生物质气化技术范例6篇

前言:中文期刊网精心挑选了生物质气化技术范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

生物质气化技术

生物质气化技术范文1

近年来,世界各国对资源丰富,可再生性强、有利于改善环境和可持续发展的生物质资源均予以高度关注。在生物质资源的利用过程中,生物质发电技术成为研究和利用的热点。生物质能是重要的洁净可再生能源。在中国农村,特别是以粮食和棉花为主产区的地区,存在着大量农作物秸秆,除少量农民自用为燃料和牲畜饲料外,大部分都被无序地焚烧,不仅浪费了资源,也给环境保护带来了巨大的压力。同时,使农户的利益无形中损失,不利于环境保护且降低了农户种植的附加值。

从可持续发展的角度讲,生物吸收空气中的二氧化碳,利用阳光光合作用生长,是太阳能利用的一种有效方式。不同于化石能源,生物质能利用过程中不会产生碳排放。因此,大力发展生物质能是经济发展和环境保护的双重需要,也是落实科学发展观,践行低碳发展的具体措施。另一方面,随着我国经济的快速发展,我国的城市生活垃圾产量日益增加,我国每年产生近1.5亿吨的城市垃圾,且垃圾增长率达10%以上。中国城市生活垃圾累积堆存量已达70亿吨。在全国,有超过三分之一的城市,正深陷垃圾围城的困局。城市垃圾经过简单的处理,可以利用生物质发电的技术平台将垃圾综合利用,可同时解决环境和能源问题。

但是,目前生物质能发电技术并不成熟,直接气化驱动燃气机或燃气轮机,能得到30%以上的系统效率,但气化炉产生的气量少、气体热值低,产生的气体含焦油量高,存在燃气内燃发电机组难以正常发电,设备腐蚀严重等问题。与城市生活垃圾焚烧类似,生物质在锅炉中燃烧产生蒸汽,推动蒸汽轮机发电。但由于秸秆采购半径过大导致运输成本过高,加上储存难和防火难,导致发电规模较小,蒸汽循环效率低下,一吨秸秆只能发几百度电,系统效率20%左右,经济效益很低。加上农民惜售、提价和掺假等原因,使各地建设的蒸汽轮机秸秆发电项目均处在谁投资谁亏本的局面。而在城市垃圾处理领域,由于目前的焚烧方法不能确保彻底摧毁以二恶英为代表的各种二次污染物,使垃圾焚烧利用的方式饱受诟病。

所以,要实现节能减排,也要保障焚烧不会造成二次污染,需要发展新的技术。目前国际上极环保的技术有等离子体气化技术,但由于投资高,技术复杂等因素困扰,推广起来都被商业的门槛拒之门外。因此,发展廉价、高效、环保、符合国情的生物质发电和垃圾处理技术,才是我国和大多数发展中国家的需要。目前,在各种鱼龙混杂的气化技术中,采用外热源热解气化技术成了气化领域的亮点。外热源热解气化技术具有气化温度高,合成气热值高,焦油含量低的特点,最重要的是能彻底破坏其中以二恶英类污染物为代表的各种有机二次污染物。产生这项技术的义乌发电设备有限公司是长期致力于发电技术研究和创新的专业技术企业。该企业研发的外热源热解气化技术与国内各种传统气化设备相比,具有设备结构简单,运行可靠,可连续性大规模生产的优点。除此之外,还具有以下特点:设备密闭,在负压(负压200—1200 Pa)高温(1000摄氏度)下工作,无焦油问题,不会产生二恶英、多环芳烃、醛类、呋喃等污染物;每吨含水率30%的城市生活垃圾筛上物可产热值为2700kcal/Nm3的可燃气体1000 立方标米,可发电1100kW-h。如以秸秆为原料,每吨干燥的秸秆加20%左右的水份可产生1200立方标米可燃气,可发电1400—1500kW-h,扣除自用电,外供电效率远高于传统方式;得到的合成气热值高,成份接近采用等离子体法,能合成甲醇和其他液体燃料,在特定的工艺下,氢气含量达60%。

由此可见,城市生活垃圾及农林废弃物热解生产的合成气,可用于燃气机发电或生产液体化工产品。固体副产物还可生产炭黑、有机肥料等物质资源,真正实现城市垃圾及农林废弃物被完全利用,达到零排放和效益最大化。

义乌发电设备有限公司先后投入上亿元资金,研发了以燃用“二高二低”气体技术为代表的13大类燃气内燃发电机组。“二高”是氢气和一氧化碳含量高达80%,以及国内单机最高功率3200kW,“二低”是热值低到667kcal/Nm3(2790 kJ/Nm3),以及低浓度低到4.6%甲烷含量。而在目前,行业里能燃用如此“二高二低”合成气的技术凤毛麟角。从这方面看,不仅彰显了该公司的技术实力,也填补了国内外该领域的空白。“二高二低”技术的特点使产品对燃气气质的要求相对较低,对燃气的适应能力较强,可燃用的燃气种类比国外名牌产品多得多,加上在价格上不到国外同类机组价格的三分之一等优势,并在此基础上研发了与外热源无氧高温热解气化炉相配套的燃气发电机组,使其形成完整的配套而颇受市场青睐。

