动手能力的培养

数学模型是一个完整的求解过程,要求学生根据实际问题,抽象和提炼出数学模型,选择合适的求解算法,并通过计算机程序求出结果。在这个过程中,模型类型和算法选择都需要学生自己作决定,建立模型可能要花50%的精力,计算机的求解可能要花30%的精力,动手实践能力有助于学生毕业后快速完成角色的转变,数学建模必须要熟练掌握计算机的操作,以及工具软件的使用和计算编程,这是因为对实际问题进行分析和建立数学模型以后的求解都有大量的推理运算、数值计算、作图等工作,这都需要通过计算机和软件技术来实现。

(二)有利于培养学生的洞察能力

洞察能力是把握事物内在的或隐藏的和本质的能力,它是一种直觉的领悟。这种能力对于数学建模是非常重要的,但需要经过艰苦的、长期的经验积累和有针对性地训练数学建模活动的开展要培养学生逐步形成一种洞察能力,通俗地说就是能迅速抓住要点的能力。数学较其他学科来讲,更讲究思维推理的逻辑性和严谨性,不能有丝毫的差错。因此,在对实际问题进行分析时,既要注意思维推理的逻辑性、严谨性,更要注意实际问题的特点和本质,从而使数学知识与生产、生活实际更加紧密地结合,使我们更容易抓住重点,抓住问题的本质。同时,由于不同的实际问题在一定的抽象、简化层次下它们的数学模型是相同或相似的,通过大量建模训练,就能使学生达到熟能生巧,并逐步达到触类旁通的境界。

(三)有利于学生团队创新能力和相互协作能力的培养

数学建模都是以小组为单位开展工作的,体现的是团队精神,培养的是团结协作的能力,任何一个参加过数学建模竞赛的学生都对团队精神带来的成功和喜悦感到由衷的鼓舞,数学建模中最重要的就是模型的构造,而构造模型需要在较高数学素养的基础上具备相当的构造能力,构造能力的培养便是创造性思维和创新性思维的培养。数学建模的过程要由多名学生集体完成,参与数学建模活动的学生既要合理分工,充分发挥个人的潜力;又要集思广益,密切协作,形成合力,使个人智慧与团队精神有机地结合在一起。因此数学建模活动可以很好地培养学生的合作意识,使其认识到团队精神和协调能力的重要性。

(四)有利于促进大学生分析、综合和解决实际问题能力的培养。建模过程都需要经过分析与综合、抽象与概括、比较与类比、系统化与具体化的阶段,其中分析与综合是基础,抽象与概括是关键。数学建模就是解决实际问题,这除了要求学生能综合应用已学到的数学知识外,还要求学生了解工程技术知识、物理知识、化学知识、生物医学知识等综合知识。因此,数学建模通过学生运用综合知识对实际问题进行分析、整理,精异求精,抓住关键,并用数学语言来描述实际问题的关系和规律,把一定抽象、简化、假设的实际问题用数学语言表达出来,形成数学模型,再用数学方法进行推演、计算,最后得出结果。通过实践可以培养学生的综合知识运用能力及分析问题能力。

二、运用数学建模思想融入数学教学中

通过数学建模,在数学教学中应该融入数学建模思想.运用数学建模思想融入数学课程中,应以科学技术中数学应用为中心,精选典型案例,在数学教学中适时引入,应要抓好以下两个关键点: 第一,在教学中渗透数学建模思想。联系实际是渗透数学建模思想的最大特点.培养学生应用技术型人才,对其数学教学以应用为目的,体现“联系实际、深化概念、注重应用”的思想,不应过重强调灌输其逻辑的严密性,思维的严谨性。学数学主要是为了用来解决工作中出现的具体问题,为学生架起了一座从数学知识到实际问题的桥梁,使学生能灵活地根据实际问题构建合理的数学模型,有效快捷地解决问题;第二,计划性开设《数学建模和实验》课。数学建模竞赛在世界范围内广泛发展主要因素是与计算机的发展密不可分的。它根据实际系统或过程的特性,按照一定的数学规律,用计算机程序语言模拟实际运行状况,并根据大量模拟结果对系统和过程进行定量分析。因此可以看出数学建模对提高学生计算机的应用能力的作用是至关重要的。

