数学建模的定义范例6篇

前言:中文期刊网精心挑选了数学建模的定义范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

数学建模的定义

数学建模的定义范文1

关键词:高校;数学教学;数学建模;应用;学生能力的培养

近半个世纪以来,数学的形象发生了很大的变化,人们逐渐认识到数学的发展与同时期社会的发展有着密切的关联,许多数学内容都是因社会需要而产生的,产生了许多数学分支。数学教学的重要任务就是使学生能够将所学数学知识和数学方法应用于社会生活和生产实践当中。

数学模型是一种抽象的模拟,它用数学符号、数学公式、程序、图、表等刻画客观事物的本质属性与内在联系,是为一定目的对部分现实世界而作的抽象、简化的数学结构。创建一个数学模型的全过程称为数学建模。即用数学的语言、方法、去近似地刻画该实际问题,并加以解决的全过程。它经历了对实际问题的抽象、简化、确定变量和参数;并用某些特征建立起变量与参数间的确定的数学问题(一个数学模型);求解这个数学问题;解析并验证所得到的解:从而确定能否用于解决实际问题的多次循环、不断深化的过程。从教学的角度,数学建模的重点不是学习理解数学本身,而在于数学方法的掌握、数学思维的建立。通过渗透数学建模思想使学生将学习过的数学方法和知识同周围的现实世界联系起来,和真正的实际应用问题联系起来。建立数学模型的流程图,如图:

上图揭示了从提出问题到解决问题的认识过程,这是从数学的角度认识的物质及其运动的过程,符合认识来源于实践的认识规律。如历史上著名的“哥斯尼堡七桥问题”,大数学家欧拉巧妙地运用数学知识把小岛、河岸抽象成“点”,把桥抽象成“线”,成功地构造出平面几何的“精品”模型,成为数学史上解决历史问题的经典。如今,科学技术的发展、企业生产过程的控制、宏观经济现象的研讨等,都离不开数学建模。实际上,数学建模已成为现代社会运用数学手段解决现实问题的科学方法,掌握简单的数学建模与应用是现代人理应具备的一种能力。

一、在高等数学教学中培养学生的数学建模思想的途径

(一)在数学概念的引入中渗透数学建模思想

数学的定义、概念是数学教学的重要内容。下面以定积分的定义为例,谈谈如何在数学概念的引入中渗透数学建模思想;设计如下教学过程:

(1)实际问题:a.如何求曲边梯形的面积?b.如何求变速直线运动的路程?c.如何求直线运动时的变力做功?

(2)引导学生利用“无限细分化整为零一局部以直代曲取近似一无限积累聚零为整取极限”的微积分的基本思想,得到问题a的表达式。

(3)揭示如上定型模型的思维牵连与内在联系,概括总结提高为:不同的实际意义,但使用的方法相同,从求解步骤上看,都经分割一取近似一求和一取极限这四步,从表达式在数量关系上的共同特征,可抽象成数学模型:引出定积分的定义.

(4)模型应用:回到实际问题中。数学模型的根本作用在于它将客观原型化繁为简、化难为易,便于人们采用定量的方法去分析和解决实际问题:a.一根带有质量的细棒长x米,设棒上任一点处的线密度为,求该细棒的质量m。b.在某时刻,设导线的电流强度为,求在时间间隔内流过导线横截面的电量。

(二)在应用问题教学中渗透数学建模思想

在讲解导数、微分、积分及其应用时,可编制“商品存储费用优化问题、批量进货的周转周期、最大收益原理、磁盘最大存储量、交通管理中的黄灯、红灯、绿灯亮的时间”等问题,都可用导数或微积分的数学方法进行求解。

概率与统计的应用教学中,“医学检验的准确率问题”、“居民健康水平的调查与估测”、“临床诊断的准确性”、“不同的药物有效率的对比分析”等实际应用问题都可以用概率与统计的数学模型来解决。

在线性代数的应用问题中,可以建立研究一个种群的基因变异,基因遗传等医学问题的模型,使数学知识直接应用于学生今后的专业中,有效的促进了学生学习高等数学的积极性,提高了数学的应用意识。

建模过程给学生提供了联想、领悟、思维与表达的平台,促使学生的思维由此及彼、由浅入深的进行,随着模型的构造和问题的解决,可以让学生养成科学的态度,学会科学的方法,逐步形成创新思维,提高创性能力。

二、数学建模在高等数学教学中的作用

通过数学建模教学可以培养学生的多方面的能力:(1)培养学生“双向翻译”的能力,即用数学语言表达实际问题,用普通人能理解的语言表达数学的结果的能力。(2)培养学生的创造能力、丰富的联想能力,洞察力。因为对于不少完全不同的实际问题,在一定的简化层次下,它们的数学模型是相同或相近的,这正是数学广泛应用的表现、从而有利于培养我们广泛的兴趣、熟能生巧,触类旁通。(3)培养学生熟练使用现代技术手段的能力、数学模型的求解需借助于计算机及相应的各种数学软件包,这将大大节省时间,在一定阶段得到直观的结果,加深对问题理解。(4)培养学生综合应用数学知识及方法进行分析、推理、证明和计算的能力。在数学建模过程中需要反复应用数学知识与数学思想方法对实际问题进行分析、推理和计算,才能得出解决实际问题的最佳数学模型,寻找出该模型的最优解。所以在建模过程中可使学生这方面的能力大大提高。(5)培养学生组织、协调、管理特别是及时妥协的能力。

通过数学建模活动还可以培养学生坚强的意志,培养自律、“慎独”的优秀品质,培养自信心和正确的数学观,数学建模充满挑战和创造,成功的数学建模将给学生心情的喜悦与自信。同时,数学建模有助于学生体会到成功地运用数学解决实际问题,一定要与实际问题相关的学科知识相结合,要与有关人员相结合,这是正确的数学观的形成。数学建模的开展可整体提高学生的数学素质。

总之,高等数学教学的目的是提高学生的数学素质,为进一步学习其专业课打下良好的数学基础。

参考文献:

[1]徐全智,杨晋浩,数学建模.北京:高等教育出版社,2009

数学建模的定义范文2

一、数学建模在高中数学课程中的意义

数学课程的最大特点,是公式、定理和概念较多,虽然练习题非常多,但基本上都是对现实问题的抽象.因而,很多学生对数学不感兴趣.尽管如此,但数学的学习,对于每个学生来说都非常重要.特别是数学建模这一块的教学内容,是学生运用数学知识解决实际问题的一个良好平台,不仅要求学生能够对以前学过的数学知识灵活运用,还要求学生能够对现实问题进行分析,并采取有效的方式解决.所以,数学建模能够培养学生的逻辑思维能力、分析判断能力等,提高学生运用所学知识解决实际问题的能力.