该公司采用较先进的增压技术,同机型同排量产品的功率较国内行业一般高50—100%,单机最大功率可达3200kW,发动机热效率、热负荷及排放指标也在国内领先,整机性能指标可与美国卡特彼勒、通用电气颜巴赫、康明斯等世界名牌产品相比。

生物质气化技术范文2

2013年4月11日,由中国农业科学院农业环境与可持续发展研究所组织的国家“十二五”863计划“智能化植物工厂生产技术研究”项目启动会在中国农业科学院举行。科技部农村司郭志伟副司长、许增泰处长,科技部农村中心张辉副处长、蒋大华博士,中国农业科学院刘旭副院长、科技局陆建忠副局长,项目咨询专家委员会委员汪懋华院士、李天来教授、赵春江教授、李晋闽研究员,以及各课题组代表共计70余人出席了启动会,会议由农业环境与可持续发展研究所梅旭荣所长主持。

中国农业科学院刘旭副院长首先代表对项目的启动表示热烈祝贺,对科技部选择中国农业科学院作为项目首席专家单位表示衷心感谢,并简要介绍了中国农业科学院近年来在植物工厂领域的研究进展和工作基础,表示中国农业科学院将以项目启动为契机,将尽可能提供一切必要条件保障项目的顺利实施。

科技部郭志伟副司长认真听取了项目的总体汇报,充分肯定了项目的总体部署,尤其是项目管理过程中设立咨询专家委员会的做法,同时对项目提出了殷切希望,指出该项目是科技部第一次将“智能植物工厂”列入863计划,体现国家对植物工厂高技术研究的重视,希望项目团队抓住机遇,凝练目标,突出重点,潜心研究,协同攻关,争取出标志性的重大成果。

项目首席专家杨其长研究员概要介绍了项目背景、总体目标、研究内容、课题设置和具体部署,项目设立的七个课题负责人分别汇报了各自课题的具体内容与实施方案,咨询专家分别对各课题的执行方案进行了有针对性地的指导,启动会取得了圆满成功。

据悉,该项目是国家首次将“智能植物工厂”高技术研究列入863计划,共设立七个课题,涉及植物工厂的LED节能光源、立体无土栽培、光温耦合节能环境控制、营养液调控、基于网络的智能管理以及人工光植物工厂、自然光植物工厂集成示范等方面,全国共有20多个优势科教单位和企业的160多位专家参与,项目的国拨总经费达4611 万元。该项目的设立对推动我国植物工厂高技术的发展以及设施园艺产业的科技进步都将会产生重大影响。

生物质气化技术范文3

关键词:生物质发电;直燃发电;气化发电;混合燃烧发电;技术趋势

引言

生物质能是我国“十二五”期间重点发展的新兴能源产业之一,按我国提出的2020年非化石能源占能源消费总量15%的目标初步估算,到2020年我国生物质能装机总量将达3000万千瓦,沼气年利用量440亿立方米,生物燃料和生物柴油年产量达到1200万吨。

截止2013年底,中国生物质能并网发电装机量779万千瓦,预计2014年底,生物质发电装机将有望达到1100万千瓦,上网电量有望达到500亿千瓦时[1]。从产业整体状况分析,生物质发电及生物质燃料目前仍处在政策引导扶持期。

1.生物质发电技术分类

1.1 生物质直燃发电

生物质直接燃烧发电是指把生物质原料送入适合生物质燃烧的特定锅炉中直接燃烧,产生蒸汽带动蒸汽轮机及发电机发电,用于发电或者热电联产。国内生物质直接燃烧发电的锅炉主要有两种:炉排炉、循环流化床锅炉。采用生物质燃烧设备可以快速度实现各种生物质资源的大规模减量化、无害化、资源化利用,而且成本较低,因而生物质直接燃烧技术具有良好的经济性和开发潜力。

1.2 生物质气化发电

生物质气化发电是指生物质在气化炉中气化生成可燃气体,经过净化后驱动内燃机或小型燃气轮机发电。气化炉对不同种类的生物质原料有较强的适应性。内燃机一般由柴油机或天然气机改造而成,以适应生物质燃气热值较低的要求;燃气轮机要求容量小,适于燃烧高杂质、低热值的生物质燃气。