总之,当今社会的竞争是高科技的竞争,是人才综合素质和能力的竞争。学生通过参加数学建模课程的学习和竞赛,参与发现和创造的过程。数学建模能让学生真实感受到了数学学习的乐趣,还有助于学生更好地掌握知识和运用知识。数学建模竞赛对培养学生的创造性、竞争意识和适应社会应变能力,具有不可低估的作用。因此,进行数学建模的教学与实践,既适应了知识经济时代对高等学校人才培养的要求,同时也为创新人才的培养开辟了一条新的途径。

参考文献

[1]杨新枝.高中数学教学中的初等数学建模[J].科技信息,2009(20)

数学建模算法与实现范文6

关键词:工程计算能力;计算基础教育;理工类

中图分类号:G642 文献标识码:B

1问题的提出

我国大学计算机基础教育经过了三十几年的发展历程,几代教育工作者为此付出了辛勤劳动。他们针对我国理工类大学生的特点和中国国情,在当时的历史条件下提出了一系列培养大学生计算机操作技能的教学方法,形成了具有中国特色的计算机基础教育理念和体系。但是,大学计算机基础教育发展到今天如果仍然停留在以计算机基本操作为主体的教学模式上,那将与社会发展对大学生的要求很不适应。今天我们更应该强调培养大学生尤其是理工类大学生以计算机为工具的工程计算能力,并将这种能力与各自的专业结合起来,真正起到为专业服务的作用。由此我国的大学计算机基础教育应该转变为大学计算基础教育。

八十年代初期以来,我国计算机基础教育成为大学里的公共教育,面向全体大学生开设计算机基础教育公共课,并由专门的教学小组(教研室或计算中心)组织教学,依不同专业确定教学内容,因此理工类大学生计算机基础教育的教学内容基本统一。教育部教学指导委员会和全国高等学校计算机基础教学研究会相继出台一些教学指导性意见,如2004年教育部高等学校非计算机专业计算机基础课程教学指导分委员会出台的《关于进一步加强高校计算机基础教学的几点意见》(简称《白皮书》)以及1997年教育部高教司颁发的《加强非计算机专业计算机基础教学工作的几点意见》(简称155号文件),虽然针对不同学科和专业有不同的教学要求,但是培养目标和内容主要以教导学生如何操作好计算机或者说如何提高大学生计算机操作技能为主体,没有强调大学生工程计算能力的培养。以典型的理工类大学生为例,大学期间的计算机基础教育主要开设“大学计算机基础”和“程序设计”两门课程,在“大学计算机基础”课程中,主要介绍计算机的基本组成、环境以及常用软件平台,在“程序设计”课程中也只是讲解编程的基本方法,其他课程更趋向于计算机专业类学生的课程。笔者认为,开设这些课程对于提高大学生计算机操作技能和计算机应用能力起到了重要作用,但是在计算机基础教育的教学体系中没有涉及工程计算能力培养的内容,没有阐明工程计算能力与计算机基本知识和应用能力之间的关系,实际上没有认识到计算机基础教育的根本问题是要以培养大学生现代工程计算能力为目标。

随着计算机技术的迅速发展和广泛应用,作为我国高层次人才――大学生的培养,尤其是规模最大的理工类大学生的培养,应培养他们具有将计算机应用与自己专业知识密切结合的能力,这种结合实质上就是要增强大学生以计算机为基本工具的工程计算能力,而不是简单地操作计算机或使用某一个软件。回顾我国近三十年来的计算机基础教育,大部分精力花在教大学生如何提高计算机操作技能上,如:Windows基本操作、Office软件的使用等,没

