生物信息学的发展趋势范例6篇

前言:中文期刊网精心挑选了生物信息学的发展趋势范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

生物信息学的发展趋势

生物信息学的发展趋势范文1

生物信息学”是英文单词“bioinformatics”的中文译名,其概念是1956年在美国田纳西州gatlinburg召开的“生物学中的信息理论”讨论会上首次被提出的[1],由美国学者lim在1991年发表的文章中首次使用。生物信息学自产生以来,大致经历了前基因组时代、基因组时代和后基因组时代三个发展阶段[2]。2003年4月14日,美国人类基因组研究项目首席科学家collins f博士在华盛顿隆重宣布人类基因组计划(human genome project,hgp)的所有目标全部实现[3]。这标志着后基因组时代(post genome era,pge)的来临,是生命科学史中又一个里程碑。生物信息学作为21世纪生物技术的核心,已经成为现代生命科学研究中重要的组成部分。研究基因、蛋白质和生命,其研究成果必将深刻地影响农业。本文重点阐述生物信息学在农业模式植物、种质资源优化、农药的设计开发、作物遗传育种、生态环境改善等方面的最新研究进展。

1.生物信息学在农业模式植物研究领域中的应用

1997年5月美国启动国家植物基因组计划(npgi),旨在绘出包括玉米、大豆、小麦、大麦、高粱、水稻、棉花、西红柿和松树等十多种具有经济价值的关键植物的基因图谱。国家植物基因组计划是与人类基因组工程(hgp)并行的庞大工程[4]。近年来,通过各国科学家的通力合作,植物基因组研究取得了重大进展,拟南芥、水稻等模式植物已完成了全基因组测序。人们可以使用生物信息学的方法系统地研究这些重要农作物的基因表达、蛋白质互作、蛋白质和核酸的定位、代谢物及其调节网络等,从而从分子水平上了解细胞的结构和功能[5]。目前已经建立的农作物生物信息学数据库研究平台有植物转录本(ta)集合数据库tigr、植物核酸序列数据库plantgdb、研究玉米遗传学和基因组学的mazegdb数据库、研究草类和水稻的gramene数据库、研究马铃薯的pomamo数据库,等等。

2.生物信息学在种质资源保存研究领域中的应用

种质资源是农业生产的重要资源,它包括许多农艺性状(如抗病、产量、品质、环境适应性基因等)的等位基因。植物种质资源库是指以植物种质资源为保护对象的保存设施。至1996年,全世界已建成了1300余座植物种质资源库,在我国也已建成30多座作物种质资源库。种质入库保存类型也从单一的种子形式,发展到营养器官、细胞和组织,甚至dna片段等多种形式。保护的物种也从有性繁殖植物扩展到无性繁殖植物及顽拗型种子植物等[6]。近年来,人们越来越多地应用各种分子标记来鉴定种质资源。例如微卫星、aflp、ssap、rbip和snp等。由于对种质资源进行分子标记产生了大量的数据,因此需要建立生物信息学数据库和采用分析工具来实现对这些数据的查询、统计和计算机分析等[7]。

3.生物信息学在农药设计开发研究领域中的应用

传统的药物研制主要是从大量的天然产物、合成化合物,以及矿物中进行筛选,得到一个可供临床使用的药物要耗费大量的时间与金钱。生物信息学在药物研发中的意义在于找到病理过程中关键性的分子靶标、阐明其结构和功能关系,从而指导设计能激活或阻断生物大分子发挥其生物功能的治疗性药物,使药物研发之路从过去的偶然和盲目中找到正确的研发方向。生物信息学为药物研发提供了新的手段[8,9],导致了药物研发模式的改变[10]。目前,生物信息学促进农药研制已有许多成功的例子。itzstein等设计出两种具有与唾液酸酶结合化合物:4-氨基-neu5ac2en和4-胍基-neu5ac2en。其中,后者是前者与唾液酸酶的结合活性的250倍[11]。目前,这两种新药已经进入临床试验阶段。tang sy等学者研制出新一代抗aids药物saquinavir[12]。pungpo等已经设计出几种新型高效的抗hiv-1型药物[13]。杨华铮等人设计合成了十多类数百个除草化合物,经生物活性测定,部分化合物的活性已超过商品化光合作用抑制剂的水平[14]。

现代农药的研发已离不开生物信息技术的参与,随着生物信息学技术的进一步完善和发展,将会大大降低药物研发的成本,提高研发的质量和效率。

4.生物学信息学在作物遗传育种研究领域中的应用

随着主要农作物遗传图谱精确度的提高,以及特定性状相关分子基础的进一步阐明,人们可以利用生物信息学的方法,先从模式生物中寻找可能的相关基因,然后在作物中找到相应的基因及其位点。农作物的遗

传学和分子生物学的研究积累了大量的基因序列、分子标记、图谱和功能方面的数据,可通过建立生物信息学数据库来整合这些数据,从而比较和分析来自不同基因组的基因序列、功能和遗传图谱位置[15]。在此基础上,育种学家就可以应用计算机模型来提出预测假设,从多种复杂的等位基因组合中建立自己所需要的表型,然后从大量遗传标记中筛选到理想的组合,从而培育出新的优良农作物品种。

5.生物信息学在生态环境平衡研究领域中的应用

在生态系统中,基因流从根本上影响能量流和物质流的循环和运转,是生态平衡稳定的根本因素。生物信息学在环境领域主要应用在控制环境污染方面,主要通过数学与计算机的运用构建遗传工程特效菌株,以降解目标基因及其目标污染物为切入点,通过降解污染物的分子遗传物质核酸 dna,以及生物大分子蛋白质酶,达到催化目标污染物的降解,从而维护空气[16]、水源、土地等生态环境的安全。

美国农业研究中心(ars) 的农药特性信息数据库(ppd) 提供 334 种正在广泛使用的杀虫剂信息,涉及它们在环境中转运和降解途径的16种最重要的物化特性。日本丰桥技术大学(toyohashi university of technology) 多环芳烃危险性有机污染物的物化特性、色谱、紫外光谱的谱线图。美国环保局综合风险信息系统数据库(iris) 涉及 600种化学污染物,列出了污染物的毒性与风险评价参数,以及分子遗传毒性参数[17]。除此之外,生物信息学在生物防治[18]中也起到了重要的作用。网络的普及,情报、信息等学科的资源共享,势必会创造出一个环境微生物技术信息的高速发展趋势

6.生物信息学在食品安全研究领域中的应用

食品在加工制作和存储过程中各种细菌数量发生变化,传统检测方法是进行生化鉴定,但所需时间较长,不能满足检验检疫部门的要求,运用生物信息学方法获得各种致病菌的核酸序列,并对这些序列进行比对,筛选出用于检测的引物和探针,进而运用pcr法[19]、rt-pcr法、荧光rt-pcr法、多重pcr[20]和多重荧光定量pcr等技术,可快速准确地检测出细菌及病毒。此外,对电阻抗、放射测量、elisa法、生物传感器、基因芯片等[21-25]技术也是未来食品病毒检测的发展方向。

转基因食品检测是通过设计特异性的引物对食品样品的dna提取物进行扩增,从而判断样品中是否含有外源性基因片段[26]。通过对转基因农产品数据库信息的及时更新,可准确了解各国新出现和新批准的转基因农产品,便于查找其插入的外源基因片段,以便及时对检验方法进行修改。目前由于某些通过食品传播的病毒具有变异特性,以及检测方法的不完善等因素影响,生物信息学在食品领域的应用还比较有限,但随着食品安全检测数据库的不断完善,相信相关的生物信息学技术将在食品领域发挥越来越重要的作用。  生物信息学广泛用于农业科学研究的各个领域,但是仅有信息资源是不够的,选出符合自己需求的生物信息就需要情报部门,以及信息中介服务机构提供相关服务,通过出版物、信息共享平台、数字图书馆、电子论坛等信息媒介的帮助,科研工作者可快速有效地找到符合需要的信息。目前我国生物信息学发展还很不均衡,与国际前沿有一定差距,这需要从事信息和科研的工作者们不断交流,使得生物信息学能够更好地为我国农业持续健康发展发挥作用。

参考文献:

[1]yockey hp,platzman rp,quastler h.symposium on information.theory in biology.pergamon press,new york,london,1958.