1.3 生物质混合燃烧发电

生物质混合燃烧发电是指将生物质原料应用于燃煤电厂中,和煤一起作为燃料发电。生物质与煤有两种混合燃烧方式: 一种是生物质直接与煤混合燃烧,生物质预先与煤混合后再经磨煤机粉碎或生物质与煤分别计量、粉碎。生物质直接与煤混合燃烧要求较高,并非适用于所有燃煤发电厂,而且生物质与煤直接混合燃烧可能会降低原发电厂的效率。第二种是将生物质在气化炉中气化产生的燃气与煤混合燃烧,即在小型燃煤电厂的基础上增加一套生物质气化设备,将生物质燃气直接通到锅炉中燃烧,这种混合燃烧方式通用性较好,对原燃煤系统影响较小。

2.生物质发电技术比较

生物质与煤混合燃烧发电技术投资少,发电效率决定于原燃煤电站的效率.其中生物质气化混烧发电对原有电站的影响比直接混烧发电对原有电站的影响小,通用性较强[2]。由于气化发电技术关键设备―小型低热值燃气轮机技术尚未成熟,对10 MW以上的生物质发电系统而言,比较有优势的技术是直接燃烧发电[3]。对10 MW以下的生物质发电系统而言,气化一余热发电系统效率远高于直接燃烧发电系统,具有更大的优势。另外,生物质直接燃烧发电技术比较成熟,但在小规模发电系统中蒸汽参数难以提高,只有在大规模利用时才具有较好的经济性,比较适合于10 MW以上的发电系统。生物质混烧发电技术在已有燃煤电站的基础上将生物质与煤混烧发电,混烧发电对原有电站的影响比直接混烧发电对原有电站的影响小,通用性较强,投资成本是三类技术中最少的,但可能降低原燃煤电站效率。

表2-1 三种生物质发电技术比较表

分类 直燃发电 气化发电 混合燃烧发电

规模 10MW以上 10MW以下 10MW以上

通用性 强 低 强

热电连供 可以 可以 不可以

并网独立性 可以 可以 不可以

投资成本 中 高 低

效率变化 中 高 不确定

3.生物质发电技术趋势

3.1直燃技术

自2006年以来,我国生物质直燃发电开始进行商业化运行,国产循环流化床燃烧技术已成为生物质直燃发电市场的主导技术。循环流化床内可采用SNCR脱销,脱硝率可达50%以上。虽然生物质燃料含硫量较低,但实际SO2排放浓度在200mg/m3以上,炉内可以加石灰石脱硫,在脱硫效率达到70%时,即可满足国家标准的要求。对灰熔点较低的生物质,如油菜秆、棉花杆等,燃烧此类生物质的锅炉,蒸汽温度不宜提的过高,除非有很好的防积灰、腐蚀的措施作为保障。此外,生物质水分很高,着火推迟,导致不完全燃烧,炉排上未燃尽的生物质含碳量很高,需要增加炉排长度,提高燃烧效果。

3.2气化技术

生物质气化发电中含焦油废水无害化处理是制约气化发电的瓶颈,国内外研究结果均提出采用有机溶剂作为燃气净化介质,避免二次水污染。循环流化床气化技术已有较好的基础,在循环流化床中进行生物质气化,气化温度控制在950~1000度,可以获得中值热燃气,同时彻底解决焦油问题,燃气净化后实现燃气内燃机-蒸汽联合循环,发电效率可达30%以上,在此基础上研发加压(30atm)循环流化床生物质气化技术,采用燃气内燃机-蒸汽联合循环,发电效率可达40%。

双床气化技术是采用循环流化床与鼓泡床双床组合技术技术,将生物质燃料送入鼓泡床内,气化热源为循环流化床分离下的高温灰,流化介质为高温水蒸气或气化气。循环流化床燃烧气化室送来的半焦,产生高温烟气,烟气经分离后进入鼓泡床作为气化室热源,分离后的高温烟气进入余热锅炉,加热蒸汽进行发电。气化室反应温度控制在650~850度,产生的燃气经气固分离、净化后送内燃机发电,内燃机尾气经余热锅炉吸热后产蒸汽送蒸汽轮机发电。燃气中焦油通过闭式循环水水洗系统,经有机溶剂萃取后回收焦油,废水采用膜技术处理后达标排放。

4.结论

在各类生物质发电技术中,直燃生物质开发利用已经初步产业化,混烧发电技术的投资经济性最好,其发电经济性决定于原电厂的效率,而且会对原电厂有一定的影响。生物质气化发电技术的发电规模比较灵活,投资较少,适于我国生物质的特点,但是技术还不成熟。从产业整体状况分析,生物质发电及生物质燃料目前仍处在政策引导扶持期。

参考文献:

[1]水电水利规划设计总院和国家可再生能源信息管理中心.2013中国生物质发电建设统计报告[R].北京:国家可再生能源中心,2014.

[2]李利文.生物质能发电模式探讨[J].内蒙古科技与经济,2009(19):71-75.