作者简介:邹北骥(1961-),男,江西南昌人,博士,教授,博士生导师,研究方向为计算机教育、计算机图形学与数字图像处理。

有涉及工程计算能力的培养。造成这种结果的主要原因有以下几个方面:(1)计算机技术虽然发展很快,但历史不长,对于以计算机为工具的工程计算能力的培养没有深刻的认识。(2)存在误区,误以为培养大学生的操作技能就能提高学生应用计算机的能力。(3)师资问题。大部分从事计算机基础教育课程的教师都是学计算机专业出生的,对于计算机与其它专业的融合问题缺乏了解。(4)大部分从事计算机基础教育的教师很少参与实际科研项目的开发,缺乏软件开发经验,不能体会计算机软件开发中的计算问题和工程计算能力之间的关系。

如果说这种现象的出现是由于历史造成的,或者说是历史发展的必经之路,那么从现在开始,我们就应该高度重视大学生工程计算能力的培养,真正提高他们运用计算机的能力,发挥计算机技术在其它各专业领域的作用。

2工程计算能力培养

什么是工程计算能力?本文所述的工程计算能力是以现代计算机为工具的工程计算能力,也就是以计算机为工具的计算方法的掌握和运用能力。多年以来,“计算方法”或“数值分析”课程是理工类大学生一门重要的基础课,它教给学生用数值求解方法解决工程问题,其中涉及到基本的以计算机为工具的计算方法,如:递归求解等。然而计算机技术发展到今天,特别是软件开发技术和方法的发展,使得以计算机为工具的计算方法变得更加丰富和神奇,非计算机专业,尤其是理工类专业的大学生应该尽可能多地掌握这些方法,以便他们能更好地融入到自己的专业领域。笔者认为,理工类大学生工程计算能力培养应包含以下几个方面。

2.1建模能力

建模能力实质上就是数学建模的应用能力。在理工类大学计算机基础教育中,应该大力加强数学建模方法的学习,大力加强数学建模训练。理工类大学生面临不同领域工程问题,应用计算机求解这些问题的基础是数学建模。在过去几十年的计算机基础教育中,我们忽略了这一方面的培养,使得大学生的计算机应用能力受到限制。因此从培养大学生尤其是理工类大学生工程计算能力的角度出发,应普遍开设数学建模课程。

2.2数据组织能力

工程计算能力培养的第二个方面是数据的组织能力。在计算机专业人才的培养中,是通过“数据结构”课程来教学生基本的数据组织方法。笔者认为,对于非计算机专业尤其是理工类专业的大学生,应该为他们开设“数据结构”课程。我们应该认识到,“数据结构”课程中介绍的数据组织方法,如:堆栈、队列这些基本结构和树、链表等这些复杂结构绝不只是计算机专业学生需要学习的,非计算机专业尤其是理工类计算机专业学生同样需要学习,而且对于他们来讲,这门课程更为重要。有一种观点认为:“数据结构”课程有较大难度,一般理工类学生学习起来比较困难。其实不然,历届研究生入学考试成绩表明,理工类大学生大多通过自学学习“数据结构”课程,而且相当一部分学生成绩优异。

数据结构是程序设计的基础,没有掌握好数据的组织方法,不会运用数据结构表达工程问题中的数据,又怎么可能学好程序设计课程?又怎么能编写好程序?几十年来的计算机基础教育强调了程序设计能力的培养,但没有开设“数据结构”课程,实际上像一座空中楼阁,基础很不牢固。

2.3算法设计能力

算法是计算机计算的步骤描述,是实现计算机求解问题的关键。培养理工类大学生的工程计算能力,需要教给他们基本的算法思想和常用的算法。例如:基本的算法包括排序、递归、查找等。设想一个理工类大学毕业生,如果大学期间对于计算机常用算法理解得比较深刻,应用得比较好,对于他在实际工作中利用计算机解决问题就会变得轻而易举。反之,如果对基本算法一无所知,如:不知道什么是递归算法,不知道什么是排序算法,那么对一些基本的工程问题他都会一筹莫展,甚至无法求解。因此基本算法的学习对于理工类大学生而言是非常重要的。