二、苏教版高中数学教材对数学建模的处理

1.框架结构与习题、例题.

在苏教版高中数学教材中,其函数模型部分被安排在函数部分的最后一节中.从这里可以看出,数学模型的建立是比较难的.苏教版主要是通过几个事例,结合人口模型和行星模型,对模型建立过程中的主要问题进行相关的阐述,再做出相关的归纳整理.与此同时,教材也安排了“钢琴与指数曲线”来帮助学生理解数学建模.不过,其例题数量偏少,而且问题的情境设置与学生的日常生活相距深远,不方便学生理解题意.

2.细节方面的处理.

苏教版的高中数学教材对技术的使用阐述的比较详细,强化学生对数学建模的操作过程的记忆,这对学生以后对数学建模的深入理解有较大益处.在例题的讲解方面,苏教版着墨较多,特别是对于如何解题部分,讲解得非常详细.

三、关于高中数学教材对数学建模处理的一些思考

1.循序渐进.

由于数学建模需要学生具备一定的理论联系实际的能力,但是高中学生的理论联系实际能力整体来看不是很强.所以,教材对数学建模的处理,应采用循序渐进的方式.也就是说,尽量让学生从一些较为简单的建模知识开始学习,随着时间的推移,年级的增加,可增加数学建模内容的篇幅.这反而能使学生愿意学习数学,提高他们的抽象思维能力.教材的设置也应根据不同地区的学生知识状况,安排不同层次的学习顺序.

2.取材于生活.

选用学生比较熟悉的材料,作为例题的主要内容,让学生有一种解决实际问题的氛围,提高他们的学习兴趣.对于部分与实际生活联系密切的例题,教材可以通过情境设置、设问等方式,引起学生的注意.在具体的数学建模过程中,教材具体详细地阐述某一个实例.通过这种典型案例演示的方法,使学生掌握基本的数学建模的方法.就数学建模的一般步骤来看,主要分为审题、建模、解模和结论.

3.处理方式多样化.

考虑到高中学生的课业负担重,他们很难在较短的时间内,完成整个建模过程,教材中可以将模型的解答或处理分成多个小步骤.这样,既能缓解学生的课业负担,又能使学生的分析能力得到培养.另外,可以将处理过程中的重点事项和非重点事项区别开来,节省学生处理数学模型的时间.现举例分析.教学目标:使学生掌握基本的函数的定义域和值域的求法,并通过对实际问题的分析,锻炼他们的逻辑思维和数学建模的能力.教学方法:通过创设情境,使学生的注意力由课外转向课内.例题:一辆汽车的行驶速度为60km/h,汽车的行驶路程与行驶时间的关系式为:y=60x+20.(1)本题所涉及的变量有哪几种?这几种变量之间呈现什么样的关系(用平面图表示).(2)以上的关系式,初中学习阶段称之为什么?教师引导:(1)用集合的语言阐述上述两个问题的共同特点?它们涉及哪些集合?引出函数的定义,并提醒学生注意相关问题.例题演练:(1)x→y,y2=x,x,y属于整数.要求学生判断该等式是否为函数……教学评价:(1)集中解答学生的各种问题,提升学生的学习兴趣.(2)吸纳学生提出的各种建议,促进数学建模课程的有效开展.

数学建模的定义范文3

关键词:可视化过程建模语言;面向对象Petri网;可视化过程建模语言—面向对象Petri网集成建模方法;企业过程建模

在激烈的市场竞争中,所有企业都希望及时而高效地开发出高质量、高性能的产品。这一切在很大程度上取决于开发产品的过程和对过程的管理。过程建模是过程管理和并行工程的基础和核心技术。通过过程建模,进行并行性分析,提高并行度;通过仿真分析,过程改进,缩短研制周期,提高资源利用率。本文针对企业过程分布、并行的特点,提出了集成可视化过程建模语言(Visual Process Modeling Language,VPML)和面向对象Petri网(Object-Oriented Petri Nets, OOPN)的企业过程建模方法。

1VPML-OOPN集成建模方法的技术基础

1.1可视化过程建模语言

可视化过程建模语言是北京航空航天大学软件工程研究所和美国Funsoft公司合作开发的,是针对企业过程的建模语言,用图形与文本相结合的方式描述企业过程的不同方面的内容,具有高度的可视性和形式化程度。VPML能从活动、后勤、数据、协同以及活动中的行为等五个模型来刻画一个企业的过程[1], 如图1所示。

VPML定义了四组对象原语:一组连接原语和三组连接符原语。每个对象原语对应于企业模型中的一个概念,每个连接和连接符原语定义对象原语间的一种关系。对象原语包含活动、产品、资源和其他概念,它定义了在VPML中合法的对象集合。

1.2Petri网

Petri网是Carl Adam Petri博士在1962年提出的,它是一种形式化的建模方法。Petri网作为一种图形工具,可以使用标记(Token)来模拟系统的动态行为和并发活动;作为一种数学工具,它可以建立状态方程、数学方程以及系统行为的其他数学模型[2]。

其中,P和T分别称为N的place(库所)集和transition(变迁)集,F为流关系。若用圆圈表示库所,用矩形框表示变迁,用有向弧来表示库所与变迁的有序偶,则构成了Petri网的图形表示。

对Petri网表示的系统,可以进行活性、可达性、冲突、死锁等分析。分析方法有可达树方法、关联矩阵方法、不变量分析方法等。

1.3面向对象Petri网

本文采用的面向对象Petri网OOPN是对韩国KAIST的Yang Kyu Lee等人提出的OPNets模型的扩展。在OPNets中,如图2、3所示,用高级网子网描述每个对象的行为以及对象之间的关系,通过用方形框把子网括起来表示封装与抽象。为了信息隐藏,每个对象清晰地表示为外部结构和内部结构两部分。外部结构描述对象之间的信息通信,而内部结构描述每个对象的内部控制流。对象的外部接口由消息队列(message queue,mesQueue,用椭圆表示,类似于用圆表示的库所)、门(gate,用粗线表示,类似于用方形框表示的变迁)以及它们之间的流关系(arc,用弧线表示)给出。每个对象表示为一个子网,库所中令牌的变化代表了对象的不同状态(用黑点表示令牌token),故这些库所特别地称为state。