生物质气化技术范文4

关键词 生物质;发电;气化;秸秆

中图分类号TM92 文献标识码A 文章编号 1674-6708(2012)71-0093-02

秸秆等生物质的处理,是以科技为本,进行高效综合利用,并形成产业链,使秸秆和广大农村的有机废弃物真正地变废为宝 。使农民及其他相关行业终端产品的各级用户都受益,这样才能彻底解决秸秆禁烧问题。届时,天更蓝、水更清,环境更优美,实现经济与环境比翼齐飞,功在千秋,利在当代。该专利可根据桔杆的量设计五百至3.6万kw/h以上的生物质或垃圾发电厂。

1 6000kW生物质气化发电与高效综合利用项目可行性分析报告

目前,国内生物质发电厂大多采用汽轮发电机组,用直燃式炉或流化床炉的共同缺陷是:秸秆在燃烧气化过程中产生的秸秆炭粉,醋液和焦油被氧化流失,不仅浪费了资源,在经济上得不偿失,而且对环境会造成严重污染。

秸秆等生物质的气化过程,其实是一个热化学过程。它是以农作物秸秆等再生可燃物质作为原料,以氧气(空气),水蒸气或氢气等做气化剂(或称气体介质)在高温条件下通过热化学反应将秸秆等可燃部分转化为气体燃料的过程。气化时所得的可燃气体有效成分包括一氧化碳,氢气、甲烷等。

气化炉采用固定床型,原料(经断碎秸秆等)由炉子顶端加入炉膛,原料层及灰渣由下部炉栅支撑。空气中通过一定量的水蒸气,所形成的气化剂由下部的进风口进入,经炉栅均匀分配,与原料层接触发生气化反应,反应生成的可燃气由原料层上方排出,气化反应后的残渣由下部的灰盘排出。

该技术由盛唐科技自主研发,并已获得多项国家发明专利。秸秆等生物质在气化(炭化)过程中能同时得到可燃气体(发电)、生物质炭、醋液、焦油及热水,一座6 000kW秸秆和稻壳高效综合利用发电厂,日消耗秸秆和生物质等原料240t,每天生产出的产品:电力160 800kW/h,生物质炭84t,用作固体燃料和保温材料等,是制作生物质成型燃料的最佳原料,燃烧时无污染,也是典型的清洁可再生能源;生物质醋液60t,生物质焦油11.04t, 80℃以上的热水2 880t。生物质炭热值5 500大卡左右,生物质醋液可制作有机肥和有机农药,还具有明显的杀菌、消毒、除臭和抗禽流感等作用;生物质焦油用作粘合剂和防腐剂和燃料;热水直接作生活用水或供暖。建生物质发电厂可以根据各地的生物质原料供应量来选择建厂的规模。

一吨秸秆和生物质生产出的五种产品的经济价值达到1 200多元,其中电力670kW/h,每千瓦时0.75元,价值502.5元;生物质炭350kg,每吨1 000元,价值350元;生物质醋液270kg,每吨1 000元,价值270元;生物质焦油46kg,每吨2 800元,价值128.8元;80℃的热水10t,每吨15元,价值150元。

2 目的和意义

秸秆进气化炉燃烧,对气化剂进行适量的控制。秸秆在气化炉中(固定床),在高温条件下通过热化学反应。秸秆可燃部分转化为气体燃料。供燃气发电机组发电。由于气化剂量的控制得当,使秸秆在气化过程中并不完全燃烧,在高温缺氧条件下而被碳化。所得碳粉(或棒、球)在35%左右。碳粉可作无污染的清洁燃料。因它含植物生长必须的氮、磷、钾等多种元素。因此可来制成有机复合肥料,可提高土壤的肥力和透气性,增加土壤的含水分。炭还可以作为工业用保温材料。生物质在热解气化过程中产生可燃气体,有一部分挥发性有机物质,经冷凝器冷却,以液体形态流出冷却塔后的液体呈酸性物质,也称醋液,及电捕焦塔捕获的焦油两种产品。生物质醋液是含酸类,脂类、醛类、酚类等百余种有机化学成分。酸性液体可以作为消毒剂、除臭剂或做成防虫农药助剂或直接做成农药。作有机蔬菜、水果等农作物的肥料,对作物生长过程中亦有非常良好的促进作用。

生物质焦油可精制成芳香原料、防腐剂和粘合剂。对气化炉及发电机组用的冷却水及发动机废气进行余热加工,可对居民,机关学校医院等,供应热水和供暖气。

3 本项目的特点

目前由于农村中大量的农作物秸秆等生物质被废弃在农田中。因焚烧及腐烂而造成环境的严重污染。

目前,绝大部分地区的地表水源已经不能供人畜饮用。危害人民群众的身体健康。另一方面,浪费了宝贵的再生能源,在全世界面临能源危机及生态环境日益严重恶化的情况下,开发利用可再生能源,变废为宝,其经济效益和社会效益都有着重要意义。

本项目的特点是将本人的发明专利“城市生活垃圾焚烧气化发电装置”专利号ZL200710025471.8节能燃气发生炉专利号ZL2006620125377.0多功能节能燃气发生炉专利号ZL200620125378.5综合了上述部分专利技术,设计制造出新一代气(碳)化炉及燃气发电系统因而产生较高的经济效益。