[2]郑国清,张瑞玲.生物信息学的形成与发展[j].河南农业科学,2002,(11):4-7.

[3]骆建新,郑崛村,马用信等.人类基因组计划与后基因组时代.中国生物工程杂志,2003,23,(11):87-94.

[4]曹学军.基因研究的又一壮举——美国国家植物基因组计划[j].国外科技动态,2001,1:24-25.

[5]michael b.genomics and plantcells:application ofgenomics strategies to arabidopsis cellbiology[j].philostransr soc lond b bio sci,2002,357(1422):731-736.

[6]卢新雄.植物种质资源库的设计与建设要求[j].植物学通报,2006,23,(1):119-125.

[7]guy d,noel e,mike a.using bioinformatics to analyse germplasm collections [j].spri

nger netherlands,2004:39-54.

[8]郑衍,王非.药物生物信息学,化学化工出版社,2004.1:214-215.

[9]俞庆森,邱建卫,胡艾希.药物设计.化学化工出版社,2005.1:160-164.

[10]austen m,dohrmann c.phenotype—first screening for the identification of novel drug targets.drug discov today,2005,10,(4):275-282.

[11]arun agrawal,ashwini chhatre.state involvement and forest cogovernance:evidence from the indianhmi alayas.stcomp international developmen.t sep 2007:67-86.

[12]tang sy.institutionsand collective action:self-governance in irrigation [m].san francisco,ca:icspress,1999.

[13]pungpo p,saparpakorn p,wolschann p,et a.l computer-aided moleculardesign of highly potenthiv-1 rt inhibitors:3d qsar and moleculardocking studies of efavirenz derivatives[j].sar qsar environres,2006,17,(4):353-370.

[14]杨华铮,刘华银,邹小毛等.计算机辅助设计与合成除草剂的研究[j].计算机与应用化学,1999,16,(5):400.

[15]vassilev d,leunissen j,atanassov a.application of bioinformatics in plant breeding[j].biotechnology & biotechnological equipment,2005,3:139-152.

[16]王春华,谢小保,曾海燕等.深圳市空气微生物污染状况监测分析[j].微生物学杂志,2008,28,(4):93-97.

[17]程树培,严峻,郝春博等.环境生物技术信息学进展[j].环境污染治理技术与设备,2002,3,(11):92-94.

[18]史应武,娄恺,李春.植物内生菌在生物防治中的应用[j].微生物学杂志,2009,29,(6):61-64.

[19]赵玉玲,张天生,张巧艳.pcr 法快速检测肉食品污染沙门菌的实验研究[j].微生物学杂志,2010,30,(3):103-105.

[20]徐义刚,崔丽春,李苏龙等.多重pcr方法快速检测4种主要致腹泻性大肠埃希菌[j].微生物学杂志,2010,30,(3) :25-29.

[21]索标,汪月霞,艾志录.食源性致病菌多重分子生物学检测技术研究进展[j].微生物学杂志,2010,30,(6):71-75

[22]朱晓娥,袁耿彪.基因芯片技术在基因突变诊断中的应用及其前景[j].重庆医学,2010,(22):3128-3131.

[23]陈彦闯,辛明秀.用于分析微生物种类组成的微生物生态学研究方法[j].微生物学杂志,2009,29,(4):79-83.

[24]王大勇,方振东,谢朝新等.食源性致病菌快速检测技术研究进展[j].微生物学杂志,2009,29,(5):67-72.

生物信息学的发展趋势范文2

【关键词】生物信息学序列比对动态规划算法

一、背景与意义

随着人类基因组计划的顺利实施和信息技术的迅速发展,GeneBank、EMBL和DDBJ国际三大核酸序列数据库数据量呈指数增长。生物学家、数学家和计算机科学家都面临着一个相同的并且严峻的问题,如何利用、表达这些数据进而分析与解释基因序列间的潜在关系,从中发掘出对人类有利的信息。为迎接挑战,一门涉及生物、数学、物理、化学、计算机科学等诸多科学的新型学科应运而生,并且日益成为二十一世纪自然科学的核心领域之一。

生物信息学的主要研究对象是DNA序列和蛋白质序列,主要通过分类、分析和检索核苷酸序列或氨基酸序列,获取基因编码和调控、代谢途径、DNA和蛋白质结构功能及其相互关系等各方面的知识。所以在生命起源、生物进化以及细胞、器官和个体的出现、生长、病变、消亡等生命科学问题中,生物信息学都起着非常重要的作用。生物信息学是发现生命科学问题中的基本规律和时空联系,发掘生物序列数据中蕴含的生物学意义的交叉学科[1]。

在生物信息学中,序列比对是最基本、最重要的操作。对于基因序列,通过比对可以推测出哪个基因家族可能包含该序列,并可以推测出该序列可能具有的生物学功能;对于蛋白质序列,通过比对可以推测出该序列可能的功能和结构,并可以找出与它同源的蛋白质序列。所以在生物信息学中,序列比对具有非常重要的意义和实用价值。目前,国际上提出了众多经典的比对算法,也开发了众多的序列比对软件。但对于同一组序列,不同的软件采用不同的序列比对算法,其运算速度和比对结果都有很大差异。有些软件考虑了比对结果而运行时间较长,而有些软件运算速度很快比对结果却不理想。一般情况下两者不能同时兼得。所以,对于序列比对算法的研究还有待继续深入。

二、多序列比对的研究现状及发展趋势

多序列比对是双序列比对的一般性推广。由于核酸数据库容量的增长呈指数级,序列比对的数量通常都会远远大于两个,使用动态规划算法来解决比对问题已经是不可行的了,这使得多序列比对成为一NP难题。为了解决这一难题,人们提出了许多近似算法。

2.1动态规划算法

多序列比对最早采用的是动态规划算法来解决。动态规划算法中最为经典的是Needleman-Wunsch算法,其解决思路是把整个问题分解成多个相互联系的子问题,通过依次解决每个子问题,从而解决整个问题。动态规划算法最初用于求解两个序列的比对,当把动态规划的基本思想推广到多序列比对时,3个很短序列的比对还可以顺利进行。比对序列的数量如果超过3个,由于需要很大的存储空间和很长的运行时间,比对根本无法进行下去。所以多序列比对问题不能采用动态规划算法来解决。Carrillo和Lipman等人对该算法进行了改进,提出了Carrillo-Lipman算法,通过减少存储空间将序列比对的数量提高到10。2004年,唐玉荣等人对动态规划算法进行了优化[2],与基本动态规划法敏感性相同,但降低了算法的时间复杂度,并在减少存储空间方面也有一定的效果。

2.2启发式算法

目前,绝大多数算法属于启发式算法,包括星比对算法,渐进式比对算法,迭代细化方法等。其中应用最早的是星比对算法,而应用最广并且效果较好的是渐进式比对算法。Hogeweg和Hesper首先提出渐进式比对算法,而后Feng和Taylor对其加以完善。与动态规划算法相比,该算法在计算速度、存储空间和序列数目等方面都更加优良。并且,渐进式比对算法能够直接用于构造进化树,反映序列间的进化关系。2005年,段敏等人提出了一种用减少序列比对过程中总评分的方法来达到局部优化目的的多序列比对算法[3]。启发式算法虽然在一定层度上减少了算法的运行时间和存储空间,但都有一些不足之处。星比对算法中,无论采用何种方法并不能保证找到的序列是最好的中心序列。渐进式比对算法中,构造的指导树有时不一定真正反映系统的进化信息,根据指导树渐进比对容易产生局部最优化问题。迭代细化算法中,无法采用何种迭代策略得到的结果最优。

2.3随机算法

多序列比对中,应用最多的随机算法有遗传算法、模拟退火算法和粒子群算法等。遗传算法是一种全局意义上的自适应随机搜索方法,它借鉴生物进化规律,模拟生物进化过程中的一系列事件,包括突变、和选择,最终得到一个优化解。模拟退火算法则是模拟物理中的退火过程并结合复杂系统中的组合优化之间的相似性来寻找最优解。2008年,向昌盛等人提出了将遗传算法和模拟退火算法相结合的遗传退火进化思想[4],设计了运用该思想进行多序列比对的算法过程,实验结果表明该算法是行之有效的。2011年,徐小俊等人针对粒子群优化易陷入局部最优、收敛速度慢的现象,提出了一种分段取值惯性权重(SW)方法[5],该方法在解决多序列比对问题时可以有效地避免算法早熟,并提高解的精度。

2.4分治算法

分治算法是把一个大问题分解成若干个小问题来解决。Stoye提出了一种新的分治算法DCA,将Carrillo-Lipman算法引入进来。在不影响特征表现的前提下,把序列分割成完全满足Carrillo-Lipman算法长度要求的子序列,使用Carrillo-Lipman算法进行序列比对。2000年Stoye又提出了一种OMA算法,以达到减少存储空间的目的。2009年,业宁等人设计了一个DCA-ClustalW算法来解决多序列比对问题[6],从纵向和横向两个方面将复杂问题简单化,并在BaliBase基准数据集上测试了算法的可行性。

2.5其他算法

2006年,陈娟等人给出了多重序列比对的蚁群算法[7],结果显示蚁群算法可以有效解决多重序列比对问题并具有自适应性、鲁棒性等特点。而文献[8,9]针对蚁群算法易于陷入局部最优解、收敛速度慢等问题,提出了改进的方法。

三、结论

生物信息学中最基本和最核心的问题之一就是多序列比对。由于多序列比对处理的数据越来越庞大和复杂,所以其算法对计算精度和运算速度的要求也越来越高。如何能快速有效的获得比对的结果,一直苦恼着众多的学者们。

参考文献

[1]孙啸,陆祖宏,谢建明.生物信息学基础.北京:清华大学出版社,2005,10-17

[2]唐玉荣,一种优化的生物序列比对算法.计算机工程与设计,2004,25(11):1936-1945

[3]段敏,许龙飞.生物DNA序列比对算法研究.佳木斯大学学报,2005,23(2):153-158

[4]向昌盛,周建军,周子英.模拟退火遗传算法在生物多序列比对中的应用.湖南农业科学,2008,(4):29-34

[5]徐小俊,雷秀娟,郭玲.基于SWGPSO算法的多序列比对.计算机工程,2011,37(6):184-186

[6]业宁,张倩倩,许翠云.一种多序列比对分值算法DCA-ClustalW.计算机与数学工程,2010,38(11):30-33

[7]陈娟,陈.多重序列比对的蚁群算法.计算机应用,2006,26(6):124-128

生物信息学的发展趋势范文3

关键词:蛋白质组学;蛋白质组学技术体系

中图分类号:Q753

文献标识码:A

文章编号:1672-979X(2010)5-0207-04

21世纪是生物技术和信息技术的世纪。随着人类基因组测序计划的完成,功能基因组学逐渐成为新的研究热点,研究蛋白质组学是功能基因组研究的重要组成部分,是生命科学研究进入后基因组时代的里程碑,也是后基因组时代研究的核心内容之一。

1 蛋白质组与基因组――从基因组到蛋白质组的转变

基因组用于描述生物的全部基因和染色体组成。基因组学包括结构基因组学和功能基因组学两方面的内容。

随着研究的深入,人们认识到单纯基因组信息不能完全揭示生命的奥秘。基因是遗传信息的携带者,蛋白质才是生理功能的执行者和生命活动的直接体现者。几乎所有的生理和病理过程都能引起蛋白质相应的变化,研究蛋白质结构和功能将直接阐明生物体在不同生理或病理条件下的变化机制。由此产生了蛋白质组学(protemics)。在后基因组时代,生命科学的中心任务将是阐明基因组所表达蛋白质的表达规律和生物功能。生命科学的研究重心将从基因组学移向蛋白质组学。

2 蛋白质组学的研究内容

蛋白质组学研究的内容主要有结构蛋白质组学和功能蛋白质组学两方面。结构蛋白质组学主要是研究蛋白质表达模式,功能蛋白质组学主要是研究蛋白质功能模式,目前的研究主要集中在蛋白质组相互作用网络关系上。

目前蛋白质组学又出现了新的研究趋势:(1)亚细胞蛋白质组学分离、鉴定不同生理状态下亚细胞蛋白质的表达,这对全面了解细胞功能有重要意义;(2)定量蛋白质组学精确的定量分析和鉴定一个基因组表达的所有蛋白质已成为当前研究的热点;(3)磷酸化蛋白质组学蛋白质磷酸化和去磷酸化调节几乎所有的生命活动过程。蛋白质组学的方法可以从整体上观察细胞或组织中蛋白质磷酸化的状态及其变化;(4)糖基化蛋白质组学可用于确定糖蛋白特异性结合位点中多糖所处的不同位置。近来在蛋白质组学背景下进行的糖生物学研究已取得了可喜的进展;(5)相互作用蛋白质组学通过各种先进技术研究蛋白质之间的相互作用,绘制某个体系蛋白质作用的图谱。

3 蛋白质组学研究技术

蛋白质组学的发展,既是技术推动又受技术限制。蛋白质组学研究成功与否,很大程度上取决于技术方法水平的高低。蛋白质组学的蓬勃发展主要得益于三大技术突破:固相化pH梯度胶条即IPG胶条的发明和完善;两种软电离质谱技术的出现:蛋白质双向凝胶电泳图谱数字化和一系列分析软件的问世。当前国际蛋白质组研究技术平台的技术基础和发展趋势有以下几个方面。

3.1蛋白质样品制备技术

样品制备是双向电泳成功的关键之一。选择合适的样品制备方法对获得满意的双向电泳图谱非常重要。不同来源的样品有不同的处理方法。目前常用的样品处理技术有液相等电聚焦、亚细胞分级、吸附色谱、连续多步提取方法等。

激光捕获显微切割技术是上世纪末期发展起来的新技术。利用激光切割组织,能高效地从复合组织异性地分离出单个细胞或单一类型细胞群,显著提高样本的均一性。

3.2蛋白质分离技术

3.2.1双向凝胶电泳(2-DE) 其原理是根据蛋白质的等电点和相对分子质量来分离蛋白质。近年双向电泳技术的蛋白质分离分辨率和重复性显著提高。尤其是差异荧光显示凝胶电泳(DIGE)技术,将蛋白质样品经不同的荧光染料CYPRO Ruby(Cy2、Cy3、Cy5)标记后,等量混合双向电泳,蛋白量差异可通过蛋白点荧光信号间的不同比率分辨。此法灵敏度高,所需样品量少,一张胶可同时分析3个样品,减少了工作量,重复性显著提高。目前该技术已得到了广泛应用。

3.2.2高效液相色谱技术(HPLC) 2D-LCO口串联HPLC也是分析蛋白质组学最有效的工具之一。其基本原理是先进行第一向分子筛柱层析,按蛋白质相对分子质量大小分离。从柱上流出的蛋白峰自动进入第二向层析进一步分离,第二向层析通常是利用蛋白质表面疏水性质进行反相柱层析。

3.2.3毛细管电泳(CE) 在高电场强度作用下,按相对分子质量、电荷、电泳迁移率等差异有效分离毛细管中的待测样品。CE分辨率高,分离速度快且易于和ESI-MS实现在线连接,在蛋白质分析中应用的极为广泛。与2-DE比较,CE可在线自动分析蛋白质的分离,并可分析相对分子质量范围不适于2-DE的样品。缺点是复杂样品分离不完全。

3.3蛋白质定量分析

蛋白质组研究中,以2-DE为基础的蛋白质定量方法大致有考马斯亮蓝染色法、银染法、负染法、荧光染色法和放射性同位素标记法等。其中,考马斯亮蓝染色法和银染法是最常用的定量手段,操作简单易行,而且能很好地与质谱鉴定匹配,但灵敏度较低,检测下限为0.2~0.5g,背景较高。

银染的优点是灵敏度高,可染出蛋白质量1ng/点,但与蛋白质量的线性关系不如考马斯亮蓝染色法,且对质谱鉴定影响较大。

负染方法简单快速,但是,其重复性依赖于许多物理化学因素,例如染色液的pH,胶中阴离子浓度、温度等,所以不能作为一种通用方法。

荧光染色法的灵敏度与银染相似但速度快得多,且不需要固定蛋白质。这为后续的蛋白酶解或印迹带来很大方便。此外,荧光染色的线性范围较宽,定量结果较可靠。

在所有的染色方法中,最灵敏的是同位素标记法,20×10-6量的标记蛋白就可通过其荧光或磷光的强度测定。但此方法易污染,易对人体产生伤害,操作也不方便,一般不采用。

3.4蛋白质的鉴定

3.4.1氨基酸组成分析此法可提供蛋白质一级结构信息,耗资低,但速度较慢。所需蛋白质或肽的量较大,在超微量分析中受到限制;且存在酸性水解不彻底或部分降解而致氨基酸变异的缺点,故应结合蛋白质的其它属性鉴定。

3.4.2 C-端或N-端氨基酸序列分析常用Edman降解法测定蛋白质N-端氨基酸序列。常用羧肽酶法、化学降解法测定蛋白质C-端氨基酸序列。目前均可用自动测序仪。

3.4.3质谱能清楚地鉴定蛋白质并准确测量肽和蛋白质的相对分子质量、氨基酸序列及翻译后的修饰,因灵敏度高、速度快、易自动化,已成为蛋白质组研究中主要的蛋白质鉴定技术。

质谱技术的基本原理基于:带电粒子在磁场或电场中运动的轨迹和速度依粒子质量与携带电荷比的不同而变

化,可据此判断粒子的质量和特性。目前常用的质谱仪有气相色谱-质谱仪(GC-MS):液质联用质谱仪(LC-MS);电喷雾电离串联质谱仪(ESI-MS-MS);液相色谱-电喷雾离子化质谱仪(LC-ESI-MS);基质辅助的激光解吸飞行时间质谱仪(MALDI-TOF-MS)等。其中MALDI-TOF-MS和ESI-MS-MS是简单高效且灵敏的方法,是目前蛋白质组学研究中应用最广泛的生物质谱仪。

3.4.3.1肽质量指纹图谱法鉴定蛋白质在蛋白质数据库中检索实验获得的肽质量指纹图谱,根据肽段匹配率和蛋白质序列覆盖率寻找具有相似肽指纹图谱(PMF)的蛋白质,就可以初步完成蛋白质鉴定。

当前测定蛋白质的肽质量指纹图谱,常用的质谱仪为MALDI-TOF-MS,精度可达0.1个质量单位,灵敏度可以达到分解亚皮摩尔量的蛋白质,并且分析时间极短,适于蛋白质的高通量鉴定。

3.4.3.2质谱测肽序列信息鉴定蛋白质为进一步鉴定蛋白质,可将液相中的肽段经电喷雾电离后进入串联质谱,肽链中的肽键断裂,形成N-端和C-端碎片离子系列。根据肽片段的断裂规律综合分析这些碎片离子系列,可得出肽段的氨基酸序列,联合肽片段的相对分子质量和肽段的序列信息,就足以鉴定一个蛋白质。

表面增强激光解吸电离-飞行时间-质谱(SELDI-TOF-MS)是在MALDI-TOF-MS基础上进一步改进的质谱技术。它通过表面选择性吸附大大降低了样品蛋白质的复杂性,而又能同时分析多样品、多蛋白质,具有分析速度快、简便易行、样品用量少和高通量等特点。

3.4.4同位素标记亲和标签(ICAT) 这是应用MALDI-ToF和LC-MS/MS表达蛋白质差异的定量分析技术。其优点是可以直接测试混合样品而不需分离,能迅速定性和定量鉴定低丰度蛋白质,但也存在特异性吸附、不可逆吸附和容量低等缺点。

3.4.5iTRAQ iTRAQ试剂是在ICAT基础上发展起来的氨基反应试剂,可标记四重样品,以便用串联质谱仪比较分析丰度。Hirsch等利用iTRAQ-MS/MS研究大鼠肝脏局部热缺血处理后Kuppfer细胞内蛋白质的变化,获得了总计1559种蛋白质的定量比较数据。

3.4.6蛋白质芯片技术这是用于分析蛋白质功能及相互作用的生物芯片。待分析样品中的生物分子与蛋白质芯片的探针分子杂交或相互作用或用其他分离方式分离后,用激光共聚焦显微扫描仪检测和分析杂交信号,从而实现高通量检测多肽、蛋白质及其他生物成分的活性、种类和相互作用。此技术快速、操作简便、样品用量少,可平行检测多个样品,可直接检测不经处理的各种体液和分泌物等。在蛋白质组学研究中较目前用的常规方法有明显优势。

3.5蛋白质之间的相互作用技术

蛋白质之间相互作用是细胞生命活动的基础和特征。目前主要的研究方法有以下几种。

3.5.1酵母双杂交系统这是在真核模式生物酵母中进行的,灵敏度很高。目前此技术不但可用于体内检验蛋白质之间,蛋白质与小分子肽、DNA、RNA之间的相互作用,而且能用于发现新的功能蛋白质,研究蛋白质的功能,对于认识蛋白质组特定代谢途径中的蛋白质相互作用关系网络发挥了重要作用。

这种技术可用于研究大量蛋白质间的相互作用,易自动化、高通量,但存在假阳性和假阴性现象。酵母双杂交系统提供的蛋白质之间可能的相互作用信息,还需通过进一步的生物化学实验确定和排除。

3.5.2噬菌体展示技术主要是在编码噬菌体外壳蛋白质基因上连接一单克隆抗体基因序列。噬菌体生长时表面会表达出相应单抗,噬菌体过柱时,如柱上含有目的蛋白质,则可特异性地结合相应抗体。该技术具有高通量及简便的特点,与酵母双杂交技术互为补充,弥补了酵母双杂交技术的一些限制。缺陷是噬菌体文库中的编码蛋白均为融合蛋白,可能改变天然蛋白质的结构和功能,体外检测的相互作用可能与体内不符。

3.5.3串联亲和纯化(TAP)

利用一种经过特殊设计的蛋白标签,经过两步连续亲和纯化,获得更接近自然状态的特定蛋白复合物。TAP技术可在低浓度下富集目的蛋白,得到的产物可用于活性检测及结构分析。因其高特异性和选择性可减小复杂蛋白质组分离的复杂性。

TAP技术的开发是研究蛋白质相互作用方法学上的巨大突破。该方法集成了经典的亲和纯化和免疫共沉淀两种技术的优点,可快速得到生理条件下与目标蛋白真实相互作用蛋白质的特点。这些分离技术与2-DE相互补充或不同分离模式组合,将成为蛋白质组学高通量分析的重要工具。

3.5.4表面等离子共振技术(SPR) 为研究蛋白质之间相互作用的全新手段。典型代表是瑞典BIACORE的单元蛋白质芯片。SPR技术的特点是检测快速、安全,不需标记物或染料,灵敏度高。除用于检测蛋白质之间的相互作用外,还可用于检测蛋白质与核酸及其他生物大分子之间的相互作用,并且能实时监测整个反应过程。因此,SPR技术在检测生物大分子特异性相互作用上比传统方法更具优势。

3.6生物信息学分析

生物信息学是蛋白质组学研究不可或缺的研究方法。蛋白质组学研究任一物种的基因组编码的全套蛋白质,通常是高通量的,在预测和结构分析蛋白质功能时,生物信息学就成为蛋白质组学研究的核心技术之一。数据库是生物信息学的主要内容,各种数据库几乎覆盖了生命科学的各领域,建立与开发蛋白质组数据库和分析软件是蛋白质组定性和定量分析的重要基础。Mascot,Expasy,PeptideSearch和ProteinProspector等是目前蛋白质组学中常用的检索数据库。

生物信息学的发展趋势范文4

[关键词]学科知识网络 知识场 知识生命周期 知识链接 知识地图

[分类号]G251

按照《辞海》解释:基础,“泛指事物发展的根本或起点”。所谓理论基础,是指学科理论创建的根基,即发生学意义上的逻辑起点。它是由一些抽象、具体的理论观点组成的关于某门学科及主题的先导思想。这些先导思想,一方面,起着哲学与某门学科相互联接与沟通的作用;另一方面,又对这门学科具有启发、指导作用,而且具有很强的解释力。具体说来,理论基础具有以下作用:①深刻揭示研究对象现象的本质,并正确地反映对象事物的客观规律;②正确地指引对象发展的基本途径与方向,为对象奠定认识论基础;③有效地指导对象研究全过程。

学科知识网络是由学科知识元素组成的知识节点和知识关联(知识链按)构成的网络状知识体系。也就是说以特定学科领域内的知识单元作为节点,以知识单元之间的关联作为边或者链而构成的网络成为学科知识网络。

学科知识网络和网络学科资源导航的本质区别在于:学科知识网络是学科信息门户基础,是以学科为划分方式的网络资源内容的高度组织集成和网络应用程序的聚集,提供一个统一协作的学术交流环境;而网络学科资源导航只能作为学科信息门户中的一个链接存在。因而学科知识网络是建立在理论基础之上的、一种行之有效的学科知识管理方案。对照理论基础的涵义及其作用,知识场理论、知识生命周期理论、知识链接理论和知识地图理论完全具备作为学科知识网络理论基础的客观条件。

1 从知识场理论视角看学科知识网络

借用物理学场的概念,结合知识点以及知识的特征,将知识场界定为知识载体周围的客观存在的一种由知识载体发散出来的特殊物质。用数学方法就可以表示为一些知识单位(记为I)正在知识空间(记为s)里做一个定向运动(见图1),若将I的出发领域记为A,进入领域记为B,则I由A到B的运动一定可以用矢量进行描述。之所以发生I在S中由A向B的定向运动而不是相反方向的运动。究其原因,一定是B中存在着它自身知识无法解决的、而用A却可以解决的问题。

如果将S表示为某一学科知识空间,I表示某一知识单元,A和B表示不同的主题领域。

而像这样的主题领域会有许许多多,则就可形成一种知识场域网络,如图2所示:

箭头的长短表示主题领域结合的紧密程度;箭头的多寡表示主题的辐射能力和吸收能力。

学科知识网络作为一个场域,完全符合布迪厄对场域特征的多种阐述:①学科知识网络是一个相对独立的社会空间,它“具有自身的逻辑、规则和常规”,从事这个场域研究的人员遵循着共同的学术规范,在此场域内进行实践活动的人也必须具备一定的资格标准;②学科知识网络也是一个客观关系构成的系统,其每个研究者和实践者都具有不同的社会文化背景和价值取向,这种背景成为他们介入这个场域的客观关系;③学科知识网络的边界是经验的,场域间的关联是复杂的,只有深入地、具体地进入这个场域,人们才能估量出这个场域的具体构成,场域效果发挥的效用限度又在哪里等详情。

知识场理论揭示了学科知识网络的知识分布规律、知识扩散规律、知识联系规律、知识自组织规律。同时,知识场理论在一定程度上决定了学科知识网络在该时点上所拥有的资源,这里的资源包括经济性资源、结构性资源和制度性资源。学科知识网络的动力学过程就是学科知识网络在特定学科场域中识别资源、动员资源、获取资源和运作资源的一个动态过程。

学科知识网络是一个知识场网络,在这样的知识场中,学科知识单元在不同的主题领域中运动。学科知识场中描述知识分布特征的物理量被定义为知识密度梯度,何荣利等通过1999-2003年的生物技术知识场的知识密度梯度分布图谱,指出在任何一个知识场中,集中区知识分布呈间断性变化,离散区知识分布呈连续性变化,从而构成了学科知识网络中知识分布的基本特征。这一特征是学科知识单元离散分布属性在学科知识网络中的进一步体现。任何一个学科知识网络中,知识均不可能存在单一的连续分布状态或者单一的间断分布状态,只能是连续性与间断性并存的分布状态。集中性或者离散性注重的是学科知识单元及各种数据资源实体数量上的多寡,它所表征的是一个分布范围。而间断性和连续性体现的不仅是数量的多少和范围的大小,而是知识质量的高低。在学科知识网络这样一个知识场中,知识密度梯度越大,则知识能就越大,知识质量越高;相反,知识密度梯度越小,知识能就越小,知识质量越低。

2 从知识生命周期理论视角看学科知识网络

生命周期来源于生物学,生物生命发展过程是由出生、成长到死亡等不同阶段构成的一个完整周期。知识的发展与生物的发展呈现出很大程度的相似性,知识和生物体一样具有生命周期,其发展过程一样具有阶段性。知识是随着社会实践的不断需求而产生的。新知识诞生后,会经历加工、存储、应用的过程,继而投入生产实践不断接受考察、验证,发挥其自身价值。知识在时间上从产生到消亡的过程,称为知识的生命周期。

知识生命周期包括从最初的知识生产到知识衰亡的所有环节。在知识创新过程中,知识经历产生前的投入期到投入使用后的成长期,然后是广泛普及的成熟期,最后是知识陈旧的衰老期,如图3所示:

假定图3为某一主题的知识生命周期,在一个学科领域内,学科的发展应当如图4的网络描述。

知识生命周期理论揭示了学科知识网络的知识源、知识生产和知识传播的技术规律。

首先,学科知识网络是知识源与广义知识仓库的有机结合。大量原始的粗糙数据在广义知识仓库知识的指导下做数据清洗,再进一步转换、集成,转换成具有面向主题的集成数据仓库数据;最后,由知识发现技术得到的知识充实广义知识仓库中的知识。其次,学科知识网络是知识产牛方法的多元化、智能化。最终,学科知识网络是知识的多方面传播、综合利用。

笔者从所建立的“生物信息学知识网络”中,析取了关键词17601个,建立205×205的共词矩阵。在共词矩阵的基础上,x轴为向心度,Y轴为密度做出战略坐标图。密度轴和向心度轴将整个图形分成四个象限,生物信息学知识网络对四个象限的主题进行不同层次的报导。

第一象限主题类目为蛋白质和生物,系统定期的报道国内外的文献题录及进展综述。

第二象限主题类目为克隆、技术和数据库,系统对这一

象限的类目提供专题报告。

第三象限主题类目为理论和功能,系统对于此象限的类目文献经常进行计量学的分析,预测其发展的趋势。向用户提供主题预测报告。

第四象限主题类目为药物、基因和应用,此象限的研究主题领域结构比较松散,研究尚不成熟(密度较低),它与网络中其他研究结合紧密(向心度较高),但其内部联系较弱,该领域的工作有进一步发展的空间,在整个生物信息学研究中具有较大的潜在重要性。如药物基因组学就是一门具有潜力的发展主题。所以,系统对这一主题给出了专门的跟踪报道。

在知识生命周期理论的指导下,生物信息学知识网络通过揭示不同象限的主题知识的不同演进阶段,实现了对不同主题知识的辨识、发展乃至转移,进而跟踪报导。

3 从知识链接理论视角看学科知识网络

主题知识链接网络。英国信息科学家伯特伦・布鲁克斯主张信息科学的实际工作应该组织世界-3的内容,信息科学的理论任务应该是对世界-2和世界-3相互作用的研究,以组织知识而不是文献。布鲁克斯描述信息和知识的最终公式是:

K(S)+N(K(E)+K(S))=K(S+S)………………

式中K(S)表示知识结构,K(E)表示知识元,N(K(E)+K(S))表示知识链接。公式的特点突出了知识元的独立性、知识的链接性和知识结构的完善性。它强调知识结构是一个比较完整的认知结构,知识结构的构成主要是独立的知识元链接。如图5表示:

我们将图5中的每一知识链接看成是特定学科领域内的某一主题的知识链接,则可以形成如图6的学科知识领域内的知识链接网络。知识链接理论反映了学科知识网络的客观规律,揭示了学科知识网络的本质。

知识元链接不仅为知识组织建立了知识地图,也为学科知识网络对知识的动态检索利用建立了语义知识导航系统。通过知识元链接,在知识仓库与知识元库之间以及在各自库内均形成了纵横交错的学科知识网络。如注释型链接,在知识元名称处提供该知识元内容解释;关联型链接,通过统计计算,对高频次共用同一知识元的知识单元进行链接。学科知识网络中的知识元链接、引文链接和相关文献链接正是知识链按理论中知识链接精髓的体现。

4 从知识地图理论视角看学科知识网络

知识地图所指的知识是知识资源,包括知识单元、人(如专家、知识工作者等)、技术、经验、政策等。这就从两个方面揭示了学科知识网络的本质:①一种知识资源目录及其目录内各知识款日之间相互关联的关联体系;②一个向导,指向的不仅是知识的存储地,而且还指向知识之间的关联结构。

知识地图理论揭示了学科知识网络中学科知识有序的客观规律,这种有序性表现在以下三个方面:

4.1 知识有序化以知识元为起点

知识元是知识的最小功能单元,知识单元为不再分解的量化科学概念。广义上,我们可以将知识单元看作不可再分的独立单位。各种知识元以不同的结构相结合形成了人们通常所说的知识。以知识基因为例,属于知识单元的一种,其研究的重点在于知识的稳定性、遗传与变异性,控制某一知识领域(学科、专业、研究方向)发育走向的能力以及从知识的进化方面探索知识的本质,为知识创新提供智力支持。知识发现和数据挖掘技术是一种从大量信息中发现和挖掘隐含的、未知的有用知识,是产生新知识的一种方式。通过对知识基因的研究,将知识基因按一定规律排列、组合、集成、协调和自适应之后,可以发现和挖掘隐含的、未知的、潜在的有用知识,使知识组织达到一个更高的境界。

4.2 知识有序化的过程为知识组织

知识组织以知识单元为起点,通过知识的概念及其词语表达,发掘信息深层次的内容。知识组织有两个层次:对知识单元本身进行描述和标引以及揭示知识节点之间的逻辑联系。第一个层次是信息组织的普遍特征和功能,是对知识信息分析与组织不可缺少和逾越的阶段。第二个层次才是知识组织的发展和进步方面。搜索引擎、超文本技术、数据挖掘、知识发现、专家系统、人工智能、元数据、xml语言、智能Agent技术等新兴的知识组织技术支持了知识组织的发展,使知识单元的描述和标引层面得到实现,并逐渐进入知识节点逻辑关系揭示的阶段。知识地图不仅仅能揭示知识的特征及存储地,通常也能揭示知识之间的关系。传统的知识组织技术也在不断改进,使得知识描述、知识标引和知识逻辑关系发展成为一个整体,一次性实现对知识的全部组织过程。

4.3 知识有序化的升华为知识创新

信息从无序化到有序化的发展,最终是为了实现信息与知识的创新。知识创新就是获得新知识,是创造、分配、演化和应用新的思想并将知识作为产品和服务提供给人们。它包括获取基础科学与技术科学知识,也包括隐性知识向显性知识的转化。知识基因概念的提出,更进一步阐明了知识的持续生成能力和不断繁衍能力。知识地图在试图揭示知识之间的关系时,往往会发现以往所没有发现的某些知识之间的关系,从而产生新的知识,最终使得学科知识网络实现在知识有序化过程中的知识创新。

生物信息学的发展趋势范文5

生物化学工程(又叫生化工程或生物化工)是化学工程与生物技术相结合的产物。生物化工是生物技术的重要分支。与传统化学工业相比,生物化工有某些突出特点:①主要以可再生资源作原料;②反应条件温和,多为常温、常压、能耗低、选择性好、效率高的生产过程;③环境污染较少;④投资较小;⑤能生产目前不能生产的或用化学法生产较困难的性能优异的产品。由于这些特点,生物化工已成为化工领域重点发展的行业。

1.世界生物化工行业的现状

生物化工发展至今已经历了半个多世纪,最早主要是生产抗生素;随后,是为氨基酸发酵、舀体激素的生物转化、维生素的生物法生产、单细胞蛋白生产及淀粉糖生产等工业化服务。自20世纪80年代起,随着现代生物技术的兴起,生物化工又利用重组微生物、动植物细胞大规模培养等手段生产药用多肽、蛋白、疫苗、干扰素等。而且,生物化工的应用已涉及到人民生活的方方面面,包括农业生产、化轻原料生产、医药卫生、食品、环境保护、资源和能源的开发等各领域。随着生物化工上游技术——生物工程技术的进步以及化学工程、信息技术(IT)和生物信息学(bioinformatics)等学科技术的发展,生物化工将迎来又一个崭新的发展时期。

生物化工行业经过50多年的发展,已形成了一个完整的工业体系,整个行业也出现了一些新的发展态势。下面简要描述生物化工行业的现状。

1.1工业结构

由于生物化工涉及面广,涉及的行业多,所以从事生物化工的企业较多。据报道,90年代中期,美国生物化工企业有:000多家,西欧有580多家,日本有300多家。近年来,虽然由于行业竞争日趋激烈,生物化工企业有较大幅度减少,但与生命科学(主要指医药和农业生化技术)诸侯割据的局面相比,生物化工行业依然是百花齐放,百家争鸣。既有象诺华、捷利康等从事生命科学的世界性大公司,也有象DSM、诺和诺德等大型的精细化工公司,当然也有在某一方面有专长的小公司如Altus等。而且,由于世界大公司正把注意力向生命科学部分转移,生物化工行业百花齐放的局面在很长一段时间内不会有什么改变。

1.2产品结构

传统的生物化工行业主要是指抗生素(如青霉素等)、食品(如酒精、味精等)等行业,而在目前,它已几乎渗透到人民生活的各方面如医药、保健、农业、环境、能源、材料等。同时,生物化工产品也得到了极大的拓展:医药方面有各种新型抗生素、干扰素、胰岛素、生长激素、各种生长因子、疫苗等;氨基酸和多肽方面有赖氨酸、天冬氨酸、丙氨酸、苏氨酸、脯氨酸等以及各种多肽;酶制剂有160多种,主要有糖化酶、淀粉酶、蛋白酶、脂肪酶、纤维素酶、青霉素酶、过氧化氢酶等;生物农药有Bt、春日霉素、多氧霉素、井岗霉素等;有机酸有柠檬酸、乳酸、苹果酸、衣康酸、延胡索酸、已二酸、脂肪酸、卜酮戊二酸、l亚麻酸、透明质酸等。还有微生物法1,3.丙二醇、丙烯酞胺等。

目前,全球生物化工年销售额在400亿美元左右,每年约以7%~8%的速率增长。从产品结构来看,生物化工领域生产规模范围极广,市场年需求量仅为千克级的干扰素、促红细胞生长素等昂贵产品(价格可达数万美元/g)与年需求量逾万吨的抗生素、酶、食品与饲料添加剂、日用与农业生化制品等低价位产品(部分价格不到:美元/g)几乎平分秋色。高价位的产品市场份额在50%~60%,低价位的产品市场份额在40%~50%。而且,根据近年来生物化工的发展趋势及人们对医药卫生的重视来看,高价位产品的发展速率高于低价位产品。

1.3技术水平

生物化工经过80年代以后的蓬勃发展,不仅整个行业技术水平有大幅度提高,而且许多新技术也得到广泛应用。

1.3.1发酵工程技术已见成效

据估计,全球发酵产品的市场有120~130亿美元,其中抗生素占46%,氨基酸占16.3%,有机酸占13.2%,酶占10%,其它占14.5%。发酵产品市场的增大与发酵技术的进步分不开。现代生物技术的进展推动了发酵工业的发展,发酵工业的收率和纯度都比过去有了极大的提高。目前世界最大的串联发酵装置已达75m\许多公司对发酵工艺进行了调整,从而降低了生产成本。如ADM(ArcherDanie1sMid1and)和Cargill公司在20世纪90年代初对其发酵装置进行改造,将以碳水化合物为原料的生产工艺改为以玉米粉为原料,从而降低了生产成本,ADM公司生产的赖氨酸成本比原先降低了一半。

1.3.2酶工程技术有了长足的进步

酶工程技术包括酶源开发、酶制剂生产、酶分离提纯和固定化技术、酶反应器与酶的应用。目前世界酶制剂从酶源开发到酶的应用都已进入了良性发展阶段,各阶段生产企业和用户关系密切,合作广泛。据报道,1998年全球工业酶制剂的销售额为13亿美元,预计到2010年将增长到30亿美元,每年以6.5%的速率增长。其中食用酶占40%,洗涤用酶占33%,其它(主要是纺织、造纸和饲料等用酶)占27%。

1.3.3分离与纯化技术也有很大进步

影响生化产品价格的因素,首当其冲的是分离与纯化过程,其费用通常占生产成本的50%~70%,有的甚至高达90%。分离步骤多、耗时长,往往成为制约生产的“瓶颈”。寻求经济适用的分离纯化技术,已成为生物化工领域的热点。已大规模应用的分离纯化技术有:双水相革取、新型电泳分离、大规模制备色谱、膜分离等。

1.3.4上游技术广泛应用于下游生产

利用基因工程技术,不但成倍地提高了酶的活力,而且还可以将生物酶基因克隆到微生物中,构建基因菌产生酶。利用基因工程,使多种淀粉酶、蛋白酶、纤维素酶、氨基酸合成途径的关键酶得到改造、克隆,使酶的催化活性、稳定性得到提高,氨基酸合成的代谢流得以拓宽,产量提高。随着基因重组技术的发展,被称为第二代基因工程的蛋白质工程发展迅速,显示出巨大潜力和光辉前景。利用蛋白质工程,将可以生产具有特定氨基酸顺序、高级结构、理化性质和生理功能的新型蛋白质,可以定向改造酶的性能,从而生产出新型生化产品。

1.3.5新技术在生物化工中也得到了极大的应用

比如,在超临界液体状态下进行酶反应,从而大大降低酶反应过程的传质阻力,提高酶反应速率。超临界C02无毒、不可燃、化学情性、易与反应底物分离。利用超临界CO2取代有机溶剂进行酶反应,具有极大的发展潜力。又比如,微胶羹技术已被广泛用于动物细胞的大规模培养、细胞和酶的固定化以及蛋白质等物质的分离方面。

2.世界生物化工行业的发展趋势

2.1工业结构

行业与行业间的划分将日趋模糊,企业间的合作将加大。目前,许多从事医药、农业、环境、能源等方面生产的企业,正在从事生物化工生产。特别是某些从事传统化工行业的生产厂家,也纷纷涉足生物化工领域。如杜邦公司,长期以来主要从事有机化工和聚合材料的生产,现在正加大生物化工的开发力度,已开发成功了生物法生产1,3-丙二醇工艺,并正在开发用改性大肠杆菌生产己二酸工艺。DSM公司以前主要从事抗菌素方面的生产,现也加大了生物化工的投资力度。

由于生物化工涉及面广,许多生化公司都有自己的专长,它们之间为了商业利益的合作也非常活跃。此外,随着从事传统行业的生产厂家的加入,由于技术与生产方面的原因,它们与从事生物化工开发与生产的企业合作也很频繁。所有这一切,都使生物化工行业的合作越来越广泛。如杜邦公司与杰宁科乐公司合作开发用生物法生产1,)丙二醇,进一步生产PTT树脂。荷兰的Purac公司与美国Cagill公司合资建设年产3.4万tL。乳酸装置,并计划进一步发展到6.8万V入DSM公司与美国Maxygen公司签定了三年的研究合同,以利用Maxygen的DNA重排和分子培养技术,开发在7一ADCA和其它青霉素生产中使用的酶和菌种。

2.2产品结构

生物化工产品正向专业化、高科技含量、高附加值方向发展。传统的低价位产品受到冷落,而高价位产品如生化药物、保健品、生化催化剂等则备受青睐。许多公司为了追求较高利润,都将低附加值的产品剥离。如日本武田药品工业公司不再生产味精,转而生产其它高附加值的调味品如肌甘酸二钠(IMP)和鸟甘酸二钠(GwtP)。另外,生物化工将涉足它以前很少涉足的领域如高分子材料和表面活性剂等。

生化药物由于附加值高而成为今后生物化工领域发展的重点。1997年生化药物市场销售额达130亿美元,其中细胞分裂素80亿美元,激素30亿美元,其它20亿美元;就具体药物而论,促红细胞生长素35亿美元,人胰岛素18亿美元,粒性白细胞克隆刺激因子16亿美元,人生长激素15亿美元,小干扰素11亿美元。预计今后其市场销售额还将以8%的速率增长。

在氨基酸方面,虽然用于药物合成氨基酸的量相对较小,但其发展潜力很大。据报道,500种主要药物中,有18%含有氨基酸或其衍生物的合成。在药物合成中,使用最广泛的是L。脯氨酸、r苯甘氨酸和r对羟基苯甘氨酸。L。脯氨酸用于血管紧张素转化酶(ACE)的合成,匹苯甘氨酸和r对羟基苯甘氨酸用于抗生素的合成。另外,多肽也是今后的发展重点之一。多肽是指有2以上氨基酸用肽键组成的化合物,在临床上使用非常广泛,主要用于治疗癌症、HIV病毒和兔疫系统功能减退、对传统抗生素产生抗体的感染以及疫苗等。全球合成多肽原药的产量在100kg左右,但销售额达2.5亿~3亿美元,而做成制剂的销售额则达25亿~30亿美元。多肽原药需求量的年增长率在10%以上。

碳水化合物方面,用于临床的碳水化合物受到人们越来越多的关注。但是,用于临床的碳水化合物结构复杂,如一对单糖,其不同的化学键就多达22种。因此,用化学法合成复杂的碳水化合物比较困难,难以实现工业化,而用酶法合成则是一条切实可行的途径。

作为生化催化剂的酶,也将是今后发展的重点。1997年,生化用催化剂销售额约1.3亿美元,在过去的3~5年间,每年增长速率在8%~9%,预计在未来的3~5年间,将以同样速度增长。生化催化剂主要用于手性药物的合成。当前,手性药物已成为国际新药研究与开发的新方向之一。

1997年手性药物制剂世界市场的销售额为879亿美元,占药品市场的28.3%,到2000年将达到900亿美元。在未来的25年内,约有一半的手性药物要通过生化催化合成,因此,生化催化剂无论从需求量和需求种类来看,都具有很大的发展潜力。

生化表面活性剂由于具有无毒、生物降解性好等优点,今后可能成为表面活性剂的升级换代产品,但目前还处于探索阶段。

生物化工在高分子材料、特殊化学品、生物晶片、环保等方面也将有极大的发展潜力。

2.3技术水平

不断提高菌株活力、发酵水平、生化反应过程、分离纯化水平,依然是生物化工面临的课题。

在菌种开发方面,由于从20世纪70年代以来从自然界中筛选菌种以获得新的代谢产物的机会明显减少,人们便考虑利用已知菌种经适当改变其代谢特性后生产新的产品。如日本协和发酵公司已成功地把生产谷氨酸的菌种改为生产色氨酸。

在生化反应器方面,反应器放大一直是一个老大难的问题。因此,利用计算机技术对整个生化反应过程进行数字化处理,从而优化反应过程,是今后的发展方向之一。

在分离纯化方面,亲和层析受到广泛重视,并有人研制了一种综合专家系统软件包,可在几分钟内告知对方被分离物系的分离方法和顺序,以便根据产品所需进行取舍。

另外,在生化过程的在线检测和控制方面,利用生物传感器和计算机监控,依然是今后的发展方向。

在酶催化反应中将发展有机溶剂中的催化反应。

生物上游技术的发展,将对生物化工产生深远影响。人们对从病毒、细菌、植物、动物到人类基因组顺序测定工作十分重视,并在此基础上形成了基因许多产品一哄而上,盲目上马,遍地开花,最终形成恶性竞争,许多企业破产倒闭。在竞争中生存下来的企业,也是元气大伤,难以进一步组织技术改造。如仅江苏省停产的发酵生产线就多达上百条。另外,行业内企业间的生产水平相差悬殊,企业技术装备水平达到20世纪80年代以后国际先进水平的仅占20%~30%,多数处于20世纪60~70年代水平。

二是产品结构不合理,品种单一,低档次产品重复生产,不能适应需求。在我国高档的医药生化产品如激素、生长因子、干扰素、药用多肽等,有的产量很小,有的没有生产,因此每年都需进口。

三是在生产技术上,工艺、设备不配套,上下游技术不配套,产物的收得率低。我国虽然某些产品如柠檬酸、乳酸等发酵水平较高,但大多数产品的收率都低于国外,酶制剂的活力也明显低于国外,生化反应器和分离纯化技术更是落后国外15~20年。每年都要花费大量资金从国外进口生物反应器、细胞破碎机、分离纯化设备及分离介质、生物传感器和计算机监控设备。

四是有些产品投入产出比达15/=以上,造成严重的资源浪费和环境污染。

五是基础研究薄弱,技术创新能力不强,企业的技术开发、技术吸收能力差,生产发展多数依靠传统的夕蜒型、粗放型扩大投资的增长模式,效益低、市场竞争力低。

3.2建议针对我国生物化工行业存在的问题,笔者有以下建议:

3.2.1扩大经济规模,提高竞争力要鼓励建设大型的生物化工企业集团公司,使之集科研、开发、生产、销售干一体。尤其要培育一批科技创新型企业。同时,也要鼓励在某些方面有一定特色的小型技术创新型生化公司的发展,并淘汰一批生产规模小、生产技术落后、没有市场竞争力的企业,从整体上优化我国生物化工的产业结构。

3.2.2调整产品结构要发展高档产品,如高档医药生化产品、功能性食品及添加剂(主要有低热值、低胆固醇、低脂肪、提高免疫功能、抗炎、抗癌等产品)、生化催化剂等。另外,也应发展众多精细化工产品及用化学法无法生产或很难生产的产品,如微生物多糖、生物色素、工业酶制剂、甜味剂、表面活性剂、高分子材料等。

3.2.3节约有限资源,强化环境保护在生化生产组学(genomics)。近年来又在信息学(informatics)的基础上建立了生物信息学(bioinformatics)。信息学的内容包括信息科学十生物技术十生物工程十生物动力学等的综合信息系统。可以预见,基因组学和生物信息学在生物化工中应用的商业前景极为可观。

另外,其它行业的新技术如分子蒸馏技术、组合化学(combinatoricalchemistry)等,也将在生物化工中得到应用。

3.我国生物化工的发层现状及建议

3.1发展现状

我国生物化工行业经过长期发展,已有一定基础。特别是改革开放以后,生物化工的发展进入了一个崭新的阶段。目前生物化工产品也涉及医药、保健、农药、食品与饲料、有机酸等各个方面。

在医药方面,抗生素得到迅猛发展61998年我国抗生素的产量达到33486h青霉素的产量居世界首位。其它生化药物中,初步形成产业化规模的有干扰素、白细胞介素。2、乙型肝炎工程疫苗。

在农药方面,生物农药品种达12种,主要有苏云金杆菌、井岗霉素、赤霉素等。其中,井岗霉素的产量居世界第一位。

在食品与饲料方面,作为三大发酵制品的味精、柠檬酸、酶制剂的产量也有很大的增加/1998年味精产量从1990年的22.3万、增加到56.4万一柠檬酸产量从1990年的6.13万、增加到56.4万一酶制剂从1990年的8.5万t增加到24万t。酵母及淀粉糖的产量也有明显增加。我国的味精生产和消费居世界第一,柠檬酸的生产和出口也居世界第一。另外,1998年乳酸的产量在1.5万t左右,赖氨酸的产量在2万t左右,卜苹果酸的产量在6000t。

在有机酸方面,衣康酸的产量达5000乙我国开发的生物法长链二元酸工艺居世界领先地位,目前生产能力达500Va以上,并有数家企业有建设长链二元酸生产装置的意向。

在保健品方面,我国已能用生物法生产多种氨基酸、维生素和核酸等。另外,我国生物法丙烯酞胺的生产能力达到2万V山与日本同处于世界领先地位。

但是与发达国家相比,我国生物化工行业存在着许多问题:

一是我国的生物化工产业主要以医药、轻工、食品业为主。部分企业对生物化工产品大都是精细化工产品这一点了解不够,加之行业规范也不够,导致过程中,应选择合适的原料,以降低成本与消耗,并加强废物处理,减少环境污染。

3.2.4提高生产技术水平,特别是下游技术水平因为我国生物技术上游技术水平与国外相差仅3~5年,而下游技术水平则比国外相差15年以上,改造传统发酵产品生产技术,不断提高发酵法产品的生产技术水平,开发生物反应器,提高我国生物化工产品分离和提纯技术,大规模开发生物化工装备等应首先提上议事日程。另外,还应积极采用微生物法代替化学法,开发基础化工新产品的工业化生产技术。

3.2.5加强产学研结合,注重上下游结合国内生物化工技术力量分散,为了做到优势互补,应加强产学研结合。另外在生物化工生产过程中遇到的很多问题,都是由于上、下游结合不够紧密而影响技术经济指标。因此,在人力和财力的投入上,应考虑上下游结合,以加快生物化工产业的发展。

生物信息学的发展趋势范文6

高等教育的宗旨是“通识为本,专识为末”,现代社会的高等教育应该是以培养一个合格的公民,培养一个宽基础、宽口径、高情商、高素质的现代公民为目的。在这样的前提下,笔者认为开设生命科学类通识教育课程的意义主要体现在以下3个方面:

1.1有利于提升大学生对人类自我的认识高度

随着生命科学的飞速发展,特别是新世纪以来,人类基因组计划的实施和完成,新一代测序技术的进一步应用和发展,人类第一次从分子水平上认识自我,对于由“A、T、C、G”4个字母组成的无字天书的海量信息的理解,对人类基因组中冗余序列的功能的判断等等问题的思考和甄别,进一步提升了我们对人类自我的认识高度,进一步拓展了人类在认识自我上的思维空间。

1.2有利于提升对生命现象及生命活动的理解和尊重

作为医药类高校,提高学生对生命现象和生命活动的理解,对生命的尊重,有利于学生更好的巩固专业思想,提升专业技能,养成良好的专业素养。

1.3有利于大学生对社会生活、生命现象的本质探索

应该清楚地看到,目前社会发展所带来的一系列负面问题,如粮食短缺、疾病危害、环境污染、能源危机、资源匮乏、生态失衡和大量物种灭绝等问题,而解决这一系列重大问题,在很大程度上依赖于生命科学的发展,对这些问题的深度理解和对其本质的把握都需要大学生具备相应的生命科学知识和基础[3]。开设生命科学通识教育课程,将一些最新的生命科学理论和进展引入课堂,使学生了解本世纪现代生命科学的发展趋势和热点问题,以便在专业学习中发现学科之间的交叉点,拓展学生的知识领面,既是完善自我知识结构,认识自然科学核心内容的需要,也是培养既了解生命科学又具备其他专业学科知识的复合型人才的需要。

2生命科学类通识教育课程的教学内容

这类通识教育课程的重点不在于具体传授了多少专业知识观点和内容,而是要传授给学生研究问题和解决问题的方法、思维方式。因此,要想吸引学生选修此课程,就必须从讲授内容和讲授方法2个方面下功夫,力求内容新颖,方法得当,通俗易懂,在授课时尽可能贴近生活,贴近社会,深入浅出,从大学生关注的问题入手去介绍以上所述内容中的最新成果和进展,这样学生才更易于接受和理解[4]。根据安徽中医药大学的学生情况和知识基础,把学生分为医药类、文史类两大类别,根据不同类别的学生选择不同的教学内容。医药类学生教学内容选择上注重培养学生的学科交叉意识,重点讲述生命科学的一些新成就和新进展,以及生命科学发展对社会的影响,如基因编辑技术、干细胞技术、人类基因组计划、生态系统的变化、生物多样性保护、基因工程药物和疫苗、基因治疗、动物克隆、生物芯片、生物信息学、生物材料与仿生学、生物技术与人类未来等,通过学习,使学生理解并初步能运用生物学知识去认识生命、了解生命,同时争取对学生跨学科创新思维起到一定的科学启迪作用,对社会上的一些热点生物学问题有个清晰的认识;对于文史类学生,教学内容选择上注重安排生物学基础知识的传授,以及生物技术发展与人类社会进步的密切关系,如生命的化学组成、细胞的结构与功能、营养与健康、社会生物学与繁殖对策、人类遗传学与优生、生命的起源与进化、生物多样性及其保护、生命伦理及社会决策等,通过学习,使学生获得必要的现代生命科学基础知识,认识人类自身;了解现代生命科学的新发展及其与人文科学交叉的趋势,引导学生树立正确的自然观、科学观,增强社会公民责任感,提高综合素质。

3生命科学类通识教育课程的教学及考核方法