对象的内部行为用谓词网描述。在弧上不加谓词,在变迁中定义发生条件和发生时要执行的动作。当变迁的所有前驱中都有令牌,并且存在某一令牌的组合使变迁的发生条件为真时,变迁就可以发生。不同对象之间可以用 gate把输入mesQueue与输出mesQueue 连接起来,以此表示相互的消息传递关系。

对象有复合对象(图2中的A)和简单对象(图3中的AA和AB)之分。在简单对象中,不包含并发部分,只表示顺序行为;而在复合对象中则允许并发,因为复合对象定义了简单对象之间的连接关系,其控制分布在这些聚合的简单对象之间。为了依照系统要求来同步基本对象的顺序行为,在复合对象中定义了对象间的消息通信。这种构造可使同步约束从每个对象内部分离出来,更便于对象的重用,也为系统死锁分析方法奠定了基础。

1.4VPML与OOPN的共同之处和差异 

VPML与OOPN的共同之处是两者均为面向对象的建模语言,都能够对现实的过程进行建模,两者都有相应的形式化定义。

两者的差异是Petri网的形式化程度更高,能够对系统的结构和动态行为进行严密的数学分析和直观的计算机仿真,但是相对比较抽象,不易于掌握。而VPML语言的特点是功能丰富、直观易学、灵活适用,但形式化程度不够。

综上所述,VPML对用户友好,Petri网具有形式化的严密性;VPML能够有效地描述系统,Petri 网能够严密分析系统;VPML模型与程序实现紧密相连,Petri 网模型则易于进行仿真。根据VPML和Petri网各自的优点,本文提出了VPML-OOPN集成建模方法,实现两者的优势互补。

2VPML-OOPN集成建模方法的设计和实现

2.1VPML-OOPN集成建模方法的总体设计思想

VPML-OOPN集成建模方法的总体设计思想如图4所示。具体分为以下几个步骤:

(1) 首先对要创建的过程模型进行需求分析,然后利用VPML的对象源语、连接和连接符源语对过程模型进行描述和设计。

(2) 将建立好的过程模型自动映射成面向对象Petri网模型。

(3) 利用面向对象Petri网模型进行模拟、仿真、静态和动态死锁检测等。

(4) 模拟和仿真以及定性分析的结果用于修正和改进模型设计,模型设计和模型分析不断进行,直到满意为止。

(5) 根据改进后的过程模型描述实现模型。

2.2系统总体结构

系统从功能上可分为如下主要部分:系统总控模块、用户界面模块、创建VPML过程模型模块、过程模型到面向对象Petri网模型的映射模块、面向对象Petri网的模拟仿真和死锁检测模块。系统总体结构图如图5所示。

下面分别对各个模块的功能作简要介绍:

(1) 用户界面模块

该模块用于生成用户的界面。用户界面包括菜单条、工具条、控制面板和图形编辑区。

(2) 创建VPML过程模型模块

该模块的功能包括支持定义过程模型的结构,编辑VPML的可视化图符原语对象,为每类对象设置其相应的属性。通过设置活动的属性完成其时间的设置;通过设置资源对象的属性完成资源的分配。

(3) 模型映射模块

该模块包括VPML过程模型映射模块、生成Petri网脚本文件模块和生成模型系统脚本文件模块。

VPML过程模型映射模块包括对象源语映射模块、逻辑连接符映射模块和连接关系映射模块。对象源语映射模块能够完成活动、产品、资源和时钟的映射。其中产品的映射能够区分源产品和非源产品。如果是源产品还具有区分单一源产品和多源产品的功能。资源映射首先区分人工资源和非人工资源,然后再进行映射。时钟映射能够设置时钟的开始时间、结束时间、重做周期和间隔时间等,以此对活动进行控制。逻辑连接符映射模块能够完成输入逻辑连接符Input_OR和Input_AND以及输出逻辑连接符Output_OR和Output_AND的映射。连接关系映射模块能够完成数据流连接、关联连接、引用连接和时钟连接的映射。

本文原文

生成Petri网脚本文件模块是将映射的结果按照事先定义好的复合类的脚本文件格式写入扩展名为.OPNC的脚本文件中,生成复合类;生成模型系统的脚本文件是按照模型系统的脚本文件的基本框架写入脚本文件,作为系统模拟和定性分析的基础。

(4) 模拟仿真和死锁检测模块

该模块能完成面向对象Petri网的模拟仿真和死锁检测。

3系统核心模块设计及关键技术分析

3.1创建VPML过程模型的流程

生成过程模型如图6所示。

创建一个过程模型分为以下几个步骤[3]:

(1) 分析用户需求与目标,根据分析的结果建立VPML过程模型。

(2) 定义VPML过程模型的活动以及输入/输出产品。

(3) 定义执行活动所需的资源。

(4) 定义每个对象源语的属性。

(5) 通过合成过程,生成VPML过程模型图。

(6) 检查VPML过程模型是否具有完整性,如果VPML过程模型具有完整性则保存该文件;否则重新定义。

3.2映射部分的设计与实现

(1) 弧的映射

在过程模型中VPML节点是通过弧来连接的。在映射时是将每一条弧映射成由起始节点到门、门到终节点两条弧。(2)对象源语的映射和生成Petri网脚本文件

对象源语的映射是参照文献[4]中的VPML语义的Petri网描述。图7为活动和批处理活动的面向对象Petri网的对应子图。按照面向对象Petri网事先定义的简单类和复合类的脚本格式,依照脚本定义的顺序依次写入,并保存在扩展名为.OPNC的文件中。

图7中批处理活动有四种不同的控制:如果同时选择时钟和数量控制,在“选择二”对象中加一个Token;否则在“选择一”对象中添加一个Token。详情请参照文献[4]。

简单类的脚本文件的基本框架的定义请参照文献[2],在此不详述。在简单类的定义中,最重要的是Transition的定义。单个Transition的基本框架定义如下:

…: 

Pos: …

[ Color: … ]

[ NameLoc: … ]

[ Time: … ]

[ PreCond:]

…

[ #PreCond]

[ Action:]

…

[ #Action ]

“Time:”是时间标志符,为任选项,用来定义Transition发生的持续时间。后跟用逗号隔开的数字和时间单位。时间单位有七种:“MilliSecond”“Second”“Minute”“Hour”“Day”“Month”和“Year”。

“PreCond:”和“#PreCond”是发生条件定义标志符,为任选项,分别表示发生条件定义的开始和结束。这两个标志符之间可以定义一个合法的返回值为“boolean”的方法体,若不想为Transition定义发生条件,则可以省略此项内容。

“Action:”和“# Action”是动作定义标志符,为任选项,分别表示动作定义的开始和结束。这两个标志符之间可以定义一个合法的返回值为“void”的方法体,若不想为Transition定义动作,则可以省略此项内容。

在活动的属性中,最重要的是对活动的持续时间的定义,如果活动的持续时间是常量分布,那么则根据活动定义的具体时间和相应的比例计算出Token停留在Transition 中的时间,然后把时间写入脚本文件中;如果活动的持续时间是其他分布,则根据相应的算法计算出时间,写入脚本文件中。在模拟时Token会自动驻留在Transition中相应的时间,以达到模拟运行的效果。

(3) 生成Petri网脚本文件

将对象源语、逻辑连接符和连接弧映射完之后,需要按照面向对象Petri网中的复合类的脚本文件的基本框架写入脚本文件,生成的文件保存在.OPNC文件中。

(4) 生成模型系统的脚本文件

生成模型系统的脚本文件是按照模型系统的脚本文件的基本框架写入脚本文件,生成的文件保存在.OPNS文件中。在模型系统的定义中,最重要的是实例的定义。实例的基本定义框架如下:

InnerClass的名字.State的名字:

Token:

实例的名字:

Init:

…

#Init

#Token

在实例的定义中,最重要的是State中Token的定义。比如说执行一个活动必须有人这个资源,那么在写模型系统的脚本文件时则写入Token。这样在模拟运行时,Token会自动存于网中,点击运行按钮则网可以自动启动。

3.3模拟仿真和死锁检测模块

模拟仿真是把OOPN类转换成Java类来进行底层的实现,而Java类中仍然保留网结构,即系统的执行仍然按照网的引发规则来进行,而非将网结构转换成语言中的控制结构来实现。这样可以通过Petri网的执行获知系统的运作,也可以用Petri网的观点和角度来对系统进行控制[2]。

死锁检测过程首先根据对象的内部结构,提取出对其输入/输出门发生次序的要求,构造出接口等价网(Interface Equivalent Net,IE网),然后将不同对象的IE网合并,构成整个系统的IE网,通过建立IE网的可达树,分析其中是否存在死锁。

4结束语

通过分析VPML和面向对象Petri网各自的特点,提出了VPML-OOPN集成建模方法,设计和实现了VPML-OOPN集成开发环境。此环境可以完成过程模型的建立、映射、模拟仿真和死锁检测等功能,实现了VPML和面向对象Petri网的优势互补。

参考文献:

[1]周伯生,张社英.可视化建模语言[J].软件学报,1997,8(增刊):535-545.

[2]牛锦中.基于面向对象Petri网的并发软件集成开发环境的研究与实现[D].北京:北京航空航天大学,1999:20-24.

[3]周伯生,徐红,张莉.过程工程原理与过程工程环境引论[J].软件学报,1997,8(增刊):519-534.

数学建模的定义范文4

微积分是现代数学和古典数学的分水岭,数学的发展和应用自此发生根本性变化.[1]经典的微积分方程建模方法在力学、声学、电磁学、热传输和扩散理论中,甚至在现代量子力学和相对论中取得巨大成功.然而,社会学家、经济学家、物理学家和力学家也发现愈来愈多难以用经典微积分方程建模的所谓“反常”现象[23],如在扩散和耗散中广泛观察到的幂律现象[34]以及非高斯非马尔科夫过程[56]等.

非线性微分方程模型是描述复杂物理过程的常用方法,已得到充分研究,其基本思路是假设线性力学本构关系或物理定律中的系数是依赖应变变量的.目前,复杂问题的非线性模型愈加复杂,参数很多.例如,岩土力学中的热电化力耦合模型需要四十多个参数,这些参数的物理意义和确定本身就是一个很大的问题.[7]

近年来引起广泛关注的分数阶微积分方法是复杂现象建模的另一个有力的数学工具,在一些领域获得引人注目的成功.[2,4]但是,该方法也有其局限性.首先,非常重要的空间分数阶拉普拉斯算子的定义并不统一,有关数值计算也困难重重[2,8];其次,分数阶导数阶数的物理解释还不成熟.绝大多数分数阶导数模型都是经验模型或唯象模型.[2,4]

由于实际复杂问题的微分方程模型经常难以建立,因此笔者对这些问题就放弃微分方程建模,直接采用统计模型来描述和分析.[6,9]但是,统计模型不能清晰地描述问题的因果性,物理概念和规律经常不很清楚,结果不精细,一些情况下难以满足实际工程的需要.[5,10]

在微分方程数值模拟方面,目前标准做法是先确定控制方程和边界条件,然后采用某种数值方法做仿真计算.相应的反问题则涉及确定边界条件、控制方程参数和边界形状等,但基本上是先有控制微分方程,然后再求数值解.如上所述,建立复杂问题的微分控制方程并不是一个简单的问题.而且,非线性控制方程和分数阶微分控制方程的数值求解也不是一个容易的任务.例如,边界元法利用微分方程的基本解,能够高效高精度地获得数值解.但是,绝大多数非线性模型的基本解很难找到[11],而现有的分数阶微积分控制方程的基本解又极为复杂,甚至没有显式表达,也不易得到[2].

为解决仿真这些复杂问题的微积分建模难题,本文提出隐式微积分方程建模方法.基本思路是边界元的逆向思维,即不需要知道微积分控制方程的表达式,而是先确定物理问题微积分方程的基本解或通解,相应的微积分方程存在但不一定能够推出其显式表达式.在数值模拟方面,仅需微积分控制方程的基本解和边界条件就可以进行数值仿真计算,得到模型的数值解,不需要从基本解来推导控制方程.这里“隐式”是指控制方程的显式表达式可以不需要或难以推导出来.在具体实施中可以利用描述一类物理问题的广义基本解或统计分布密度函数.

由于基本解和通解一般可表达为径向基函数,因此本文求解隐式微积分方程模型的主要数值技术是基于径向基函数的配点方法.[12]该类方法以距离为基本变量,不依赖于问题的维数,本质上是无网格无数值积分的方法,编程容易,能够计算高维复杂几何形状问题.

本文考察2类应用实例.首先,考虑多相软物质热传导的幂律行为.,特别是反常扩散行为中快扩散过程的统计建模.本文运用列维密度函数构造反常扩散现象的时间空间隐式微积分方程模型.本文模型比现有模型简单,物理和统计概念清晰.

本文第1节通过多相软物质幂律热传导建模,引进隐式微积分方程建模方法,并采用奇异边界法给出仿真数值结果,然后在第2节给出列维稳态统计分布的隐式微积分方程模型,最后在第3节总结隐式微积分方程建模方法的特点和优势,以及若干有待研究解决的问题.

①证明过程包含在向J Comput Phys投稿的文章“Threedimensional Rieszkernelbased fractional Laplacian equation and its numerical solution”中,作者为陈文和庞国飞1稳态幂律热传导的隐式微积分方程模型分数阶拉普拉斯算子(-Δ)s/2是一种典型的微分积分算子,能够用单参数s(0到2之间任意实数)表征物理力学系统的空间非局部性;作为经典整数阶拉普拉斯算子(s=2)的一般形式,可用于软物质中声波传播的能量耗散[13]、湍流扩散[16]、地下水溶质运移[1819]、分形空间中的电磁场[20]和非局部热传导[2122]等物理力学问题的建模.算子(-Δ)s/2满足傅里叶变换[8]F{(-Δ)s/2u(·)}=ksF{u(·)}(1)式中:k为频域中的波数.利用傅里叶逆变换直接推导算子的显式表达式很困难,现有的二维和三维分数阶拉普拉斯算子的显式定义不统一.[13,2224]文献中常用的向量积分显式定义与式(1)不符,是一个近似定义,算子的数值离散也较为困难.例如,有限元离散的弱形式含有二重向量积分,具有非局部性,生成的刚度矩阵不再是带状稀疏阵,而是满阵.[14,21]总之,目前尚无统一的且易于数值计算的分数阶拉普拉斯算子定义.

采用隐式微积分建模方法,笔者不考虑分数阶拉普拉斯算子的具体表达形式,而是从其逆算子(分数阶里斯势)出发,直接构造分数阶拉普拉斯算子的基本解.为不失一般性,三维空间中的分数阶里斯势核函数的定义[8]为u*(x,ξ)=1x-ξ3-s (2)式中:x-ξ表示点x与ξ之间的欧氏距离;s为分数阶势的阶数.经典整数阶拉普拉斯算子(s=2)的基本解是分数阶的一个特例,u*(x,ξ)=1x-ξ (3)以式 (2)作为分数阶拉普拉斯算子(-Δ)s/2的基本解.一般物理问题的分数阶拉普拉斯的阶数s是从1到2之间的实数.可以证明,这样定义的分数阶拉普拉斯算子满足傅里叶变换定义.①

复杂介质往往存,x∈ΩR3 (4)式中:u为无量纲化的温度函数;s表征材料的非局部性,刻画幂律特征;Ω为计算区域,如图1所示的圆柱.圆柱长为6,底面半径为1,圆柱的中心与坐标原点重合.在本项研究中,(-Δ)s/2按式(2)的分数阶里斯势基本解定义,因此就用这个问题验证基本解式(2)定义的分数阶拉普拉斯算子的隐式微积分模型.需要强调的是,这里并不需要知道分数阶拉普拉斯算子的显式表达式.

基于里斯势的分数阶拉普拉斯算子基本解表达式(2),采用奇异边界法[2526]可直接求解稳态方程式(4)和相应的边界条件的稳态热传导问题.奇异边界法是一种边界型径向基函数配点法,以基本解作为插值基函数.该方法假设基本解源点奇异时的源点强度因子存在.本文采用基本解积分平均计算源点强度因子.

为验证奇异边界法,先考察整数阶拉普拉斯方程(s=2)的数值解精度.图2给出精确解和数值解在圆柱中轴上的值.随着边界离散点数的增加,数值解逐渐逼近精确解,可见奇异边界法具有较好的收敛性.

一般情况下并不知道分数阶拉普拉斯方程式(4)的精确解,但可以通过指定与整数阶方程相同的边界条件考察分数阶方程的数值解是否逼近于整数阶方程的精确解(当s趋于2时).先考察圆柱中轴{(x,y,z)|x=0,y=0,-3≤z≤3}上的温度随式(4)中分数拉普拉斯算子阶数s的变化,数值结果见图3.在完全相同的边界条件下,当s趋于2时,隐式分数阶拉普拉斯方程的解单调趋近于整数阶拉普拉斯方程的解.此外,s越小,材料的非局部性越强,中轴的温度越低.

2基于列维统计分布的非稳态反常扩散问题的隐式微积分方程模型扩散现象广泛存在于自然界和工业界中,是极其重要的物质迁移和输运的物理力学过程.越来越多的研究发现,经典的扩散方程并不能很好地描述湍流,如高温高压下等离子体扩散,金融市场变化,高分子动力学,以及软物质的热传导、扩散和电子输运等反常扩散过程.所谓的反常扩散[19,27]是指不符合菲克(Fick)扩散定律的扩散行为,包含慢扩散(subdiffusion)和快扩散(superdiffusion)2种形式,通常表现出长程的时间空间相关性.近年来的研究发现空间分数阶扩散方程能较好描述反常扩散中的快扩散现象;但时间空间非稳态分数阶方程的显式表达式难以得到或不准确,且难以数值计算.

本节考虑用列维统计分布的密度函数构造非稳态空间分数阶反常扩散方程的基本解,进行隐式微积分方程建模.这不同于第1节所涉及的稳态问题.

以上分析表明:高斯分布是整数阶菲克扩散模型的基本解核函数,一维列维分布是一维问题分数阶快扩散模型基本解的核函数.列维稳态统计分布是经典扩散方程和空间分数阶扩散方程基本解核函数的两类特殊情况.因此,可以用列维稳态统计分布的概率密度函数构造多维分数阶时间空间扩散方程的基本解,并用于建立快扩散过程的隐式微积分建模.由n维s稳态列维分布概率密度函数得到的n维空间分数阶扩散方程基本解为G(x,y,t)=H(t)tn/sLx-yt1/s (15)这里列维分布是空间分数阶扩散方程基本解的核函数,深刻揭示多维快扩散过程的统计本质和空间相关性.利用隐式微积分方程模型的基本解式(15),可以用试验或观测数据确定扩散过程所对应的列维统计分布中的稳态指标参数s得到基本解,然后根据可测边界上得到的边界条件值进行数值仿真计算,避免显式表达微积分方程模型的很多困难.

3结论

传统的数学物理方程和数值计算方案一般先根据问题的物理特征和理论采用数学微积分方法建立控制方程和边界条件,然后采用数值方法求解这些偏微分或微分积分方程问题.不同于标准的理论建模和数值仿真方案,本文提出的隐式微积分建模思路是先有问题的基本解,然后直接求解问题.微分控制方程表达式本身不再是必需的环节和对象.

隐式微积分建模的基本解或统计分布可以相当广泛,可极大地推广微积分建模的适用范围.例如,不同于传统的先有微分方程模型再寻找基本解的边界元法,可以直接根据问题的物理特征构造不均匀介质的基本解或通解,甚至可以直接构造非线性问题的基本解,而不用考虑微积分方程的表达形式,可将数学力学建模和数值建模更加紧密地结合起来.

此外,隐式微积分建模方法也将微积分建模与统计模型深刻紧密地结合起来,可由复杂问题的统计分布构造确定性的微分方程模型的基本解,建立确定性模型和随机模型内在联系的桥梁.基本解可以理解为物理场中的影响函数或势函数,由此可建立连续介质的隐式微积分建模与微观尺度的分子动力学和介观尺度的耗散粒子动力学的内在联系.

如何根据复杂问题的物理性质或统计分布构造基本解或通解等影响函数仍是有待深入研究的课题.

致谢:本文的第1节和第2节分别得到博士研究生庞国飞和博士傅卓佳的帮助,在此表示感谢.

参考文献:

[1]莫里斯·克莱因. 古今数学思想[M]. 张理京, 译. 上海: 上海科学技术出版社, 2009: 342383.

[2]陈文, 孙洪广, 李西成, 等. 力学与工程问题的分数阶导数建模[M]. 北京: 科学出版社, 2010: 8285.

数学建模的定义范文5

[关键词]数学建模 数学专业课程 课程教育

[中图分类号] G640 [文献标识码] A [文章编号] 2095-3437(2013)15-0106-03

在知识经济时代,数学科学的地位发生了巨大的变化,数学理论与方法不断扩充,数学应用越来越广泛和深入。传统的数学教育重视的是数学知识体系的传授,数学概念、定义、定理及基本计算方法的传授,课堂教学基本以教师为中心,以教材为蓝本,内容抽象,学习难度较高,学时少,内容多,不重视如何应用数学方法解决实际问题,忽视了训练学生如何从实际问题出发提炼出数学模型,以及如何用数学知识来解决实际问题的环节。笔者认为将数学建模思想融入数学专业课程教学中,能为数学与外部世界构建一架桥梁,改变学生的学习方式,提高课堂教学效率,从而培养学生提出问题、分析问题、解决问题与科学探究的能力,是对数学教学体系和内容改革的一个有益尝试。

一、在数学专业课程教学中融入数学建模思想的必要性与重要性

数学家吴文俊曾说过,“数学要真正得到应用,数学建模是取得成功最重要的途径之一”。数学建模是如何定义的呢?数学建模竞赛全国组委会主任李大潜这样来解释,数学是一门重要的基础学科,它的呈现形式是非常抽象的,而它丰富的内涵往往是掩盖在其抽象的形式背后的,学生不能理解,往往认为学数学无用。现实中我们要解决一个工程技术、经济建设、控制与优化、预报与决策或是社会领域等方面的问题,首先要在实际问题与数学问题之间架设一个桥梁,把实际问题转化为数学问题,其次要对它进行分析和计算,求得结果,最后要验证这个结果是否符合实际,其中最关键的就是用数学语言来表述我们所要研究的对象,即建立数学模型。可见,数学建模是联系数学理论与实际问题的桥梁,它是对实际问题进行分析,建立数学模型,对模型求解并用于处理实际问题的。可见,在各个专业开设数学建模课程,同时积极参加全国大学生数学建模竞赛,在数学专业课程中努力融入数学建模思想,是值得大力提倡的做法。

二、在数学专业课程教学中融入数学建模思想的一些建议

(一)更新教材内容,建立新的课程体系

教材是教师“教”和学生“学”的主要依据,教材编写的好坏与教学质量有直接的联系。传统的数学教材内容是一个完整的知识体系,是以“知识点为中心”来呈现的,知识点非常抽象且难以理解。而新的课程体系的指导思想是以提高数学素质为目的, 从基础出发,同时注重理论联系实际,把数学建模思想真正融入数学专业课程当中。在将纯理论的数学知识与实际应用联系起来时,最好在学习定义、性质、定理等都能介绍相关的背景知识或者是与之有关的小故事,让学生了解该定义与定理是如何在实际中产生的,能解决实际中的哪些问题,从而提高学生的学习兴趣,让他们积极主动地探索,并进一步提高学生的数学应用能力。最后,在新教材的编写上面应注重教育理念的更新,教材内容的呈现方式,注重数学与现实生活的联系,培养学生的问题意识。

(二)对教学方法进行必要的改革

传统的数学专业课教学一般采用教师讲、学生听的教学模式, 始终把学生当成是知识的容器,这种以知识为中心的模式有必要进行改革了。我们的教学重点应该是培养学生具备获取知识的能力,主动探索的精神,自我思考的意识。教师在讲授时可以创设丰富的问题情境,精讲多思,引发学生进行思考,加深学生对知识点的理解。课堂上可以采用小组的形式(同组、前后四人小组、六人小组乃至大组)进行合作学习,对该堂课的知识点进行反复强化,这样可以有效提高课堂教学效率。在课堂教学中还可以采用理论与实际结合、教师讲授与学生讨论结合、数形结合的方式来开展教学活动。另外,在数学专业课程教学中,也可以采用数学建模教学中普遍用到的案例教学和课堂讨论来丰富数学专业课程教学的形式和方法,还可以用“项目教学法”和“面向问题式教学法”来引入新的概念和定理,从而培养学生的团队协作意识与面对困难的勇气。

(三)在数学专业课程中巧妙渗透数学建模思想

1.在数学分析课程中渗透数学建模思想

广义地说,数学分析要研究的是与所谓连续性有关的数学问题,为此人们建立了许多有效的方法,其中重要的工作是确切地说清楚了极限现象,也就是在数学上合理地定义了极限。而极限概念是学生很难理解的一个概念,是教学中的一个难点。但极限也是从现实世界抽象出来的一个数学模型,教师可以用数学建模思想来解释这个概念,以此提高学生的学习兴趣。例如:我们可以利用《庄子・天下篇》中的一句话“一尺之锤,日取其半,万世不竭”来引入,引导学生分析并归纳出数列极限的概念。而在学习导数概念时,可以引入瞬时速度与曲线上某一点处的切线斜率这两个模型来抽象出共同的本质特点从而导出导数的概念,这样学生就不会觉得突兀,难以接受了。数学分析中有很多定理,在定理的证明过程中,传统的教学方式往往是用定理来证明定理,学生不容易理解。此时,可以先让学生了解定理产生的背景以及与定理有关的小故事,引起他们的兴趣,然后把定理的结论看作是一个特定的数学模型,教师通过定理的条件(看作是模型的假设)预先设计的问题情境引导学生去建立这个模型,从而证明出定理的结论。

2.在高等代数课程中渗透数学建模思想

《高等代数》是数学教育专业的三大专业基础课之一。该课程内容比较多,学时少,在有限的学时内要完成教学任务,教师只能在课堂教学中注重高等代数的基本概念、基本方法和基本思想的阐述,对于高等代数中问题产生的背景以及在学科中的应用和与中学内容的联系等内容就无法涉及,因而数学专业的大学新生很难迅速地由中学初等思维向大学高等思维转变,大部分学生都觉得高等代数太抽象、太难理解,甚至觉得没有用。面对这样的教学状况,教师可以考虑将数学建模思想融入高等代数课程当中,可以在概念与定理的教学中,先给出一些简单的数学模型例子,把实际问题融入高等代数的内容中,让学生知道抽象的代数概念也是来源于现实世界的,是与实际问题息息相关的,这样会激发学生的学习兴趣,有利于教学的开展。在高等代数教学中,主要涉及的内容是多项式概念、行列式概念、线性方程组概念、矩阵概念及线性空间概念,针对每一个概念,教师可以先找与它有关的实际问题作为一个简单的数学模型,在课堂上,可以让学生从该模型入手,小组讨论,展示结果,从而得到本堂课要学习的知识点。

3.在概率论与数理统计课程中渗透数学建模思想

近几年来,在全国大学生数学建模竞赛试题中,很多竞赛题目都用到了概率统计的知识。概率论与数理统计课程描述、分析和处理问题的方法与其他数学分支不同,它是一种观测试验与理性思维相结合的科学方法。概率统计中蕴涵着丰富的数学方法,如模型化法、构造法、变换法等。例如:现在备受大家关注的一种对人类生命产生严重威胁的疾病――脑卒中(也叫做脑中风),专家已经证实它的诱发与环境因素(包括气温和湿度)存在密切的关系。因此,我们需要针对脑卒中发病率与气温、气压以及相对湿度的关系建立数学模型,并结合高危人群的特征和关键指标,研究脑卒中发病的规律。首先,根据病人的基本信息,对其性别、年龄段、职业等三方面进行分类统计,利用赋值、作图等形式得出下面的结论:脑卒中男性患者多于女性患者;中老年人在发病人群中发病率最高,高达98%;在各类职业发病人群中农民的发病率最高(占68%),其次为退休人员(16%)和工人(11%)。其次,先对病例和气象因素数据进行分析、处理,运用图表的形式展现2007至2010年各月病例数和气象因素的变化规律,再利用圆形统计分析法通过三角函数变换计算出脑卒中的高峰期。进而采用多元线性回归分析,建立模型,运用最小二乘法计算得多元线性回归方程,并对其作随机误差项方差的估计得出回归方程的标准误差较大,进而采用8项气象指标分别与同期脑卒中的月发病例数进行单因素相关性分析,再应用后退法多元逐步回归分析多种气象因素共同作用与脑卒中的相关性,得出脑卒中与最高气压、平均气压、最高温度、平均相对湿度相关性较大。最后,通过网上查阅相关资料及有关文献,运用软件对其数据进行处理,计算出脑卒中发病率的各因素的爆发率,从而确定影响高危人群引发脑卒中疾病的重要因素。结合前面的结论,从脑卒中的可干预因素及不可干预因素中对脑卒中高危人群提出相应的预防措施和建议方案。可见,研究脑卒中发病的规律,利用概率统计知识建立数学模型对卫生部门和医疗机构各方面的改善和改革都具有实际意义。

4.在常微分方程课程中渗透数学建模思想

在常微分方程教学中,涉及建立数学模型的问题很多。教师在授课当中,要注重在实际问题中提炼出微分方程,同时进行求解。如传染病模型:我们知道各种传染病一直是大家关注的热点,然而不同类型的传染病它的传播过程有其各自不同的特点,弄清这些特点需要相当多的病理知识,我们不可能从医学的角度一一分析各种传染病的传播,而只能按照一般的传播机理来建立几种模型。最初建立的模型把病人人数看成是连续、可微函数,把每天每个病人有效接触的人数看成是常数,此模型不符合实际,基本上不能用,于是修改假设后得到SI模型,此模型虽有所改进,但仍不符合实际,进一步修改假设,并针对不同情况建立SIS模型和SIR模型,这两个模型描述了传播过程、分析感染人数的变化规律,预测传染病到来时刻,度量传染病蔓延的程度并探索制止蔓延的手段,是比较成功的模型。如正规战与游击战:在第一次世界大战期间,F.W.Lanchester提出了几个预测战争结局的简单数学模型,其中有描述传统的正规战争的,也有考虑稍微复杂的游击战争的,以及双方分别使用正规部队和游击部队的混合战争的。后来对这些模型进行进一步的改进和完善,用以分析一些著名的战争。J.H.Engel用二次大战末期美日硫磺岛战役中的美军战地记录,对正规战争模型进行了验证,发现模型结果与实际数据吻合得很好。

5.在考核中适当渗透数学建模思想

在传统的数学专业课程考核中,教师大都采用一套试卷来进行测试,试题的题型是固定的,内容是例题的翻版。这种考核方式根本不能看出学生对知识掌握的程度。因此,教师有必要在考核中适当引入一些数学建模问题;或者在考核中引入一些趣味游戏,由学生独立或组队去完成问题,记录成绩,把这作为学生平时成绩的一个方面。通过这种做法,学生体会到数学与实际确实是不可分开的,数学来源于实际,同时也体会到团队合作的重要性,从而获得除数学知识本身以外的素质与能力。

[ 参 考 文 献 ]

[1] 李大潜.中国大学生数学建模竞赛[M].北京: 高等教育出版社,2008.

[2] 姜启源, 谢金星, 叶俊. 数学模型(第三版)[M].北京:高等教育出版社,2003.

[3] 毕晓华,许钧.将数学建模思想融入应用型本科数学教学初探[J].教育与职业,2011,(9):113-114.

[4] 李大潜.将数学建模思想融入数学类主干课程[J].中国大学教学,2006,(1):9-11.

[5] 唐红兵. 浅谈《概率论》教学中如何融入数学建模[J]. 黑龙江生态工程职业学院学报,2010,23(4):101-102.

[6] 林远华,卢钰松.关于数学分析课程渗透数学建模思想的思考[J].科教文汇(下旬刊),2011,(4):72-73.

[7] 商秀印,顾志华.将数学建模思想融入大学数学课堂[J].长春理工大学学报, 2010,5(6):164-165.

数学建模的定义范文6

【关键词】 面向对象 仿真建模 模型

计算机仿真技术是以计算机为工具,以相似原理、信息技术以及各种相关应用领域的基本原理与技术为基础,根据系统试验的目的,建立系统模型,并在不同的条件下,对模型进行动态运行的一门综合性技术。而计算机仿真是使用计算机仿真技术,建立相应物理系统的数学模型,并在计算机上解算数学模型的过程。

计算机仿真的核心是系统模型,系统模型的粒度、运行效率直接决定了仿真的效果,只有建立正确的系统模型,才能得到正确的仿真结果,仿真才有意义和价值。在计算机仿真领域,系统模型称为仿真模型,建立仿真模型的过程称为仿真建模,仿真建模的根本目的是建立能够在计算机上解算系统数学模型的系统模型软件。

系统仿真模型软件作为一类软件,在设计、开发、运行和维护等方面符合软件的一般规律。仿真建模作为系统模型数学模型、模型软件建立过程,同样需要方法学指导。

1 面向对象方法

面向对象(Object-oriented,简称OO)思想是一种思维方式,强调思考过程中从现实世界中客观存在的事物(即对象)出发并尽可能地运用人类的自然思维方式。面向对象思想产生于编程语言,目前已经扩展应用于计算机硬件、数据库、软件工程、用户接口、计算机体系结构等多个领域,但在软件工程领域应用最为深入。

基于面向对象思想分析与解决问题的方法是面向对象方法。在软件工程领域,面向对象方法是指以面向对象思想为指导的软件设计与开发方法,强调运用人类在日常逻辑思维中经常采用的思考方法与原则,以对象为中心,以类和继承为基本构造机制来抽象现实世界,以对象、类、属性、方法、封装、继承、消息、聚合等概念对软件进行设计和开发。

2 面向对象仿真建模

仿真建模的根本目的是建立能够在计算机上解算系统数学模型的系统模型软件,为了达到这一目的,必须经历两次建模过程:一是数学模型设计,使用数学语言对系统进行抽象和描述,即数学建模,成果是包含数学公式、数据等元素的文档、图表等;二是模型软件建立,将数学模型转换为计算机软件,使数学模型能够在计算机上进行解算,成果是模型软件,这一过程是狭义上的仿真建模,可分为设计与开发两个步骤。

数学模型设计与模型软件建立这两次建模过程是紧密相关的,采用面向对象方法设计的数学模型,其模型软件必须同样采用面向对象方法建立,即在模型软件设计、模型软件开发均采用面向对象方法。这样一是能够最大化发挥面向对象方法的优势,包括直观、数据抽象、信息隐蔽、模块性、可重用性、可维护性、灵活性等;二是能够保证数学模型能够转换为模型软件,保证数学模型与模型软件的一致。

3 面向对象数学模型设计

数学模型设计使用数学语言对被仿真系统进行抽象和描述,被仿真系统由一系列组成部分构成,按照面向对象方法,可将被仿真系统的各组成部分定义为对象,这些对象可以拥有、传递和处理消息,并能相互作用。更进一步,可将被仿真系统各组成部分作为系统进一步分解为更加详细的对象。将被仿真系统分解并定义为一系列对象是面向对象数学模型设计的第一步。

面向对象思想认为任何现实世界客观存在的事物都可以通过状态和对状态的改变来进行描述,对象也是客观存在的事物,同样如此。在面向对象方法中,对象的状态使用属性来描述,而对象状态的改变使用方法描述,对象之间通过消息相互作用。对象拥有的消息是属性的一部分,对象传递和处理消息的过程是对状态的改变,是方法的一部分。面向对象数学模型设计的第二步是定义对象属性和方法。

对象属性分为静态属性和动态属性:静态属性描述了对象的静态特征,不会发生改变;动态属性描述了对象的动态特征,可被对象方法改变。对象方法描述了改变属性的方式和过程。

从数学的角度看,被仿真系统可使用数学方程来描述。那么,可以认为对象方法描述了数学方程本身,而对象属性则描述了数学方程中的变量。

4 面向对象模型软件建立

模型软件是对被仿真系统数学模型的软件实现,按照软件工程学,模型软件建立可粗略划分为设计和开发两个阶段。

4.1 面向对象模型软件设计

数学模型设计阶段已经明确了被仿真系统的对象组成,以及对象的属性和方法。模型软件设计阶段是连接数学模型与模型软件之间的桥梁,主要任务包括:按照面向对象方法,从软件设计角度对数学模型进行分析,将对象抽象为类,设计类之间的继承、聚合关系;根据仿真目的,从数学模型的对象属性中挑选部分属性作为类的属性,挑选部分方法作为类的方法,增加部分软件运行需要的属性和方法;设计类的实现方式,如编程语言、属性命名、方法的算法等;理清对象之间的关系,设计对象之间消息传递过程。

4.2 面向对象模型软件开发

模型软件开发是仿真建模的最后一个步骤,是采用面向对象方法,根据模型软件设计,将类、对象、对象属性、对象方法、消息通信等实现为软件组件的过程。

软件组件有很多种不同名称,又称为应用程序、程序、函数、模块、动态链接库、子程序或者类。这些名称基于不同的软件语言和协议,都表示一组计算机代码,都可以响应命令和接收数据。具体采用哪个形式,需要根据采用的编程语言、运行环境、重用性要求、模型调用要求等确定。建议采用面向对象编程语言实现模型软件,如C++、JAVA、C#等,并在开发过程中综合考虑运行效率、时间一致性、重用性的要求。

5 结束语

本文对面向对象方法在仿真建模中的应用进行了初步研究,是计算机仿真技术与软件工程方法相结合的一次有益探索。实际上,计算机仿真需要以仿真模型为核心,根据仿真目的构建仿真系统,在这过程中,面向对象方法必然能够发挥积极作用,这是下一步的重点研究方向。

参考文献

[1]周彦.戴剑伟等.HLA仿真程序设计[M].北京:电子工业出版社,2002.

[2]徐庚保.曾莲芝等.数字仿真的发展[J].计算机仿真,2008,03.

[3]王常武.刁联旺等.作战仿真中的实体运动模型[J].计算机工程,2002,30(2):45-46.

作者简介

李宏海(1981-),男,大学本科学历。河北省抚宁县人。工程师。主要研究方向为计算机仿真。