4 生物质发电及综合利用技术的创新点、特征、投资与收益分析

4.1技术的创新点与特征

本技术的创新点主要有以下几个方面:

1)利用的总体思路不仅考虑到农林生物质的无公害化利用,而且更重视把生物质作为一种资源进行固、液、气三相的综合利用,因而综合效益高,真正做到无公害化、资源化;

2)一种能有效控制给氧量的结构科学、合理的农林生物质气化(炭化)炉;

3)一种能有效收集生物质炭粉的装置;

4)一种能有效分离、收集生物质醋液的净化和冷凝装置;

5)一种能有效分离、收集生物质焦油的净化和冷凝装置;

6)一种能有效利用余热生产热水的装置;

生物质气化技术范文5

随着社会工业化速度的不断加速,能源的竞争愈来愈激烈。生物质能源作为一种可再生的清洁能源被广泛认可,生物气化技术就是利用生物质能的一种有效手段,对经济的发展和环境的保护都起到积极作用。但是,生物气化技术是一种热化学处理技术,其工作过程十分复杂,包含着大量的不确定因素,这就需要运用生物质气化炉的智能控制系统来达到预期的控制效果。新形势下,积极运用模糊神经网络对生物质气化炉进行智能控制,是实现可靠控制效果的重要举措。

【关键词】模糊神经网络 生物质气化炉 智能控制

生物质气化过程是一项复杂化学反应过程,具有非线性、不稳定性、负荷干扰等特性,只有实行智能控制才能受到良好的控制效果。模糊神经网络作为智能研究比较活跃的领域,有效融合了神经网络和模糊理论的优点,能够有效的解决生物质气化过程中的非线性、模糊性等问题,既保证控制的精确度,又能进行快速地升降温。本文通过对模糊神经网络的内涵特征进行全面分析,阐述了基于模糊神经网络的生物质气化炉的智能控制,并通过仿真实验进行反复验证。

1 模糊神经网络的内涵功能

简而言之模糊神经网络就是具有模糊权值和输入信号的神经网络。模糊神经网络是自动化控制领域内一门新兴技术,其本质上是将常规的神经网络输入模糊信号,因而模糊神经网络具备了模糊系统和神经网络的优势,集逻辑推理、语言计算等能力于一身,具有学习、联想、模糊信息处理等功能。模糊神经网络是智能控制和自动化不断发展的产物,在充分利用神经网络的并行处理能力的基础上,大大提高了模糊系统的推理能力。

模糊神经网络是科技发展的产物,有效吸收了神经网络系统和模糊系统的优点,在智能控制和自动化发展等方面有着重要的作用,能够有效地处理非线性、模糊性等诸多问题,在处理智能信息方面能够发挥巨大潜力。模糊神经网络形式多种多样,主要包括逻辑模糊神经网络、算术模糊神经网络、混合模糊神经网络等多种类型,被广泛的运用于模糊回归、模糊控制器、模糊谱系分析、通用逼近器等方面的研究中,随着智能控制和自动化领域的不断发展,模糊神经网络广泛应用于智能控制领域。

2 基于模糊神经网络的生物质气化炉的智能控制系统

2.1 温度智能控制系统

生物质热值、给料理以及一次风量等因素变化能够影响到生物质气化炉的炉温,但是最重要的影响因素是在气化炉工作过程中物料物理和化学反应的放热和吸热。由于生物质气化工作过程中的生物质热值的变化范围较小,在实际运行中很难测量与控制,有时可以忽略不计,同时,该工作过程中存在非线性和大滞后等问题,采用传统的数学模型达不到预期测量效果,因此需要利用模糊神经网络设计气化炉炉温控制系统,不断的提高温度的控制效果。模糊神经网络首先根据当前温度以及设定温度设,主控制器对最优的生物质物料添加量进行预测,然后由副控制根据该添加量,全面跟踪控制送料速度,从而能够进行精确上料和控制炉温。模糊神经网络系统十分庞大复,其中包含了大量错综复杂的神经元,蕴含对非线性的可微分函数训练权值的基本理念。模糊神经网络具有正向传递和反向传播两个不同的功能,在信息的正向传递中,采用逐步运算的方式对输入的数据信息进行处理,信息依次进入输入层、隐含层最终到达输出层。假如在输出层获得的输出信息没达到预期效果时,就会在计算输出层的偏差变化值后通过网络将偏差信号按原路反向传回,与此同时各层神经元的权值也会随之进行改变,直到符合预期的控制效果。

2.2 含氧量智能控制系统

在生物质气化工作过程中,可燃气体的含氧量是衡量其生产质量的重要依据,能够严重影响气化产物的安全使用,因此,通过模糊神经网络实现生物质气化炉含氧量的智能控制十分重要。其含氧量智能控制系统的目的是为了合理控制可燃气体的含氧量,从而稳定气化炉的温度。但是,一次风进风量是影响可燃气体的含氧量的重要因素,所以可以把控制一次风量作为主要调节手段,有效地解决含氧量控制和炉温控制之间的矛盾,在控制炉温的前提条件下,最大程度地降低可燃气体含氧量,进而有效控制气化产物含氧量的。生物质气化炉含氧量的智能控制系统是严格运用模糊神经网络控制原理,主控制器采用温度模糊免疫 PID控制,根据炉内含氧量和温度的偏差进行推算,查找出鼓风机转速的最优状态,副控制则以此为根据,全面跟随与控制鼓风机的速度,确保鼓风机转速。生物质气化炉工作过程中的不同阶段和部件具有不同的控制要求,模糊神经网络就要充分发挥被控对象的优良性能,根据不同的控制要求,合理运用模糊神经网络控制原理对 PID参数模型中的数据信息进行在线修改,从而达到预期的控制效果。

3 基于模糊神经网络的生物质气化炉智能控制系统的仿真实验

为了验证运用模糊神经网络进行生物质气化炉的智能控制的真实效果,对生物质气化炉的温度智能控制系统进行仿真实验,并进行详细地分析。为了保证生物质气化炉能够在条件大体一致的状态下进行运行状况,仿真实验可以采用组合预测算法。首先要到某厂气化炉现场采集2000组干燥层温度数据,并且从中选取连续1500组作为仿真实验样本数据,然后对剩余500组实验样本数据进行研究,通过两组数据的分析建立预测模型。然后采用模糊神经网络对生物质气化炉的温度控制系统进行三次模拟化实验,三种不同情况下的仿真试验结果为:在无外界任何干扰的情况下,模糊神经网络控制无论在超调量还是其他方面,都比单纯的模糊控制效果好;在生物质给料量扰动的情况下,模糊神经网络控制要比单纯的模糊控制所受的影响要小很多;在发生一次风量搅动的情况下,模糊神经网络控制仍受到极小的影响。从三种不同情况下的仿真试验中可以看出基于模糊神经网络的生物质气化炉的炉温智能控制系统效果较好,具有极强的抗干扰性,能够有效地预测气化炉温度实时值,把平均误差控制在很小范围内,并且智能控制系统能实时跟踪实际温度的变化,根据实际温度的变化做出相应的变化,从而能够有效地控制气化炉温度和可燃气体含氧量。

4 结束语

总之,基于模糊神经网络的生物质气化炉的智能控制系统具有较好的控制效果,有效的解决了生物质气化过程中的一系列问题,能够十分精确地控制生物质气化炉的炉温及可燃气体的含氧量,对于保证社会经济的稳定发展以及生态环境的改善发挥了重要作用。

参考文献

[1]王春华.基于模糊神经网络的生物质气化炉的智能控制[J].动力工程,2009(09):828-830.

[2]王中贤.热管生物质气化炉的模拟与试验[J].江苏大学学报:自然科学版,2008,29(6):512-515.

生物质气化技术范文6

生物质能的分类及其发展

生物质包括植物光合作用直接或间接转化产生的所有产物,从这个概念出发,生物质能就是绿色植物通过叶绿素将太阳能转化为化学能而贮存在生物质内部的能量。生物质主要有4类:农作物秸秆及其他残余物、林产品和木材加工残余物、动物粪便、能源植物。但是,从作为可以产生能源的资源角度看,城市和工业有机废弃物和有机废水也是生物质能资源。

生物质能具有可再生性、低污染性、广泛分布性等特点。根据技术手段可分为直接燃烧技术、热化学转换技术、生物转换技术、液化技术和有机垃圾处理技术等。依据这些技术手段,生物质能可分为固体燃料、液体燃料和气体燃料。

直接燃烧和发电

直接燃烧发电的过程是:生物质与过量空气在锅炉中燃烧后,得到的热烟气和锅炉的热交换部件换热,产生出的高温高压蒸气在蒸汽轮机中膨胀做功发电。

直接燃烧是使用最广泛的生物质能源转化方式,技术成熟。在发达国家,生物质直接燃烧发电站可再生能源发电量的70%。与燃煤发电相比,生物质直接燃烧发电的规模较小,锅炉负荷大多在20兆瓦~50兆瓦,系统发电效率大多为20%~30%。目前,美国生物质发电装机容量已达10500兆瓦,70%为生物质一煤混合燃烧工艺,单机容量10兆瓦~30兆瓦,发电成本3~6美分/千瓦时,预计到2015年,装机容量将达16300兆瓦。

国外生物质直接燃烧发电技术已基本成熟,进入推广应用阶段。该技术规模效率较高,单位投资也较合理,但它要求生物质资源集中,数量巨大,如果考虑生物质大规模收集或运输的支出,则成本较高,比较适合现代化大农场或大型加工厂的废物处理等,不适合生物质较分散的发展中国家。我国目前农业现代化程度较低,生物质分布分散,采用大规模直接燃烧发电技术有一定困难。

生物质气化及发电

生物质气化的基本原理是在不完全燃烧条件下,将生物质原料加热,使较高分子量的有机化合物裂解为低分子量的CO、CH4等可燃气体。转化过程的气化剂有空气、氧气、水蒸气等,但以空气为主。气化原料是农作物秸秆或林产加工废弃物。生物质气化产出气的热值根据气化剂的不同存在很大差异,当以空气为气化剂时,产出气的热值在4200千焦/立方米~5300千焦/立方米之间,该气体可以作为农村居民的生活能源,也可以通过内燃机发电机组发电。

生物质气化发电技术在国际上已受到广泛重视。国外小型固定床生物质气化发电已商业化,容量为60千瓦~240千瓦,气化效率70%,发电效率为20%,以印度农村地区的应用比较成功。发达国家如奥地利、丹麦、芬兰、法国、挪威、瑞典和美国等,比较关注的是生物质气化联合循环发电技术(BIGCC)。该技术的系统效率可达40%,有可能成为生物质能转化的主导技术之一。这一技术存在的问题是单位投资额非常高,并且技术稳定性不够。

我国有着良好的生物质气化发电基础,在上世纪60年代就开发了60千瓦的谷壳气化发电系统。目前已开发出多种固定床和流化床小型气化炉,以秸秆、木屑、稻壳、树枝等为原料,生产燃料气,主要用于村镇级集中供气。

生物质致密(压缩)成型燃料技术

将生物质粉碎至一定的粒度,不添加粘接剂,在高压条件下,可以得到具有一定形状的固体燃料。成型燃料可再进一步炭化制成木炭。根据挤压过程是否加热,生物质致密(压缩)成型燃料有加热成型和常温成型两种;根据最后成型的燃料形状可以分为棒状燃料、颗粒燃料和块状燃料三种。生物质致密(压缩)成型技术解决了生物质能形状各异、堆积密度小且较松散、运输和贮存使用不方便的缺点,提高了使用效率。

成型燃料在国外很受重视,开始研究时的着眼点以代替化石能源为目标。上世纪90年代,欧洲、美洲、亚洲的一些国家在生活领域大量应用生物质致密成型燃料。后来,以丹麦为首开展了规模化利用的研究工作。丹麦著名的能源投资公司BWE率先研制成功了第一座生物质致密成型燃料发电厂。随后,瑞典、德国、奥地利先后开展了利用生物质致密成型燃料发电和作为锅炉燃料等的研究。美国也已经在25个州兴建了树皮成型燃料加工厂,每天生产的燃料超过300吨。但生物质成型燃料仍以欧洲的一些国家如丹麦、瑞典、奥地利发展最快。

我国生物质成型燃料技术基础好,设备水平与世界先进水平差别不很大,不足的是我国成型燃料的应用水平还不高。

沼气技术

有机物在厌氧及其他适宜条件下,经过微生物分解代谢,产生以甲烷为主要气体的混合气体,即沼气。一般沼气中甲烷含量为50%~70%,每立方米沼气的热值为17900千焦~25100千焦。生产沼气的原料可以是高浓度的有机废水,也可以是畜禽粪便、有机垃圾和农作物秸秆等。

在发达国家,主要发展厌氧技术处理畜禽粪便和高浓度有机废水。目前,日本、丹麦、荷兰、德国、法国等发达国家均普遍采取厌氧法处理畜禽粪便。美国、英国、意大利等发达国家的沼气技术主要用于处理垃圾。美国纽约斯塔藤垃圾处理站投资2000万美元,采用湿法处理垃圾,日产26万立方米沼气,用于发电、回收肥料,效益可观,预计10年可收回全部投资。英国以垃圾为原料实现沼气发电18兆瓦,今后10年内还将投资1.5亿英镑,建造更多的垃圾沼气发电厂。

在发展中国家,沼气池技术主要使用农作物秸秆和畜禽粪便生产沼气作为生活炊事燃料,如印度和中国的家用沼气池。同时,印度、菲律宾、泰国等发展中国家也建设了大中型沼气工程和处理禽畜粪便的应用示范工程。我国是利用生物质生产沼气最多的国家。

燃料乙醇

生物质可以通过生物转化的方法生产乙醇。目前在生物能源产品产业规模方面,发展最快的就是燃料乙醇。生产燃料的乙醇主要有甘蔗乙醇、玉米乙醇和木薯乙醇三种,燃料乙醇的消耗量已超过世界乙醇产量的60%以上。

巴西是世界上最早利用甘蔗生产燃料乙醇的国家。以甘蔗为原料,工艺相对简单,既节能又节省投资,生产成本较低。目前,巴西有520多家燃料乙醇生产厂,年产燃料乙醇1200万吨,有1550万辆汽车以乙醇汽油作为燃料。

美国从上世纪70年代末开始用玉米生产燃料乙醇,到2005

年产量已经超过1200万吨。尽管目前乙醇的生产成本较高,但在美国,玉米燃料乙醇已成为一种成熟的石油替代品。

我国从2002年开始用陈化粮生产燃料乙醇,生产规模达102万吨,主要以玉米和小麦为原料。其背景是在1996年~1999年连续4年粮食总产量稳定5亿吨左右,粮食供过于求,粮食阶段性过剩并出现大量积压的情况下提出的。实践证明,粮食燃料乙醇生产技术成熟、工艺完善,是目前比较现实的石油替代燃料。

但面对我国人多地少的实际,大规模推广应用粮食燃料乙醇显然存在着原料供应的瓶颈问题,长远来说必须开发非粮食为原料的乙醇燃料。“十五”期间,国家开展了非粮食能源作物――甜高粱培育等关键技术的研究与开发,包括利用甜高粱茎秆汁液和纤维素废弃物等生物质制取乙醇的技术工艺。对第一种技术工艺,我国初步具备了规模化开发的基础,但纤维素废弃物制取乙醇燃料技术还存在技术不成熟、诸多关键技术尚未解决等问题。

生物柴油

生物柴油是利用动植物油脂生产的一种脂肪酸甲(乙)酯。制造柴油的原料很多,既可以是各种废弃的动植物,也可以是含油量比较高的油料植物。实践证明,生物柴油不仅具有良好的燃烧性能,还有良好的理化特性和动力特性。

国外通常采用大豆和油菜籽生产生物柴油,但成本稍高。为降低成本,一些国家开始用废弃食用油和专门的木本油料植物生产生物柴油。目前,生物柴油在欧盟已经大量使用,进入商业化发展阶段。2004年欧盟生物柴油产量为224万吨,并计划到2010年达到800万吨~1000万吨。

我国人多地少,发展生物柴油只能靠非食用油料资源。因此,我国目前生产生物柴油的原料主要是餐饮废油、工业废油、某些植物油和菜籽油、棉籽油的下脚料等。利用这些原料既回收利用了资源,又解决了环境污染问题。我国生物柴油的生产起步晚,但发展较快。目前已有30多家生物柴油生产厂。

除了上述生物质能利用技术外,还有生物制氢技术、热裂解技术等,基本处于研究阶段。

我国发展生物质能的必要性

开发生物质能具有能源与环境双重效益,有可能成为未来可持续发展能源系统的主要能源之一。因此,许多国家都高度重视生物质能源开发,并制定了相应的开发研究计划,如日本的阳光计划、印度的绿色能源工程、美国的能源农场和巴西的乙醇能源发展计划等。联合国开发计划署(UNDP)、欧盟和美国(DOE)的可再生能源开发计划中也都把生物质能列为重点发展方向。

目前,生物质能是仅次于煤炭、石油和天然气的世界第四大能源。据估算,地球陆地每年生产1000亿吨~1250亿吨干生物质;海洋年生产500亿吨干生物质。生物质能源的年生产量远远超过全世界总能源需求量,相当于目前世界总能耗的10倍。

我国的生物质资源也相当丰富。目前我国生物质能年获得量达到3.14亿吨标准煤,到2050年资源潜力可达到9.04亿吨标煤且潜力巨大。

根据发达国家的经验可知,现今正是我国实现工业化的关键时期。大部分发达国家在此期间(此时人均GDP在3000美元左右)都经历了人均能源、资源消费量快速增长和能源、资源结构快速变化的过程。这对能源安全等问题提出了更高的要求。据预测,2020年中国一次能源的需求为25亿吨~33亿吨标准煤,最少将是2000年的2倍;2050年的一次能源需求估计将在50亿吨标准煤左右。根据我国现在的能源需求增长趋势推算,到2020年,我国仅石油的缺口就将达1.3亿吨~1.5亿吨。能源供应不足问题已成为我国经济社会发展的主要矛盾之一。因此,要从根本上解决我国能源供应不足的问题,必须实施多元化能源发展战略,积极开发生物质能源是出路之一。

从保护环境角度看,我国SO2,排放量已居世界第一位,CO2排放量仅次于美国居第二位。2006年,SO2排放量达2550万吨,其中约85%是燃煤排放的。酸雨面积已超过国土面积的1/3。SO2和酸雨造成的经济损失约占GDP的2%。生物质能属于清洁能源,生物质中有害物质(硫和灰分等)的含量仅为中质烟煤的1/10左右。同时,生物质二氧化碳的排放和吸收构成自然界碳循环,其能源利用可实现二氧化碳零排放,扩大生物质能利用是减排CO2,最重要的途径。

另外,生物质一直是我国农村的主要能源之一。因地制宜开展生物质能利用技术及产品的研究、推广和使用,可以把农民从烟熏火燎中彻底解放出来,既节约资源,又可以改善农民的居住环境,减少水土流失,提高其生活水平。

我国发展生物质能存在的问题