2.4程序设计能力

工程计算能力培养的第四个方面是程序设计能力,它是工程计算能力的实际载体,用计算机解决实际工程问题最终要落实到计算机程序的开发,也就是人们常说的编程。在学习和掌握数学建模、数据结构和算法设计的基础上,以一门具体的程序设计语言为模板,学习程序设计的基本方法,学习程序的基本结构和运行规律,掌握顺序结构、分支结构和循环结构等对于理工类大学生工程计算能力的提高是极其重要的。

3计算机基础教育与计算基础教育

面向非计算机专业大学生的计算机教育一直沿用“计算机基础教育”这个名称。笔者认为:“计算机基础教育”是围绕计算机本身的计算机科学与技术方面的专业基础教育,面向非计算机专业学生的计算机教育应该用“计算基础教育”这个名称,其本质是要培养非计算机专业大学生以现代计算机为基本工具的工程计算能力,而不是关于计算机本身的科学与技术。长期以来,我国从事非计算机专业计算机教学的教师忽视了这一细节,有意或无意地将非计算机专业大学生的计算机教育引向了计算机科学与技术专业教育的道路,越来越多的课程设置与计算机科学与技术专业的核心课程一致了,如:“计算机网络技术”、“微机接口原理”、“多媒体技术”等。如此下去不仅大大增加了理工类大学生课程学习的负担,而且没有提高理工类大学生工程计算能力。因此我们需要从观念和教学理念上转变,要清楚地认识理工类大学生工程计算能力的培养并不需要为计算机专业类学生开设的那些课程内容,只是需要围绕“数学建模”、“数据结构”、“算法设计”和“程序设计”四个方面的基础课程。

4实施方案建议

综上所述,面向理工类大学生以计算机为工具的工程计算能力培养需要从数学建模、数据结构、算法基础和程序设计四个方面进行,所有的教学要求、内容和目标都应该围绕这四个问题展开。笔者建议,针对理工类大学生的计算基础教育课程体系可以有两个方案,一个方案是紧缩方案,开设的课程概括上述四方面内容,设置两门课程,分别为“大学计算基础”和“大学计算机程序设计”;另一个方案是扩展方案,开设四门课程,分别对应上述四个方面的内容,即“大学数学建模方法”、“数据结构基础”、“算法基础”和“程序设计基础”。两种方案的内容、要求和课时见表1和表2。

表1方案1(压缩型)

课程名称 主要内容 要求与目标 学时建议

大学计算基础 1.计算机的基本知识 掌握计算机基础知识 80

2.数学建模方法介绍 掌握基本的数学建模方法

3.数据结构基础 掌握常用的数据结构

4.算法基础 掌握常用的算法

大学计算机程序设计 1.程序的基本概念

2.C语言程序设计 掌握计算机程序的原理和运行方式

掌握C语言编程方法 48

表2方案2(扩展型)

课程名称 主要内容 要求与目标 学时建议

大学数学建模方法 1.计算机的基本知识 掌握计算机基础知识 80

2.数学建模方法介绍 掌握基本的数学建模方法

数据结构基础 1.数据的组织方法 掌握数据的组织方式 48

2.基本的数据结构及其应用 掌握队列、堆栈、链表等基本数据结构的应该

算法基础 1.算法的基本概念 掌握算法的思想、流程、表达方式及其与程序之间的关系 48

2.基本算法及其应用 掌握常用的算法

程序设计基础 1.程序的基本概念

2. C语言程序设计 掌握计算机程序的原理和运行方式

掌握C语言编程方法 48

5结束语

教育理念和观念的转变需要全体教育工作者形成共识,提出的方案需要通过论证和实践检验,建议相关部门

组织一部分长期从事非计算机专业计算机基础教育的教师、学者进行研讨,针对理工类大学生计算机基础教育和计算基础教育的内涵进行讨论,明确理工类大学生计算机基础教育因面向工程计算能力培养,文中提出的实施方案可在高水平大学试点。

参考文献: