减少二氧化碳排放的意义范例6篇

前言:中文期刊网精心挑选了减少二氧化碳排放的意义范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

减少二氧化碳排放的意义

减少二氧化碳排放的意义范文1

据全球权威机构统计资料显示,交通运输行业的二氧化碳排放量占全球总排放量的18%。在欧洲,这一比例甚至高于18%。据欧洲运输与环境联盟的统计资料显示,2005年,欧洲交通业二氧化碳排放量就占据了欧盟27国的29%。交通运输行业对二氧化碳排放引起的全球气候变暖问题难辞其咎,这对于全球航空与公路运输业的领军企业而言则是一项大的承诺。TNT、UPS、DHL等几家国际快递企业正积极通过企业和个人的共同行动来减少因大量使用飞机、车辆带来的二氧化碳排放量,相继制定“绿色快递”的实施计划。

TNT“心系我星”二氧化碳减排计划

作为TNT全球二氧化碳减排战略举措的一部分,TNT将在中国全面实施名为“心系我星”(Planet Me) 的二氧化碳减排计划。TNT于2007年8月底在全球的“心系我星”项目致力于提升TNT在监测和治理二氧化碳排放方面的执行力度和透明度,进而在公司运营过程中大幅度减少二氧化碳排量。同时,该项目号召和激励TNT全球159000名员工在日常生活中,同样致力于此项使命。

TNT集团全球CEO彼得・巴克(Peter Bakker)先生指出:“‘心系我星’这一计划具有非常显著的商业意义。客户、政府部门、我们的员工以及大众都在关注着大公司如何应对全球变暖问题。对TNT而言,二氧化碳减排所带来的挑战是巨大的。因为针对运输业的减排技术还不成熟,同时需要大量的资金投入才能将其付诸实施。尽管如此,TNT的这一战略使我们踏上成为世界上首家二氧化碳零排放的快递与邮政服务公司这一征程。”

TNT致力于战胜全球变暖问题的根本原因在于:既然快递业在全球变暖这一问题上难辞其咎,那么他们就应义不容辞地为之提供解决方案,加上客户正不断测评供应商帮助他们改善环境的能力,越来越多的政府部门正颁布法令以降低车辆尾气排量,公众亦希望污染环境者将其清理干净。

TNT“心系我星”计划包括三部分,即“二氧化碳排放计量”、“橙色准则”和“橙色选择”。通过在企业运营和员工及家庭两个层面所进行的努力,使大幅度减排二氧化碳成为TNT公司使命的一部分。

去年8月21日,TNT在荷兰鹿特丹地区启用欧洲大陆第一款电动型零废气排放运输卡车,作为鹿特丹环境项目的一部分,TNT投入两款史密斯(Smith)电动型运输卡车,用于其快递和邮政业务。这两款分别为载量3.5吨的史密斯Edison EV型卡车和载量9吨的史密斯Newton EV型卡车,运行完全达到二氧化碳零排放标准。这一率先举措有力地帮助了鹿特丹市政府达成2025年的二氧化碳排放目标,即将该城市二氧化碳排放量减至1990年的一半。巴克先生表示:“我们了解并重视我们所在行业对环境产生的影响,也意识到我们对气候变化有不可推卸的企业责任。因此,我们有义务致力于提供一个可行且长久的解决方案。TNT对环境保护所作的努力也具有商业意义,因为我们的利益相关方对TNT在环境保护方面所作的努力和产生的影响力越来越重视。”

TNT大中国区董事总经理迈克・德瑞克(Michael Drake)表示:“作为一家业绩增长迅速的跨国公司,TNT将二氧化碳减排举措作为企业可持续发展战略的重要部分,融入到公司的业务发展与运营中,具有重要的意义。在中国,我们会在运营层面逐步推进和实行二氧化碳减排措施。同时,与TNT全球一样,我们也号召TNT中国的15000名员工将这一举措延展到他们的个人生活中。”

DHL亚太区推出碳中和运输服务

DHL近日正式推出面向亚太地区的碳中和运输服务“DHL绿色快递”(DHL GOGREEN EXPRESS)。该项服务将在未来一年内,在澳大利亚、中国大陆、香港、日本、新加坡、马来西亚、越南、印度等17个亚太国家和地区推广。

“DHL绿色快递”是DHL为客户提供碳中和以及低碳运输服务的“绿色运输项目”的一部分。在这项增值服务中,客户可以选择将其全球范围的全部或部分业务加入“DHL绿色快递”并支付投递费用的3%作为“绿色基金”。DHL将计算每票快件在整个投递过程中所产生的碳排放量并通过对相关碳管理项目如汽车替代燃料技术、太阳能电池板和重新造林等再投资来削减和抵消全球快件运输中的碳排放。所有项目都经过DHL特别设立的碳管理基金会鉴定并批准。为保证权责明确和透明公开,瑞士通用公证行将作为该项目的监管人。同时,客户每年会收到DHL颁发的证书,标明以其名义削减或抵消的碳排放数量,以示公司在降低碳排放方面所作出的努力。

“可持续发展已经逐渐成为DHL领导理念的核心要素。”DHL快递亚太区CEO唐睿德表示,“除了关注DHL自身对环境的影响,我们还希望通过为客户提供多种运输选择帮助他们减少对环境的影响。作为行业创举,‘DHL绿色快递’是一项简便易行的碳中和服务,旨在直接应对气候变化所带来的挑战。”

UPS在北京部署国IV环保运输车辆

减少二氧化碳排放的意义范文2

关键词 二氧化碳排放;投入产出法;影响因素

中图分类号 F205 文献标识码 A 文章编号 1002-2104(2015)09-0021-08 doi:10.3969/j.issn.1002-2104.2015.09.004

进入21世纪以来,温室效应逐渐凸显,能源流失问题也日益严重,二氧化碳排放的控制问题已上升到全球层面。在这种背景下,针对二氧化碳排放量的计算在当前的研究中显得尤为重要,其计算结果的准确性不仅直接决定了社会和政府对于碳排放状况的认识,更会对我国的高耗能产业结构调整、减排计划的执行以及国际碳排责任的判定产生影响。因此,不断分析、对比各种计算方法的影响因素、改进计算方法、修正计算结果并对计算进行深入分析,已经成为碳排放相关研究的重要基石。

1 文献综述

目前主要的二氧化碳计算方法有能源消耗法、生命周期评价法(LCA,Life Circle Assessment)和投入产出法(IO,InputOutput)。能源消耗法计算二氧化碳排放量是指以统计资料为依托,根据能源的消耗量以及二氧化碳的排放系数进行对二氧化碳排放量的估算。这一计算方法的数据选取较为灵活,可以针对具体的问题选取适合的数据进行分析,许多学者采用这一方法进行计算。但该方法也存在一定问题,比如数据来源不正统可能会导致计算结果较实际偏差过大。何建坤[1]根据Kaya公式及其变化率分析了中国及一些发达国家的二氧化碳排放峰值,并发现单位能耗的二氧化碳排放强度年下降率大于能源消费的年下降率。赵敏等[2]根据2006年IPCC二氧化碳排放计算指南中的公式及二氧化碳排放系数,计算了上海市1994-2006年间能源消费的二氧化碳排放量,并以此分析了二氧化碳排放强度下降的原因。曹孜等[3]根据化石能源的消耗量计算了2008年总体与各部门的二氧化碳排放量以及1990-2008年碳排放强度的发展趋势,从而进一步研究二氧化碳排放量与产业增长之间的关系。汪莉丽等[4]根据全球及各地区的能源消费历史数据分析了以往的二氧化碳排放总量、二氧化碳排放累积量和人均二氧化碳排放量,并以此预测了未来的能源消费二氧化碳排放情况。李宗逊等[5]根据昆明市的工业能耗统计数据对昆明市的工业二氧化碳排放、行业二氧化碳排放强度及行业分布做了探究。

生命周期评价法计算二氧化碳排放通常以活动环节为分类单位,要求详细研究测度对象生命周期内的能源需求、原材料利用和活动造成的废弃物排放。这一方法能够具体到产品原材料资源化、开采、运输、制造/加工、分配、利用/再利用/维护以及过后的废弃物处理等各个环节,多被用于建筑领域。但在计算生产工序复杂的产品时,存在计算工作量大等缺陷。刘强等[6]利用全生命周期评价的方法对中国出口的46种重点产品进行了碳排放测算,发现这些产品的二氧化碳排放量占全国二氧化碳排放量的比例非常高。张智慧等[7]基于可持续发展及生命周期评价理论界定了建筑物生命周期二氧化碳排放的核算范围并给出了评价框架和核算方法。张陶新等[8]利用生命周期法构建了测算建筑二氧化碳排放的计算模型,并通过构建的模型分析了中国城市建筑二氧化碳排放的现状。

投入产出法计算二氧化碳排放量主要以投入产出表为依据,可以根据产品的直接消耗系数及完全消耗系数分别估算二氧化碳的直接排放和间接排放。直接消耗系数是指某一产品部门在单位总产出下直接消耗各产品部门的产品或服务总额。完全消耗系数是指某一部门每提供一个单位的最终产品,需要直接和间接消耗(即完全消耗)各部门的产品或服务总额。这一计算方法的优势在于可以进行隐含二氧化碳排放(Embodied Carbon Emission)的估算,并且在对于多行业二氧化碳排放进行计算时通过直接消耗系数矩阵以及完全消耗系数矩阵进行一次性估算,减少行业分类的工作量。但是,投入产出法的缺点在于其在计算结果的准确度上不如前两种二氧化碳排放计算法,因而多被用于隐含二氧化碳排放的计算。Lenzen[9]利用投入产出模型研究了1992年和1993年澳大利亚居民最终需求的能源消费及温室气体排放情况,发现65%以上的温室气体来自能源的隐含消费。Ahmed和Wyckof[10]根据投入产出方法估算了全球24个国家的贸易隐含碳,证实了产业地理转移对全球二氧化碳排放的影响。刘红光等[11]、孙建卫等[12]均采用区域间的投入产出表对中国各区域各行业的二氧化碳排放量做了测算,并针对区域碳减排做了分析。何艳秋[13]利用投入产出法计算了各行业的二氧化碳排放系数,并进一步计算了行业最终产品的直接二氧化碳排放量以及消费中间产品的间接二氧化碳排放量。

二氧化碳排放量的计算方法种类繁多,各有利弊,而现有文献大多是选取其中一种方法对二氧化碳排放量进行估算,少有针对不同方法的比较研究和对不同影响因素的量化分析。本文梳理了当前主要的二氧化碳排放量计算方法,并基于投入产出法,对比计算了不同考虑因素对于二氧化碳排放量计算的影响,得到各种条件变动情况下所导致的测算偏差。基于投入产出法,对比分析了不同考虑因素对于二氧化碳排放量计算的影响,并计算了各种条件变动情况下的计算偏差。

2 计算方法及数据来源

二氧化碳排放主要包括能源燃烧的二氧化碳排放和水泥生产过程的二氧化碳排放两类。其中,能源燃烧的二氧化碳排放是指各行业燃烧各种能源所产生的二氧化碳排放,主要根据能源行业对各个行业的能源投入进行计算。水泥生产过程的二氧化碳排放是指在水泥生产过程中因化学反应而产生的二氧化碳排放,主要根据水泥的产量及相关的排放系数进行计算。两种来源涉及不同的行业,由于各行业在生产、加工过程中都需要能源提供热力、动力等,因此各行业均存在能源燃烧二氧化碳排放,而水泥生产的过程排放主要与水泥生产相关,属于非金属矿物制品业的二氧化碳排放。具体来说,这两类二氧化碳排放量的计算思路如下:

本文所介绍的二氧化碳排放量计算法适用于各类能源消耗量已知、各行业的能源使用量已知、水泥产量已知并且能源燃烧和水泥生产过程的二氧化碳排放系数均已知的情况,可以计算各年度国家或地区的总二氧化碳排放情况以及分行业二氧化碳排放情况。为方便介绍,本文以2007年中国的二氧化碳排放情况为例,给出其排放量的计算方法。选取的数据来源主要包括2007年的中国能源平衡表与投入产出表,各能源的平均低位发热量以及单位产热量下的二氧化碳排放系数,此外还需要水泥产量与水泥生产的二氧化碳排放系数等。其中,2007年的中国能源平衡表与各能源的平均低位发热量取自国家统计局出版的《2008年能源统计年鉴》,内容包括2007年中国的能源使用情况;各能源在单位产热量下的二氧化碳排放系数取自日本全球环境战略研究所出版的《2006年IPCC国家温室气体清单指南》,指的是各能源在燃烧后每产生单位热量所排放的二氧化碳量;水泥产量取自国家统计局公布的2007年全国30个省份水泥产量数据,全国的水泥产量本文认为是各省水泥产量的加总;而水泥生产的二氧化碳排放系数取自Greenhouse Gas Protocol网站关于波特兰水泥系数的计算。波特兰水泥是以水硬性硅酸钙类为主要成分之熟料研磨而得之水硬性水泥,通常并与一种或一种以上不同型态之硫酸钙为添加物共同研磨,其二氧化碳排放系数适用于对水泥生产过程中普遍的二氧化碳排放量计算。

3 二氧化碳排放量计算

3.1 能源燃烧的二氧化碳排放

全国的总二氧化碳排放量主要通过能源消耗量计算,而分行业的二氧化碳排放主要是将全国的二氧化碳排放总量按行业能耗的比例进行分解得出。在已知能源的燃烧量及二氧化碳排放系数时,二氧化碳排放量为能源的燃烧量与二氧化碳排放系数的乘积。

3.1.1 能源燃烧量

能源的燃烧量计算的关键问题在于将“没有用于燃烧”的能源消费量从总量中剔除。根据能源平衡表显示,各种能源用于燃烧的部分包括能源的终端消费量、用于火力发电的消费量以及用于供热的消费量,不包括在工业中被用作原料、材料的部分。

3.1.2 能源的二氧化碳排放系数

能源燃烧的二氧化碳排放系数通过平均低位发热量和单位热量的二氧化碳排放系数计算。已知各能源燃烧产生单位热量的二氧化碳排放系数和各能源的平均低位发热量(即单位质量的各类能源在燃烧过程中产生的热量),将各能源燃烧产生单位热量的二氧化碳排放系数与其平均低位发热量相乘,即可得出每单位质量的各类能源在燃烧过程中排放的二氧化碳总量,也即各能源的二氧化碳排放系数,计算过程如公式(4)所示,其计算结果见表2。

3.1.3 能源行业的二氧化碳排放系数

通过以上两部分计算,已经可以得到全国的二氧化碳排放量,接下来需要计算分行业的二氧化碳排放量。如图1的计算流程图所示,计算各行业的二氧化碳排放需要用到各能源行业的二氧排放系数以及各能源行业向所有行业的投入关系。

燃烧所产生的二氧化碳排放量,但由于本文使用的中国42部门投入产出表中提供的能源行业仅有煤炭开采和洗选业、石油和天然气开采业、石油加工炼焦及核燃料加工业、燃气生产和供应业4个,这些能源行业与各个化石能源之间存在的对应关系如下:煤炭开采和洗选业包括的能源有原煤、洗精煤和其他洗煤,石油和天然气开采业包括原油和天然气,石油加工、炼焦及核燃料加工业包括汽油、煤油、柴油、燃料油、液化石油气、炼厂干气、其他石油制品、焦炭和其他焦化产品,燃气生产和供应业包括焦炉煤气和其他煤气。各能源行业产生的二氧化碳排放量即为燃烧与其相关能源产品所产生的二氧化碳排放量之和。

这里需要说明的是,在使用投入产出法计算各行业的能源消耗量时,是否剔除能源的转化部分、是否减去固定资本形成及出口投入都会导致二氧化碳排放结果的不同。原因在于,虽然全国42部门所需的能源均是由四个能源行业提供,但这四个能源行业所投入的能源却并非全部用于国内产品生产的能耗,其中有三种用途需要在计算时单独处理:①作为原材料进行加工转换的部分,如煤炭炼焦、原油加工为成品油、天然气液化等的消耗;②作为存货及固定资本形成等的部分;③作为能源产品出口给国外或调出本地的部分。由于这些部分的燃烧过程不在本地,所排放的二氧化碳也不属于本地排放。因此,在计算能源行业的投入金额时,是否剔除这三部分,会对计算结果产生影响。

本文将分别计算是否剔除以上三部分能源消耗的情况。首先,在不剔除这三类能源消耗的情况下,各能源行业用于燃烧部分的总投入金额为:

3.1.4 各行业的能源燃烧排放

在以上计算的基础上,可以计算投入产出表中42行业各自的能源燃烧排放量。计算方法如公式(8)所示,将投入产出表中能源行业j对行业k的能源投入,乘以公式(7)中能源行业j的二氧化碳排放系数,可以计算得出能源行业j给行业k带来的二氧化碳排放量。而行业k的能源燃烧排放为各能源行业投入到行业k的能源燃烧排放量之和,即:

3.2 水泥生产过程的二氧化碳的排放

由于水泥在生产过程中会产生复杂的化学反应,产生二氧化碳,这部分二氧化碳排放被称之为水泥生产的过程排放,在我国二氧化碳排放总量中占到相当比例,因此,在计算中国的二氧化碳排放总量时,是否考虑水泥的过程排放也会影响最终的计算结果。

水泥的生产属于非金属矿物制品业,其二氧化碳排放的计算公式为:

EC=QC×v (9)

其中:EC为水泥生产中的二氧化碳排放量,QC为水泥的总产量,v为水泥生产的二氧化碳排放系数。

本文选取的水泥生产二氧化碳排放系数为波特兰水泥系数,根据Greenhouse Gas Protocol,取值为每t的水泥产量在生产过程中排放

0.502 101 6 t的二氧化碳。水泥产量方面,根据国家统计局统计数据,将中国各省在2007年的水泥产量加总后可得全国在2007年的水泥总产量,共计135 957.6万t。将这两个数据代入公式(9)中计算可得,2007年中国水泥生产过程中的二氧化碳排放总量为68 264.5万t。需要指出的是,在分行业统计的二氧化碳 排放中这一排放属于非金属矿物制品业。

4 不同考虑因素对计算结果的影响

根据本文第二部分对计算方法的介绍可以发现,从“是否剔除能源的转化部分”、“是否减去固定资本形成总额与出口、调出的能源投入”以及“是否考虑水泥生产的过程排放”这3个角度出发,我们可以用23=8种方式对二氧化碳的排放量进行计算,如表3所示。理论上“剔除能源的转化部分,减去固定资本形成总额与出口、调出的能源投入并且加上水泥生产过程排放”的情况下所得计算结果是最为准确的。因此,为了保证计算结果的准确性,在条件允许的情况下,上述三个角度的问题均需要考虑在内。当数据缺失的时候,就需要进行折衷,采取其他几种“不完美的”方法进行计算:比如当能源转化情况不明,即

能源转化率或能源转化量未知的情况下,应选取不剔除能源的转化部分的方法计算;当缺乏固定资本形成总额与出口、调出能源投入的信息,也即投入产出表最终使用部分情况不明时,应选取不减固定资本形成总额与出口、调出的能源投入的方法计算;而在水泥产量或水泥生产的二氧化碳排放系数未知时,计算中不考虑水泥生产的过程排放。相应地,如果这三个角度的问题没有被完全考虑,计算结果也会存在一定程度的偏差。只有在偏差度允许的情况下,该计算方法才是有意义的。因此在采取这些方法计算时,应首先确定各个方法计算结果的准确性。

为了分析各种方法计算得到的二氧化碳排放量的准确性,本文分别利用以上8种“不完美的”计算方法计算了中国2007年的二氧化碳排放量。表3中以“是否剔除能源的转化部分”、“是否减去固定资本形成总额与出口、调出的能源投入”以及“是否考虑水泥生产的过程排放”作为计算变量,展示了各种计算方法得到的结果。当变量取1时为考虑该角度的计算方法,变量取0时为不考虑该角度的计算方法,一共列出8种二氧化碳排放量的计算方法。其中,由于三个变量均取1时,(即“剔除能源的转化部分,减去固定资本形成总额与出口、调出的能源投入并且加上水泥生产的过程排放时”)所得到的计算结果最为准确,因此表3中以三个变量均取1的情况为基准情况,并将其余方法的计算结果与基准情况进行比较,得出各方法下计算结果的准确性偏差。

总排放量方面,计算结果显示,总排放量仅受“是否考虑水泥的过程排放”影响。如表3所示,总排放量的取值仅有两种情况,考虑水泥的过程排放时总排放量为695 167.1万t,不考虑水泥的过程排放时总排放量为626 902.6万t。原因在于本文中二氧化碳排放量的计算包括能源燃烧二氧化碳排放量的计算和水泥生产二氧化碳排放量的计算两类,其中燃烧排放的总量是根据能源平衡表中能源燃烧量计算得出,如前文中的公式(3)所示,与公式(5)、(6)中“是否剔除能源的转化部分”、“是否减去资本形成总额及出口和调出”无关(只影响结构不影响总量),因此总排放量仅受“是否考虑水泥的过程排放”影响。

不考虑能源的转化部分会使中间使用二氧化碳排放量被高估,最终使用二氧化碳排放量被低估。如表3所示,在不剔除能源的转化部分,减去资本形成总额及出口、调出的能源投入,并考虑水泥的过程排放时,中间使用的二氧化碳排放量较基准情况高出0.3%,最终使用的二氧化碳排放量较基准情况低11.7%。原因在于不剔除能源的转化部分即认为所有的能源投入均被用于燃烧,这其中包括真正用于燃烧的部分和实际用于转化的部分,而用于转化的部分在转化成新的能源后也会再次作为燃烧部分计算,也即这部分能源燃烧会被计算两次。这意味着在计算各行业的二氧化碳排放量时,存在转化工序的行业,其能源燃烧量被高估,总燃烧量一定的情况下,其他没有转化工序的行业和最终使用中的能源燃烧量会被低估,导致最终使用二氧化碳排放量的低估及中间使用二氧化碳排放量的高估。不考虑资本形成总额及出口、调出的能源投入会使中间使用二氧化碳排放量被低估,最终使用二氧化碳排放量被高估。表3显示,在不减资本形成总额及出口、调出的能源投入,剔除能源的转化部分,并考虑水泥的过程排放时,中间使用二氧化碳排放量较基准情况低3.0%,最终使用二氧化碳排放量较基准情况高103.5%。原因在于能源行业对资本形成总额(包括固定资本形成总额和存货增加)的投入是将该部分能源以固定资本的形式保留到库存中,并未用于燃烧,而能源行业的出口与调出是将能源以商品的形式转移出本地,其之后无论是否用于燃烧,产生的二氧化碳均不属于本地排放。如果不考虑公式(6)中能源行业j对资本形成总额及出口、调出的能源投入,会使得该能源行业j的总投入金额Dj被高估,从而导致公式(7)中二氧化碳排放系数ej被低估,那么所有通过ej计算的行业二氧化碳排放量均会被低估,使得计算所得各行业的二氧化碳排放量下降,中间使用的二氧化碳排放量减少,而最终使用的二氧化碳排放量增加。

不考虑水泥的过程排放会使中间使用中非金属矿物制品业的二氧化碳排放量被低估。水泥的二氧化碳排放是指在水泥生产过程中,由于化学反应产生的二氧化碳排放,它属于非能源燃烧的二氧化碳排放。根据前文的计算,2007年全国水泥生产的过程二氧化碳排放量为68 344.7万t,因此表3所示“是否考虑水泥的过程排放”,也即是否在非金属矿物制品业的二氧化碳排放中加上水泥生产的过程排放量,可以看到在不考虑水泥的过程排放,剔除能源的转化部分,并减去资本形成总额及出口、调出的能源投入时,中间使用部分的二氧化碳排放量较基准情况减少10.1%。实际上,非能源排放,也即过程排放还包括其他化学反应排放、碳水饮料的排放等,本文仅考虑水泥生产这一项过程排放的做法也有待在后续研究中进行进一步的完善。

综上所述,在剔除能源的转化部分、减去资本形成总额及出口调出的能源投入并考虑水泥的过程排放时计算方法最为准确,与之相反,忽略所有以上因素的计算方法偏差最大。此外,不剔除能源的转化部分、不减资本形成总额及出口调出的能源投入、不考虑水泥的过程排放均会导致计算结果被高估或低估。根据中间使用排放量比较,这三个变量的计算优先度为水泥的过程排放最重要(缺失导致结果偏低10.1%),资本形成总额及出口、调出的能源投入次之(缺失导致结果偏低3.0%),能源的转化部分最末(缺失导致结果偏高0.3%)。根据最终使用排放量比较,这三个变量的计算优先度为资本形成总额及出口、调出的能源投入最重要(缺失导致结果偏高103.5%),能源的转化部分次之(缺失导致结果偏低11.7%),水泥的过程排放不产生影响。根据总排放量比较,这三个变量的计算优先度为水泥的过程排放最重要(缺失导致结果偏低9.8%),能源的转化部分与资本形成总额及出口、调出的能源投入不产生影响。不仅如此,当这三个变量中有两个或三个取0时,计算结果同时受这两三个变量缺失的影响,二氧化碳排放量的变化幅度叠加。表3显示,仅考虑剔除能源的转化部分时,中间使用排放量被低估13.2%,最终使用排放量被高估103.5%;仅考虑资本形成总额及出口、调出的能源投入时,中间使用排放量被低估9.8%,最终使用排放量被低估11.7%;仅考虑水泥的过程排放时,中间使用排放量被低估2.1%,最终使用排放量被高估71.0%;三个变量均不考虑时,中间使用排放量被低估12.2%,最终使用排放量被高估71.0%。

5 结论及建议

本文梳理了当前主要的二氧化碳排放量计算方法,并基于投入产出法,对比计算了不同考虑因素对于二氧化碳排放量计算的影响,研究发现:计算方法方面,本文认为二氧化碳排放的主要来源可以分为能源燃烧排放和水泥生产过程排放两大类,在进行行业二氧化碳排放量的计算时应将这两部分都考虑在内。其中,能源燃烧的二氧化碳排放量可根据分行业的能源消耗量计算,水泥生产的二氧化碳排放量可根据全国水泥产量计算。该方法不仅可以避免能源消耗法数据选取不统一、生命周期评价法多行业计算工作量大,投入产出法计算结果较粗糙等缺陷,得出较为准确的计算结果,还可以同时进行多省份、多行业二氧化碳排放量的计算,简化计算步骤,提升计算效率。计算准确性方面,“是否剔除能源的转化部分”、“是否减去固定资本形成总额与出口、调出的能源投入”以及“是否考虑水泥生产的过程排放”3个因素将对我国二氧化碳排放量的计算结果产生影响。其中,“是否考虑水泥生产的过程排放”影响碳排总量的计算,而其他2个因素主要影响碳排放量的结构。本文认为,在“剔除能源的转化部分、减去资本形成总额及出口调出的能源投入、考虑水泥的过程排放”情况下得到的二氧化碳排放量计算结果最为准确。在此基础上,若不剔除能源的转化部分,会使中间使用排放量被高估0.3%,最终使用排放量被低估11.7%;若不减去资本形成总额及出口调出的能源投入,会使中间使用排放量被低估3.0%,最终使用排放量被高估103.5%;若不考虑水泥的过程排放,会使中间使用排放量被低估10.1%,总排放量被低估9.8%。

基于以上结论,本文提出以下建议:

(1)不断推进二氧化碳计算方法的相关研究,提高对计算结果准确性的关注和重视。二氧化碳排放量作为衡量多种能源和环境问题的主要指标,其计算结果的准确性具有非常重要的意义。从总量上看,我国二氧化碳排放量的大小直接决定了社会各界对于我国碳排放现状的认识,然而,忽视水泥生产过程排放等因素将会使我国碳排总量被低估接近10%,这将直接影响我国社会各界对自身排放现状的正确认识,难以引起人们对能源和环境问题的重视,拖缓减排政策的推广力度和执行程度,甚至影响我国减排目标的达成。排放结构上看,能源转化、资本形成以及出口和调出等因素将会影响我国碳排结构的准确性,影响高耗能产业的确定和低碳产业结构调整。此外,在国际社会方面,各国减排责任的划分越来越多受到关注,我国作为快速崛起的重要经济体,其减排责任的确认更是备受瞩目。因此,我国碳排量计算的准确性决定着我国在国际社会是否承担了合理的减排责任,这一点不仅关乎我国和其他发展中国家的国际责任,更是世界环境问题的主要议题。

(2)关注二氧化碳排放量计算方式的选择,在误差允许的范围内选择准确度更高的方式进行计算。本文从3个角度出发,提供了计算二氧化碳排放量的8种不同方式,确定了最为准确的计算方式并对其他方式的偏差进行了计算和分析。各种方式对不同的影响因素各有取舍,侧重点各不相同,准确度也有所偏差。因此,在数据可及性满足且工作量大小适当的前提下,建议学者采用本文确定的准确方法进行二氧化碳排放量的计算,然而,如果数据不够充分或受工作量大小限制,则应根据本文得到的各种方法的偏差原因和偏差幅度,在误差允许的范围内,针对不同的研究目的选取各自重点关注的主要问题,进而选取在重要环节上准确度更高的方法进行计算,以在最大程度上保证计算结果的准确性。

参考文献(References)

减少二氧化碳排放的意义范文3

    关键词:低碳汽车税制;低碳经济;二氧化碳税;燃油税

    随着世界经济的发展,能源问题、二氧化碳排放问题、环境保护问题越来越受到人们的重视。低碳经济是以低能耗、低污染、低排放为基础的经济模式,这一经济模式需要一系列的制度和政策加以保障,其中税收政策是最为重要的手段。进入21世纪以来,我国的汽车产业一直处于高速发展阶段,已成为我国的支柱产业。这一产业的发展也主要是以高能耗、高污染、高排放为代价的。因此,建立和完善我国的低碳汽车税制有其深刻的必要性和深远的意义。

    一、低碳汽车税制的涵义及建立低碳汽车税制的意义

    本文所阐述的汽车税制并非是把与汽车有关的税种进行简单的集合,而是专门针对汽车产品开征的税,具体包括对汽车的生产、购买、保有、使用、养护、转让和报废开征的税。有些国家将汽车税制按照三个阶段设立:一是汽车购置阶段,如汽车购置税、消费税、增值税等;二是汽车保有阶段,如汽车重量税、汽车税、车船税等;三是汽车的使用阶段,如燃料税、燃油税等。由此可见,汽车税制是指在汽车产品(包括整车和零部件)生产和流通的不同阶段征收,彼此间又具有内在联系的不同税种构成的体系。低碳汽车税制则是指在汽车税制的构建中,应当出于低碳经济之考虑,设立相应的税种或者做出相关的规定,以达到节能减排、提高燃料的经济性、鼓励新能源研发和使用之功效。

    我国当前的汽车税制主要是由增值税、消费税、车辆购置税、车船税等税种构成。在以上税种中,仅有汽车消费税考虑到了低碳的因素,即依据乘用车不同的排量征收不同的汽车消费税,同时对汽油、柴油、汽车轮胎征收消费税。除此之外,鲜有考虑低碳因素的。笔者认为,设立低碳汽车税制具有如下意义:首先是促进汽车的生产者节约能源,减少排放,提高能源使用的经济性和效率。低碳的汽车税制可以鼓励汽车生产企业进行技术创新,减少污染,加大研发投入;对使用新能源的税收优惠,更能够促进汽车产业转变增长方式,提升技术,加快节能环保汽车产品的开发。其次是增加财政收入,专款专用,用于环境的治理。在现有的汽车税制中,如车船税、汽车消费税本身还属于环境税的范畴;在将来可能新增的一些税种中,如汽车企业的排污税(费)、固体废弃物税、汽车尾气排放的二氧化硫和二氧化碳税等亦属于环境税。征收环境税所获得的收入有两种使用方式:一是专款专用,用于特定的环境保护活动,这是世界各国普遍的做法;二是纳入一般预算收入,制订补偿计划,用于抵消环境税可能带来的累退性,或者补偿对其他税的削减,即用环境税代替那些影响劳动所得和劳动成本的税种。第三是有助于人们养成节约能源、减少污染物和二氧化碳排放的低碳生活方式。低碳汽车税制的建立,新的汽车税种如二氧化碳税、燃油税的开征,以及鼓励购买使用新能源和小排量车的税收政策的出台,必然会影响到人们购车的选择和汽车的使用,尽可能减少私家车的出行,选择公共交通工具或更加节能环保的交通运输工具,养成低碳的生活方式;同时,也有助于建立环境友好型和资源节约型社会。

    二、低碳汽车税制的构建

    构建低碳汽车税制既要立足于当前经济和汽车产业发展的实际,又要考虑到低碳经济的要求和社会的可持续发展。如果同时开征过多的新税种,或课以较重的税赋,脱离了当前汽车产业发展的实际,给汽车企业和汽车使用者造成过多的责任和过重的负担,则会欲速不达,甚至抑制汽车产业的发展。基于这一原则,笔者认为,可从以下几方面构建我国的低碳汽车税制。

    1.取消排污费,开征排污税。对汽车生产企业(含零部件的生产)而言,应取消排污费,设立排污税;同时通过税收优惠,鼓励汽车生产企业进行清洁生产,鼓励对新能源车和节能小排量车的生产。当前我国主要对污水、废渣、废气、噪音、放射等5大类113项污染环境行为进行排污收费。由于排污费以“费”的形式征收,法律效力不高,随意性大,征收成本高,征收效率低,存在较多问题。如征收资金管理不严,普遍存在挤占、挪用情况;排污费与企业利润不挂钩,企业可将排污费计入生产成本作为商品价格的组成部分转嫁给消费者承担,无法提高企业治理污染的积极性;由于污染收费标准低于污染防治费用,企业宁愿缴纳排污费也不愿积极治理污染;排污费的返还制度也不利于环保资金的统筹与合理安排,排污费中不高于80%的一部分要返还给企业用于重点污染源的治理,返还的资金大部分被用做生产发展资金,只有少部分被用作污染治理。长此以往,企业对环境的污染依然不减。目前,将排污费改为排污税已刻不容缓,它也是我国环境税构建面临的重要课题。国内有的学者虽未提出新建排污税,但是对排污收费要进行规范的要求却是一致的,这其中包括改超标收费为排放收费,收费收入纳入国家预算,中央与地方按比例分成,收费收入全部用于环保项目,引入当量的概念,适当提高收费标准等。笔者认为,以上对排污费的改革措施,将排污费改为排污税在实质上是一致的。由于税有更高的权威性,将当前的排污费改为排污税更加妥当。当然,征收的主体、征收的环节、征收的办法也要随之变化,会涉及众多具体的操作事宜。

    在当前的税收体制中,如企业所得税关于开发新技术、新产品、新工艺发生的研究开发费用的税收优惠、企业的固定资产由于技术进步等原因确需加速折旧的税收优惠、企业购置用于环境保护、节能节水、安全生产等专用设备的投资额的税收优惠同样适用于汽车企业,但是缺乏专门针对汽车企业开发、使用新能源的税收优惠。虽然,国家给予了新能源车的生产企业以财政补贴,但是关于专门鼓励和扶持新能源车的税收政策基本没有建立。税收优惠和鼓励政策至少应该给予新能源车生产企业所得税的税收优惠、增值税的抵扣优惠、消费税的减免优惠等。在鼓励小排量车方面,国家已出台政策对1.6升以下排量的乘用车享受车辆购置税减半的优惠,汽车下乡政策还规定对小排量的微型客车、微型载货车、轻型载货车给予财政补贴。这些措施的出台虽然只是针对小排量车的购买者,非及于小排量车生产企业自身,但也极大促进了小排量车的生产和销售。笔者认为,应当继续保持关于小排量车的税收优惠和补贴的政策措施,同时鼓励小排量车生产企业提升技术,降低小排量车的油耗,提高小排量车燃油的经济性,进一步推广小排量车的使用范围。

    2.修订现行汽车消费税。当前,我国的汽车消费税存在以下几个方面的问题:一是征税对象过窄,没有将载货车纳入其中。殊不知,载货车对能源的消耗和对二氧化碳及其他有害气体的排放占有相当的比 重。据统计,我国重型汽车保有量仅占机动车保有总量的5%,但其NOX和PM的排放量占总排放量的74%和86%。2008年我国汽车总保有量超过6 400万辆,其中黄标车1800万辆,占全国汽车保有量的28.1%,但黄标车排放的污染物却占汽车大气污染排放物的75%。载货车虽然不是消费品,大多属于生产资料范畴,但是出于对节能环保的考虑,应将其纳入消费税的征税范畴。二是税率设计不合理。首先对排量在1.0L以下的乘用车征收消费税实则没有必要,为体现对小排量车的鼓励可以取消这一消费税;其次是2.0L~3.0L排量水平的消费税率较低,因为这一排量水平的乘用车数量多,其二氧化碳的排放量并不低,应当提升这一区间汽车消费税的税率。三是对消费税的征收仅考虑排量是不够的,还应当考虑汽车的实际油耗和碳的排放因素。当然,这一因素的考虑在操作上将面临困难,需要制定相应的标准才可以实施。据此,可从以下方面改革汽车消费税:扩大汽车消费税的征税对象,将载货车纳入其中;取消1.0L以下乘用车的消费税,提升2.0L~3.0L排量之间的汽车消费税税率;在征收汽车消费税的同时考虑汽车的实际油耗和碳的排放量是否超出相应的汽车排量要求,对超出者应当加成征收。

减少二氧化碳排放的意义范文4

[关键词]低碳汽车税制;低碳经济;二氧化碳税;燃油税

随着世界经济的发展,能源问题、二氧化碳排放问题、环境保护问题越来越受到人们的重视。低碳经济是以低能耗、低污染、低排放为基础的经济模式,这一经济模式需要一系列的制度和政策加以保障,其中税收政策是最为重要的手段。进入21世纪以来,我国的汽车产业一直处于高速发展阶段,已成为我国的支柱产业。这一产业的发展也主要是以高能耗、高污染、高排放为代价的。因此,建立和完善我国的低碳汽车税制有其深刻的必要性和深远的意义。

一、低碳汽车税制的涵义及建立低碳汽车税制的意义

本文所阐述的汽车税制并非是把与汽车有关的税种进行简单的集合,而是专门针对汽车产品开征的税,具体包括对汽车的生产、购买、保有、使用、养护、转让和报废开征的税。有些国家将汽车税制按照三个阶段设立:一是汽车购置阶段,如汽车购置税、消费税、增值税等;二是汽车保有阶段,如汽车重量税、汽车税、车船税等;三是汽车的使用阶段,如燃料税、燃油税等。由此可见,汽车税制是指在汽车产品(包括整车和零部件)生产和流通的不同阶段征收,彼此间又具有内在联系的不同税种构成的体系。低碳汽车税制则是指在汽车税制的构建中,应当出于低碳经济之考虑,设立相应的税种或者做出相关的规定,以达到节能减排、提高燃料的经济性、鼓励新能源研发和使用之功效。

我国当前的汽车税制主要是由增值税、消费税、车辆购置税、车船税等税种构成。在以上税种中,仅有汽车消费税考虑到了低碳的因素,即依据乘用车不同的排量征收不同的汽车消费税,同时对汽油、柴油、汽车轮胎征收消费税。除此之外,鲜有考虑低碳因素的。笔者认为,设立低碳汽车税制具有如下意义:首先是促进汽车的生产者节约能源,减少排放,提高能源使用的经济性和效率。低碳的汽车税制可以鼓励汽车生产企业进行技术创新,减少污染,加大研发投入;对使用新能源的税收优惠,更能够促进汽车产业转变增长方式,提升技术,加快节能环保汽车产品的开发。其次是增加财政收入,专款专用,用于环境的治理。在现有的汽车税制中,如车船税、汽车消费税本身还属于环境税的范畴;在将来可能新增的一些税种中,如汽车企业的排污税(费)、固体废弃物税、汽车尾气排放的二氧化硫和二氧化碳税等亦属于环境税。征收环境税所获(中国整理)得的收入有两种使用方式:一是专款专用,用于特定的环境保护活动,这是世界各国普遍的做法;二是纳入一般预算收入,制订补偿计划,用于抵消环境税可能带来的累退性,或者补偿对其他税的削减,即用环境税代替那些影响劳动所得和劳动成本的税种。第三是有助于人们养成节约能源、减少污染物和二氧化碳排放的低碳生活方式。低碳汽车税制的建立,新的汽车税种如二氧化碳税、燃油税的开征,以及鼓励购买使用新能源和小排量车的税收政策的出台,必然会影响到人们购车的选择和汽车的使用,尽可能减少私家车的出行,选择公共交通工具或更加节能环保的交通运输工具,养成低碳的生活方式;同时,也有助于建立环境友好型和资源节约型社会。

二、低碳汽车税制的构建

构建低碳汽车税制既要立足于当前经济和汽车产业发展的实际,又要考虑到低碳经济的要求和社会的可持续发展。如果同时开征过多的新税种,或课以较重的税赋,脱离了当前汽车产业发展的实际,给汽车企业和汽车使用者造成过多的责任和过重的负担,则会欲速不达,甚至抑制汽车产业的发展。基于这一原则,笔者认为,可从以下几方面构建我国的低碳汽车税制。

1.取消排污费,开征排污税。对汽车生产企业(含零部件的生产)而言,应取消排污费,设立排污税;同时通过税收优惠,鼓励汽车生产企业进行清洁生产,鼓励对新能源车和节能小排量车的生产。当前我国主要对污水、废渣、废气、噪音、放射等5大类113项污染环境行为进行排污收费。由于排污费以“费”的形式征收,法律效力不高,随意性大,征收成本高,征收效率低,存在较多问题。如征收资金管理不严,普遍存在挤占、挪用情况;排污费与企业利润不挂钩,企业可将排污费计入生产成本作为商品价格的组成部分转嫁给消费者承担,无法提高企业治理污染的积极性;由于污染收费标准低于污染防治费用,企业宁愿缴纳排污费也不愿积极治理污染;排污费的返还制度也不利于环保资金的统筹与合理安排,排污费中不高于80%的一部分要返还给企业用于重点污染源的治理,返还的资金大部分被用做生产发展资金,只有少部分被用作污染治理。长此以往,企业对环境的污染依然不减。目前,将排污费改为排污税已刻不容缓,它也是我国环境税构建面临的重要课题。国内有的学者虽未提出新建排污税,但是对排污收费要进行规范的要求却是一致的,这其中包括改超标收费为排放收费,收费收入纳入国家预算,中央与地方按比例分成,收费收入全部用于环保项目,引入当量的概念,适当提高收费标准等。笔者认为,以上对排污费的改革措施,将排污费改为排污税在实质上是一致的。由于税有更高的权威性,将当前的排污费改为排污税更加妥当。当然,征收的主体、征收的环节、征收的办法也要随之变化,会涉及众多具体的操作事宜。

在当前的税收体制中,如企业所得税关于开发新技术、新产品、新工艺发生的研究开发费用的税收优惠、企业的固定资产由于技术进步等原因确需加速折旧的税收优惠、企业购置用于环境保护、节能节水、安全生产等专用设备的投资额的税收优惠同样适用于汽车企业,但是缺乏专门针对汽车企业开发、使用新能源的税收优惠。虽然,国家给予了新能源车的生产企业以财政补贴,但是关于专门鼓励和扶持新能源车的税收政策基本没有建立。税收优惠和鼓励政策至少应该给予新能源车生产企业所得税的税收优惠、增值税的抵扣优惠、消费税的减免优惠等。在鼓励小排量车方面,国家已出台政策对1.6升以下排量的乘用车享受车辆购置税减半的优惠,汽车下乡政策还规定对小排量的微型客车、微型载货车、轻型载货车给予财政补贴。这些措施的出台虽然只是针对小排量车的购买者,非及于小排量车生产企业自身,但也极大促进了小排量车的生产和销售。笔者认为,应当继续保持关于小排量车的税收优惠和补贴的政策措施,同时鼓励小排量车生产企业提升技术,降低小排量车的油耗,提高小排量车燃油的经济性,进一步推广小排量车的使用范围。

2.修订现行汽车消费税。当前,我国的汽车消费税存在以下几个方面的问题:一是征税对象过窄,没有将载货车纳入其中。殊不知,载货车对能源的消耗和对二氧化碳及其他有害气体的排放占有相当的比重。据统计,我国重型汽车保有量仅占机动车保有总量的5%,但其NOX和PM的排放量占总排放量的74%和86%。2008年我国汽车总保有量超过6400万辆,其中黄标车1800万辆,占全国汽车保有量的28.1%,但黄标车排放的污染物却占汽车大气污染排放物的75%。载货车虽然不是消费品,大多属于生产资料范畴,但是出于对节能环保的考虑,应将其纳入消费税的征税范畴。二是税率设计不合理。首先对排量在1.0L以下的乘用车征收消费税实则没有必要,为体现对小排量车的鼓励可以取消这一消费税;其次是2.0L~3.0L排量水平的消费税率较低,因为这一排量水平的乘用车数量多,其二氧化碳的排放量并不低,应当提升这一区间汽车消费税的税率。三是对消费税的征收仅考虑排量是不够的,还应当考虑汽车的实际油耗和碳的排放因素。当然,这一因素的考虑在操作上将面临困难,需要制定相应的标准才可以实施。据此,可从以下方面改革汽车消费税:扩大汽车消费税的征税对象,将载货车纳入其中;取消1.0L以下乘用车的消费税,提升2.0L~3.0L排量之间的汽车消费税税率;在征收汽车消费税的同时考虑汽车的实际油耗和碳的排放量是否超出相应的汽车排量要求,对超出者应当加成征收。

3.设立汽车二氧化碳税。汽车的二氧化碳排放量与燃料消耗量成正比。在各汽车大国,城市交通领域中汽车的二氧化碳排放量已占城市总温室气体排放量的30%以上。一些工业化国家制定了严格的汽车温室气体排放标准或燃效标准,并出台根据整车二氧化碳排放量或燃效征收汽车税的“低碳清洁税收制度”。如欧盟于2008年11月末颁布了分阶段实施的汽车二氧化碳排放法规,从2012年开始将对二氧化碳排放量超过130g/km的M1类新车进行惩罚。德国自2009年7月1日起,实施按发动机排量与二氧化碳排放量征收汽车税的政策。按照这项新税政,所有总质量小于3.5吨的M1类汽车,均按以下标准缴纳汽车税:汽油车根据其发动机排量,每100cm3征收2欧元;柴油车根据其发动机排量,每100cm3征收9.5欧元。二氧化碳排放量低于120g/km(基准值)的汽车,直至2011年每年均可免征汽车税;对于超过基准值部分,则按每g/km加征2欧元。排放量符合欧Ⅵ标准的柴油车,从2011~2013年每年可免汽车税150欧元。日本也抬高了排放标准,颁布了分别于2010年和2015年要实施的燃效标准。目前,世界各国都把二氧化碳的排放作为燃油经济性的重要度量。欧盟通过减少二氧化碳排放的指令限制新车的排放,到2015年,欧洲新车平均排放将降至130g/公里,到2020年为95昏/公里。美国的目标是到2016年平均二氧化碳排放155g/公里。日本的目标是2015年155g/公里、2020年115g/公里。我国在2009年8月环保部门下发的《环境标志产品技术要求轻型汽车(征求意见稿)》中指出,手动档汽车每公里二氧化碳排放量必须控制在219克内。自动档汽车每公里二氧化碳排放量必须控制在233克内。令人遗憾的是此标准是推荐标准而非国家强制标准。即便如此,我们也应该认识到我国对汽车污染物排放的标准正随之提升,且不同地区有着不同的要求。例如北京将在2012年前后,将机动车排放标准升级为国V,国V排放标准相当于欧V标准。欧洲在2009年9月1日已正式实施最新的欧V标准,首先在新上市车型上使用,逐步推广到所有的市场车型。北京一旦全面实施国V排放标准,则意味着达不到此排放标准的车型不得进京销售。

笔者认为,应考虑设立汽车二氧化碳税,对达不到标准的汽车征收此税种。可根据城乡的差异将全国分成几个不同的地区,不同的地区适用不同的排放标准,对达不到排放标准的汽车征收二氧化碳税。同时颁布不同地区排放标准提高的时间表,使得汽车的使用者提前知晓。汽车二氧化碳税的纳税主体是达不到排放标准的汽车使用者,而且(中国整理)征收额度与是否使用、使用多少有关,即汽车二氧化碳税可按照每公里超过基准值多少克进行征收。汽车二氧化碳税的征收可以促使达不到排放标准的汽车尽早淘汰或尽可能减少使用,最终达到降低污染物和二氧化碳排放的目的。或许有人会担心,汽车二氧化碳税的征收会影响到汽车产业的发展。其实不然,因为汽车二氧化碳税主要是针对保有的汽车征收,新车在出厂之时就应当满足新的排放标准,否则不准许销售。汽车二氧化碳税的征收能够促使旧车的淘汰和更新,从而促进新车的销售,有利于汽车产业的发展。实际上,已经有一些国家开征了二氧化碳税,其纳税主体既可以是个人,也可以是企业,不仅限于汽车的使用者。还有一些国家也要开征二氧化碳税,如法国从2010年1月开征二氧化碳排放税,征税标准初步定为每吨二氧化碳14欧元。在我国大面积开征二氧化碳税时机尚不够成熟,且操作起来困难众多,择机先行开征汽车二氧化碳税不仅可行,而且将为进一步深化二氧化碳税的改革打下坚实基础。

4.酌情取消或者降低车辆购置税。当前我国的车辆购置税税率为10%,2009年3月20日国务院办公厅公布了《汽车产业调整和振兴规划》(以下简称《规划》)。《规划》中规定自2009年1月20日至12月31日,对1.6升及以下小排量乘用车减按5%征收车辆购置税。2009年12月,国务院常务会议通过决议,将减征1.6升及以下小排量乘用车车辆购置税的政策延长至2010年底,减按7.5%征收。这些政策的出台固然是利好消息,但毕竟是一项临时政策而非税收法规。笔者认为,当前我国车辆购置税的税率过高,征收的对象范围过宽,几乎囊括所有类型的汽车。日本的汽车购置税只对私家车征收,在2018年以前执行如下暂定税率:对私家车按购置价格的5%征收;对营运车和微型车按购置价格的3%征收;对售价低于50万日元(折合人民币3.7万元)的微型车免征购置税。从促进汽车的销售和汽车产业发展的角度而言,我国应当借鉴日本的做法,取消作为生产资料并进人生产和运输领域的商用车购置税,仅对作为消费资料使用的私家车和公务用车征收购置税,且购置税的税率应在5%左右为宜,对采用清洁能源的汽车可考虑免征购置税。汽车税制改革的原则之一应当是尽量减少车辆购置阶段和保有阶段的税赋,适度加大车辆使用阶段的税赋。遵循这一原则将能够满足低碳经济的要求,同时,又有利于我国汽车产业的发展。况且依照我国当前的经济实力,因税率降低和征税范围的缩小导致车辆购置税收入的降低对国家的财政收入不会产生太大影响。

5.改革现行燃油税。我国自2009年取消了公路养路费、航道养护费、公路运输管理费、公路客货运附加费、水路运输管理费、水运客货运附加费等6项收费,同时,将价内征收的汽油消费税的单位税额每升提高了0.8元,即由每升0.2元提高到1元;柴油消费税单位税额每升提高0.7元,即由每升0.1元提高到0.8元;其他成品油消费税的单位税额也相应提高了。由此人们期待的“燃油税”变成了“消费税”,而且是在生产环节征收。这一改革的实质是用消费税而非燃油税替代养路费。应当继续推进燃油税改革。就世界上开征燃油税的国家而言,燃油税的税率普遍较高,美国为30%,德国为360%,法国为300%,日本为120%,俄罗斯为70%,英国达80%,加拿大为33%左右,新加坡为每升0.41新元。燃油税的负担者主要为燃油的消耗者,而汽车则是燃油的主要消耗者,因此,燃油税的纳税主体主要是汽车的使用者。设立燃油税不仅可以减少对汽车的使用,减轻二氧化碳和其他污染物的排放,有利于节约能源,改善城市交通状况,还可以引导汽车消费者购买节能环保型汽车,促进新能源车的研发和生产。

三、小结

联合国气候变化大会于2009年12月7~19日在丹麦首都哥本哈根举行,虽然世界主要国家和地区都提出了各自的减排计划,但会议进行得异常激烈和艰难。发达国家与发展中国家各自负担的减排比例之争、发达国家对发展中国家在节能减排技术和资金上的支持之争,实质上是温室气体排放权之争。无论争议结果如何,发达国家与发展中国家均负有节能减排之责,这一职责终将由国民和国内企业承担。推行低碳经济,增强节能减排意识,尽快建立我国低碳的汽车税收制度,在汽车产业高速发展的同时,更多地承担起节能减排的义务是建设环境友好型、资源节约型以及和谐社会的必然要求。

[参考文献]

[1]黄润源,李传轩.国外环境税法律制度的发展实践及对我国的启示[J].改革与战略,2008,(12):200-203.

[2]邓禾.环境税制比较研究及其对中国的借鉴[J].税务与经济,2007,(3):95-100.

[3]郭佩霞,朱沙.关于环境税费研究的一个述评(J].工业技术经济,2008,(5):156-158.

[4]战静静.机动车污染防治要协同作战[N].中国汽车报,2009-11-02.

减少二氧化碳排放的意义范文5

在这样的一组数字之下谈中国式低碳,似乎有些沉重。

能源专家、中国工程院院士倪维斗指出,发展低碳经济,但我们面对的是高碳能源。因为在未来二三十年之内化石能源作为我国主要能源的地位不可撼动,其中煤是主导,所以未来一段时间之内煤的低碳利用就是低碳能源的核心问题。如果不在煤的清洁利用上做文章,其他一切只能是空谈,低碳只是一句口号。

社会节能、总量控制、发展可再生能源都是实现低碳经济的道路,但最后必须要落实到煤的清洁利用上。根据倪维斗的划分,煤的清洁利用也属于清洁能源。他认为,新能源的概念因时因地而不同,各国国情不同,不能一概而论。比如在法国核能发展了很多年,称不上新能源。而太阳能、风能古人也在几千年前就已利用了。

倪维斗表示,能源的来源、转化过程、输运过程、终端利用过程这4个环节都属于能源问题,清洁不清洁要看全生命周期。这4个环节中一个或几个有较大的变化,能够减少二氧化碳排放、提高效率就能称之为新能源。因此,可再生能源、煤的清洁利用、天然气的高效利用都属于新能源。

眼睛光看着风电不行。风能虽然来自风,但也存在转化和输运的问题,在未来一段时间内对节能减排贡献不会太大。新能源的主要力量除了发展可再生能源之外,煤的科学、合理、高效、低污染利用应作为重点,尤其对于中国这样一个煤炭大国。

提高燃煤发电效率尚有潜力

煤对我国的战略安全来说尤其重要,起了顶梁柱的作用。煤保证了什么都有了,煤出了毛病问题就大了。目前我国有两大问题需要重视,一是煤的清洁利用,二是天然气的高效利用。其中煤的清洁利用尤为重要。

目前,我国80%以上的发电量来自火电。根据国际能源组织IEA2007年的统计数据,我国燃煤排放二氧化碳51.4亿吨。在我国,每发一度电要排二氧化碳0.8~0.9公斤,如果每度电的耗煤量降低1克,全国一年就能减少二氧化碳排放750万吨。最近几年,我国依靠提高燃煤发电效率每年都能减排二氧化碳几千万吨。

专家指出,根据我国的战略规划,到2020年,风电、光伏、光热、生物质能源等可再生能源的减排占总减排量的12%左右,而提高燃煤发电效率能实现15%的减排。

据悉,目前提高燃煤发电率的主要方法是提高参数。如亚临界的发电效率在38%左右,而我国目前的超临界能达到44%。在欧洲,最先进的技术能把发电效率提高到50%。倪维斗表示,经过科学研究把温度和压力再提高,优化运行,中国的燃煤发电率还有潜力可挖。

最近几年我国实行“上大压小”的政策,2009年全国平均煤耗达到342克标准煤/度电,已经低于美国350克/度电的标准。而华能、大唐等大型企业甚至已经降低到320多克/度电。根据有关规划,2020年我国的平均燃煤单位能耗计划降低到320克/度电。

多联产技术综合效率高

整体煤气化联合循环(IGCC)加上多联产,被认为是目前最具发展前景的清洁煤技术,它在燃烧前先去除烟气中的污染物,常规污染少,效率高,有利于综合利用煤炭资源,能同时生产甲醇、尿素等化工产品等等。

而煤作为一种多元素的能源,很多专家都认为将其一股脑烧掉相当可惜。倪维斗就提出把发电和化工结合起来,发展以气化为基础的IGCC多联产,对煤加以综合利用。

多联产的原理很简单,将煤气化后先通过一个反应器做化工产品,剩下尾气再去燃烧发电。多联产相当于把化工和发电两个过程耦合起来,能量利用效率可以提高10%~15%,同时,化工产品增值量比较大,并且能够实现调峰。据悉,煤的气化系统很贵,如果能实现化工和发电相互调整,气化系统就能始终稳定运行,降低发电成本。

多联产的概念被很多国内外专家所认可。而对于中国这样的煤炭大国,其意义尤为特殊。最近几年,倪维斗一直在四处呼吁发展IGCC多联产。但多联产的基础——IGCC电厂却始终没有大规模地发展起来。据记者了解,我国在上世纪70年代末和90年代末曾确定过两个IGCC示范项目,但最终都无疾而终。

国际上,美国还只有IGCC和制氢的联产,真正用煤制化工产品,并且实现IGCC发电的,山东兖矿集团算全球第一个。据悉,该装置是一台小规模的多联产示范装置,以甲醇为主发电为辅——20万吨甲醇辅以8万千瓦的发电,已经稳定运行了3年,经济性和二氧化碳减排效果都很好,目前正在准备发展第二代装置,进一步提高效率。

倪维斗指出,目前发展IGCC多联产的阻力主要来自两个方面,一是发电和化工行业结合思想阻力较大。他表示,实际上中国五大电力公司现在也在做化工产品,只不过是分开做,资源匹配程度低。

另外,国家能源局对IGCC持过度谨慎态度,目前为止只批了一个示范电厂。2009年7月,我国首座自主设计、制造并建设的IGCC电站——华能天津IGCC电站示范工程在天津开工,计划建设1台25万千瓦级发电机组。

倪维斗表示,单纯用于发电的IGCC电厂的主要问题是基础投资较贵,是一般的超临界电厂的1.5倍以上,可能要达到每千瓦上万元人民币。然而,虽然投资比较高,但是很多电力公司都有积极性,并且多联产是降低IGCC成本的方式之一。在技术层面,大部分技术都能实现自主化。燃气轮机的核心技术我们正在攻关,总归是要国产化的。IGCC和多联产为什么不开展示范呢?

多联产更适合中国国情

碳捕集与封存(CCS)中二氧化碳的捕捉是最昂贵的环节。但在我国,煤化工中已经存在大量容易收集的纯二氧化碳,如我国目前甲醇用量1200万吨,年排放二氧化碳3000万吨。甲醇是一种重要的化工中间体,将来可以用作燃料,需求量很大,所排放的二氧化碳还将增加。倪维斗说指出,这些二氧化碳是最容易收集的,基本上已经捕获,但现在都没有利用起来而放空了。

倪维斗表示,虽然二氧化碳排放总量是几十亿吨的数量级,但在未来,如果加强二氧化碳利用系统的科研工作,发明新型的二氧化碳化工利用体系和高附加值的产品,将会增加二氧化碳减排量。

例如,我国现在的化肥系统40年如一日没有变化,主要就是尿素加合成氨,导致田间的过度施肥成为我国一大污染源,同时耗费了大量能源。倪维斗指出,如果发展新的肥料体系,如草酸铵等都含大量的二氧化碳,可以更多地利用二氧化碳。

这样上游发电和化工结合,下游用高附加值的产品利用二氧化碳,便能提高系统的能源利用率和减排二氧化碳。

减少二氧化碳排放的意义范文6

    所谓“碳循环”,是指碳元素在自然界中的循环状态,生物圈中的“碳循环”主要表现在绿色植物从空气中吸收二氧化碳,经光合作用转化为葡萄糖,并且释放出氧气的过程。而碳元素主要存在于岩石圈和化石燃料中,其二者含碳量约占地球上碳总量的99.9%。除此之外,地球上还有三个“碳库”:大气圈库、水圈库和生物库。尽管这三个库中的碳含量较小,但是他们扮演着碳在生物和无机环境之间迅速交换的交换库的角色。

    碳在岩石圈中主要以碳酸盐的形式存在;在大气圈中以二氧化碳和一氧化碳的形式存在;而在水圈中,碳则以多种形式存在于几百种被生物合成的有机物中。在大气中,二氧化碳是含碳的主要气体,也是碳参与物质循环的主要形式。在生物圈中,森林是碳的主要吸收者,它固定的碳相当于其他植被类型的2倍。他又是生物库中碳的主要存在者。植物、可见光作用的微生物通过光合作用从大气中吸收碳的速率,与通过生物的呼吸作用将碳释放到大气中的速率大致相等。因此,大气中二氧化碳的含量在受到人类活动干扰以前是相对稳定的。

碳循环可以分为以下几种类型:生物和大气之间的循环、大气与海洋之间的循环以及含碳盐的形成与分解。这三种循环对于控制地球环境的稳定具有重要的意义,而且它们对于全球碳的平衡有着重要的意义。在过去,这几种循环都是极为稳定的。然而人类的活动极有可能打破这种平衡。人类在燃烧矿物燃料获得能量时,产生了大量的二氧化碳。从1949到1969年之间,由于燃烧矿物燃料以及其他工业活动,二氧化碳的生成量每年增长4.8%。打破了自然界中原有的平衡,导致了全球范围内气候的异常变化。

“温室效应”便是最为直接的例子,地球的温室效应是由于人类在长期生产和生活中,不断向大气层大量排放各种各样有害气体而造成的。在这些气体中,最主要的是二氧化碳。此外,还有氟、氯化钙、臭氧、甲烷、氢氧化物等40多种微量气体。二氧化碳等气体不能吸收太阳短波辐射,而让太阳热辐射能够吸收大部分的地面长波辐射,使得地面辐射热无法散发到外层去,像温室的作用一样,从而导致地面和低层大气温度逐渐升高。这就是温室效应。